

Report No.: SZEM180300241701 Page: 1 of 40

Appendix B

E-UTRA Band 13

Report No.: SZEM180300241701 Page: 2 of 40

Page

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	6
	2.1 FOR LTE	6
	2.1.1 Test Band = LTE band13	6
3	MODULATION CHARACTERISTICS	8
	3.1 FOR LTE	
	3.1.1 Test Band = LTE band13	
4	BANDWIDTH	10
	4.1 FOR LTE	10
	4.1.1 Test Band = LTE band13	
5	BAND EDGES COMPLIANCE	18
	5.1 For LTE	
	5.1.1 Test Band = LTE band13	
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	34
	6.1 For LTE	
	6.1.1 Test Band = LTE band13	
7	FIELD STRENGTH OF SPURIOUS RADIATION	
	7.1 For LTE	
	7.1.1 Test Band = LTE band13	
8	FREQUENCY STABILITY	
	8.1 FREQUENCY ERROR VS. VOLTAGE	
	8.2 FREQUENCY ERROR VS. TEMPERATURE	40

Report No.: SZEM180300241701 Page: 3 of 40

1 Effective (Isotropic) Radiated Power Output Data

Test Test ERP limit Test Test Measured Test RB Verdict Band(LTE) Mode **Bandwidth** channel (dBm) (dBm) (dBm) RB1#0 23.58 20.93 34.77 PASS RB1#13 23.39 20.74 34.77 PASS RB1#24 23.49 20.84 34.77 PASS LCH RB12#0 PASS 22.76 20.11 34.77 RB12#6 22.55 34.77 PASS 19.9 RB12#13 22.69 34.77 PASS 20.04 22.59 PASS RB25#0 19.94 34.77 RB1#0 23.32 34.77 PASS 20.67 RB1#13 23.56 34.77 PASS 20.91 RB1#24 23.36 20.71 34.77 PASS BAND13 LTE/TM1 5M MCH PASS RB12#0 22.74 20.09 34.77 PASS RB12#6 22.78 20.13 34.77 RB12#13 22.75 20.1 34.77 PASS RB25#0 22.73 20.08 34.77 PASS PASS RB1#0 23.58 20.93 34.77 RB1#13 23.72 21.07 34.77 PASS RB1#24 PASS 23.28 20.63 34.77 HCH RB12#0 22.67 34.77 PASS 20.02 RB12#6 PASS 22.86 20.21 34.77 RB12#13 22.79 20.14 34.77 PASS RB25#0 22.72 PASS 20.07 34.77

Effective Radiated Power of Transmitter (ERP) for LTE BAND 13

Report No.: SZEM180300241701 Page: 4 of 40

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.6	19.95	34.77	PASS
				RB1#13	22.48	19.83	34.77	PASS
				RB1#24	21.93	19.28	34.77	PASS
			LCH	RB12#0	21.75	19.1	34.77	PASS
				RB12#6	21.57	18.92	34.77	PASS
				RB12#13	21.58	18.93	34.77	PASS
				RB25#0	21.75	19.1	34.77	PASS
				RB1#0	22.98	20.33	34.77	PASS
				RB1#13	22.63	19.98	34.77	PASS
				RB1#24	22.78	20.13	34.77	PASS
BAND13	LTE/TM2	5M	МСН	RB12#0	21.7	19.05	34.77	PASS
				RB12#6	21.58	18.93	34.77	PASS
				RB12#13	21.85	19.2	34.77	PASS
				RB25#0	21.85	19.2	34.77	PASS
				RB1#0	22.06	19.41	34.77	PASS
				RB1#13	22.26	19.61	34.77	PASS
				RB1#24	22.4	19.75	34.77	PASS
			НСН	RB12#0	21.52	18.87	34.77	PASS
				RB12#6	21.56	18.91	34.77	PASS
				RB12#13	21.65	19	34.77	PASS
				RB25#0	21.62	18.97	34.77	PASS

Report No.: SZEM180300241701 Page: 5 of 40

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.32	20.67	34.77	PASS
				RB1#25	23.8	21.15	34.77	PASS
				RB1#49	23.62	20.97	34.77	PASS
	LTE/TM1	10M	МСН	RB25#0	22.79	20.14	34.77	PASS
				RB25#13	22.87	20.22	34.77	PASS
				RB25#25	22.81	20.16	34.77	PASS
BAND13				RB50#0	22.74	20.09	34.77	PASS
BAND 13				RB1#0	23.17	20.52	34.77	PASS
				RB1#25	22.99	20.34	34.77	PASS
				RB1#49	22.36	19.71	34.77	PASS
	LTE/TM2	10M	MCH	RB25#0	21.8	19.15	34.77	PASS
				RB25#13	21.92	19.27	34.77	PASS
				RB25#25	21.75	19.1	34.77	PASS
				RB50#0	21.8	19.15	34.77	PASS

Note:

a: For getting the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should be taken to calculate it,

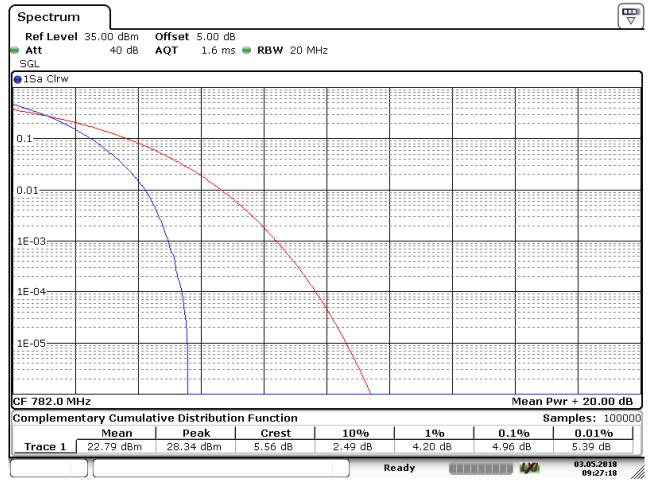
EIRP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBi] b: SGP=Signal Generator Level

Report No.: SZEM180300241701 Page: 6 of 40

2 Peak-to-Average Ratio

Part I - Test Results

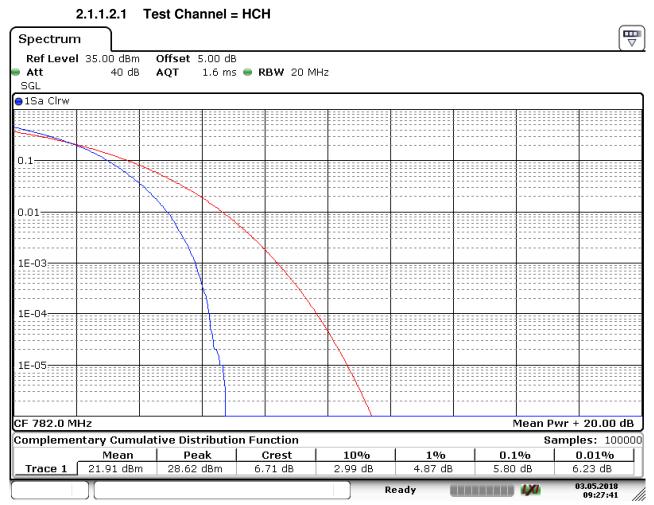
Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
Dond 10	TM1/10M	HCH	4.96	13	PASS
Band 13	TM2/10M	HCH	5.80	13	PASS


Part II - Test Plots

2.1 For LTE

2.1.1 Test Band = LTE band13

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=10MHz


Date: 3.MAY.2018 09:27:19

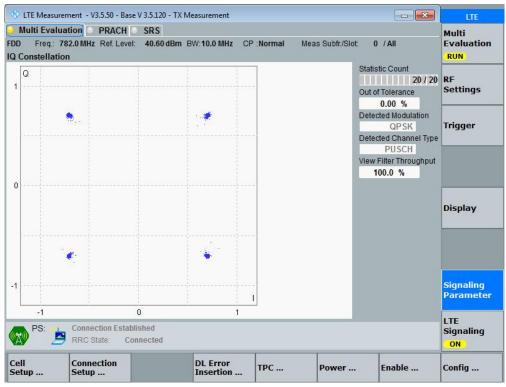
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-en-Document.aspx Attention is for electronic Documents at http://www.sgs.com/en/Terms-end-Conditions.Terms-end-Conditions.Terms-end-Conditions/Terms-end-Conditis/Terms-end-Conditions/Terms-end-Conditions/Terms-en

Report No.: SZEM180300241701 Page: 7 of 40

2.1.1.2 Test Mode = LTE/TM2.Bandwidth=10MHz

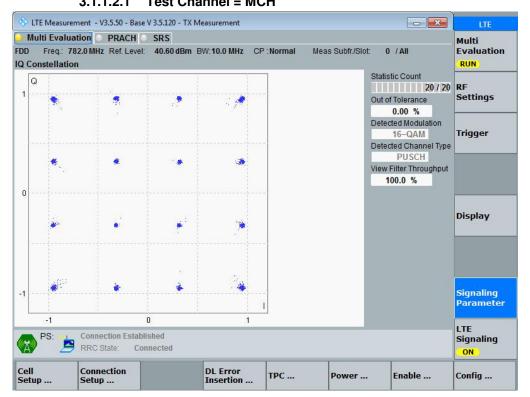
Date: 3.MAY.2018 09:27:41

Report No.: SZEM180300241701 Page: 8 of 40


3 Modulation Characteristics

Part I - Test Plots

3.1 For LTE


- 3.1.1 Test Band = LTE band13
- 3.1.1.1 Test Mode = LTE /TM1 10MHz

3.1.1.1.1 Test Channel = MCH

Report No.: SZEM180300241701 Page: 9 of 40

3.1.1.2 Test Mode = LTE /TM2 10MHz 3.1.1.2.1 Test Channel = MCH

Report No.: SZEM180300241701 Page: 10 of 40

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	4.47	4.79	PASS
	TM1/ 5MHz	MCH	4.49	4.79	PASS
		HCH	4.49	4.79	PASS
Band 13		LCH	4.47	4.79	PASS
Dallu 13	TM2/ 5MHz	MCH	4.49	4.83	PASS
		HCH	4.49	4.77	PASS
	TM1/10MHz	MCH	8.93	9.49	PASS
	TM2/10MHz	MCH	8.93	9.49	PASS

4.1 For LTE

4.1.1 Test Band = LTE band13

4.1.1.1 Test Mode = LTE/TM1 5MHz

4.1.1.1.1 Test Channel = LCH

Date: 1.MAY.2018 04:47:39

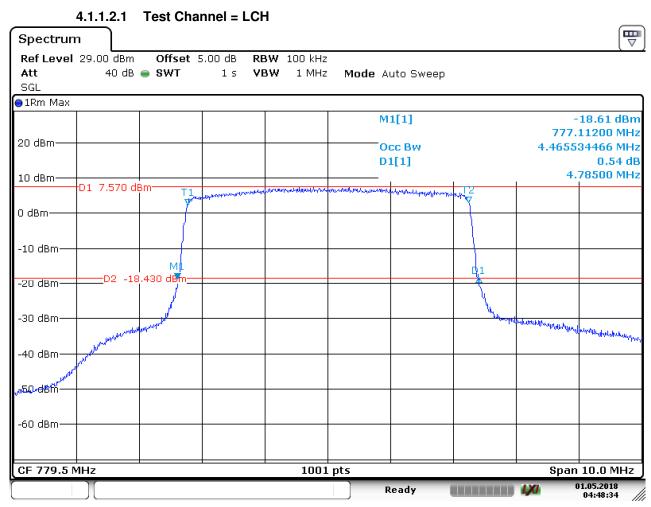
Report No.: SZEM180300241701 Page: 11 of 40

Spectrun	ı	Ì									
Ref Level Att SGL			Offset SWT	: 5.00 dB 1 s	RBW VBW	100 kHz 1 MHz	Mode	Auto Sweep			
●1Rm Max											
20 dBm								D1[1] Occ Bw			-0.13 dB 79300 MHz 14486 MHz
10 dBm								M1[1]			17.76 dBm 59200 MHz
	D1 8.0	060 de	Sm	Jahran Ikarah	www.elulinariya		aprelow-executiv	wanter and a second	when y		
0 dBm			†								
-10 dBm			M								
-20 dBm—			<u>.940 dBm-</u>								
-30 dBm-	nautout	www.w	Comprose ^{nti}						Jan Marine	aluphran when the	phalmal-lin-adjust
-40 dBm——											
-50 dBm—											
-60 dBm											
CF 782.0 N	/IHz			í	i	1001	pts	i		Span	10.0 MHz
								Ready		1)0)1.05.2018 04:51:44

4.1.1.1.2 Test Channel = MCH

Date: 1.MAY.2018 04:51:44

Report No.: SZEM180300241701 Page: 12 of 40


Spectrun	n										
Ref Level Att SGL			Offset SWT	5.00 dB 1 s	RBW VBW	100 kHz 1 MHz	Mode A	uto Sweep			
⊖1Rm Max											
20 dBm								1[1] cc Bw			-0.15 dB 79100 MHz 14486 MHz
10 dBm							M	1[1]			18.53 dBm 10200 MHz
	D1 8.200	dBm		manufacture	mon		www.	any the second	wrt2		
0 dBm			{								
-10 dBm—			MI								
-20 dBm	D2 -	17.80	00 dEm-								
-30 dBm			ľ						L L		
www.philistum	م مردسه وجود معاومه الم	manufer	wal						Your	warman and when the	house harder and the second
-40 dBm		-									
-50 dBm—											
-60 dBm—											
CF 784.5 M	MHz			1	i	1001	pts	l	L	Span	10.0 MHz
()[]						а (Ready		1/0	1.05.2018 04:52:54

4.1.1.1.3 Test Channel = HCH

Date: 1.MAY.2018 04:52:54

Report No.: SZEM180300241701 Page: 13 of 40

4.1.1.2 Test Mode = LTE/TM2 5MHz

Date: 1.MAY.2018 04:48:34

Report No.: SZEM180300241701 Page: 14 of 40

Spectrum	n									
Ref Level Att SGL	29.00 dBm 40 dB	Offs SW1	set 5.00 dE F 1 s		100 kHz 1 MHz	Mode A	uto Sweep			
●1Rm Max										
20 dBm							1[1] cc Bw			-0.38 dB 83300 MHz 14486 MHz
							1[1]		-	19.60 dBm 57200 MHz
10 dBm	D1 7.190 d	1 Bm	Thereman	W Laboration of an av	OLAND IN MARINE A			72		07200 0012
0 dBm							()			
-10 dBm										
-20 dBm	D2 -10	9.810 d								
-30 dBm	producer rolds and	unangel						- M	an purpose	dest the second
-40 dBm									n I	e an landa wata fafant
-50 dBm										
-60 dBm										
CF 782.0 M	MHz				1001	pts			Span	10.0 MHz
						A (Ready		1)0	1.05.2018 04:50:49 //

4.1.1.2.2 Test Channel = MCH

Date: 1.MAY.2018 04:50:50

Report No.: SZEM180300241701 Page: 15 of 40

Spectrun	ı)											
Ref Level Att SGL		dBm D dB (5.00 dB 1 s	RBW VBW	100 kHz 1 MHz	Mode	Auto Sweep			X
😑 1 Rm Max												
20 dBm									01[1]			1.10 dB 77100 MHz
									Dee Bw M1[1]		-	14486 MHz 18.63 dBm
10 dBm	D1 7.1	.80 dB	m	T 1 72	for the transformed	nanderade	metholower		www.	mut 2	/82.	12200 MHz
0 dBm				+								
-10 dBm——				м								
-20 dBm	D2	2 -18.	.820 (
-30 dBm				pl						- U		
-40 dBm	nepperperior	anter and a second	Whyne								and and an and an and an and an	un province plant
-50 dBm												
-60 dBm												
CF 784.5 N	/Hz						1001	pts			Span	10.0 MHz
									Ready		1,70)1.05.2018 04:53:44

4.1.1.2.3 Test Channel = HCH

Date: 1.MAY.2018 04:53:45

Report No.: SZEM180300241701 Page: 16 of 40

	4.1.1.3.1	Test Cha	nnel = MCH						
Spectru	m								
Ref Leve	l 29.00 dBm	Offset	5.00 dB RB V	V 200 kHz					
Att SGL	40 dE	3 🖷 SWT	1s VB	N 2 MHz	Mode A	uto Sweep			
⊖1Rm Max									
					D	1[1]			-1.34 dB
20 dBm—					0	cc Bw			.4880 MHz 68931 MHz
						1[1]			17.48 dBm
10 dBm—	D1 8.230					1		777	.2650 MHz
	TUI 8.2301		- Here all and the second strategy and	and the second second second second		مىيىيىسىيەيىلىرىي _م	much 2		
0 dBm	-	+							
-10 dBm—									
		M					D1		
-20 dBm—		.7.770 dBm-					+ +		
		5					L.		
-30 dBm—		- www						and the second s	
		and and the							ware with the strong were
-40 dBm—	- /	, 							
-50 dBm-	and many spirit the sales of								
-60 dBm—									
CF 782.0	MHz	i	t l	1001	pts	ł	i	span	20.0 MHz
)(] F	Ready		1/0	1.05.2018 04:55:46

4.1.1.3 Test Mode = LTE/TM1 10MHz

Date: 1.MAY.2018 04:55:46

Report No.: SZEM180300241701 Page: 17 of 40

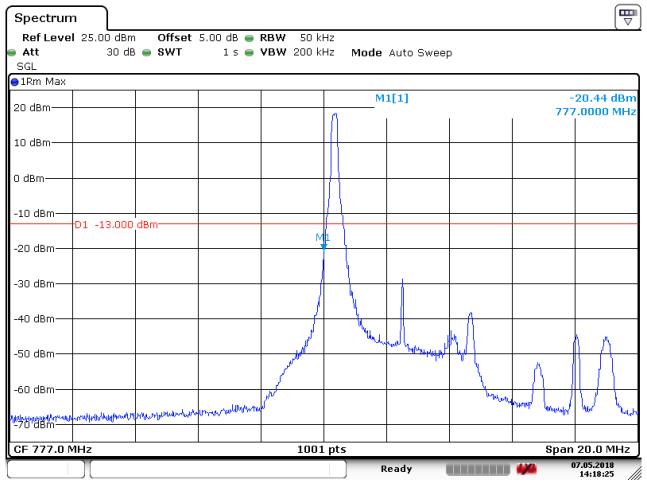
	4.1.1.4.1	Test Ch	annel = MCH	l					
Spectru	m								l III III III III III III III III III I
Ref Leve	l 29.00 dBi	m Offset	5.00 dB RB	W 200 kHz					
Att SGL	40 d	IB 👄 SWT	1s VB	W 2 MHz	Mode A	uto Sweep			
⊖1Rm Max	{								
					D	1[1]			0.98 dB
20 dBm—						CC BW			9.4880 MHz 68931 MHz
						11[1]			19.61 dBm
10 dBm—			_						7.2650 MHz
	-D1 7.150	dBm T1	in the second and the second second	and the second second	- William and a group of a start of the	and the second			
0 dBm		, Y							
-10 dBm—									
		MI							
-20 dBm—	D2 -	18.850 dBm=							
							\		
-30 dBm—									
		Harver					- Arway	wheel Hymnesel and man	munanguating
-40 dBm—		Å							
	1	/							
-50 dBm	population and								
a filment a start and a start and a start a sta									
-60 dBm—	_								
CF 782.0	MHz			1001					20.0 MHz
						Ready		1,70	01.05.2018 04:54:46

4.1.1.4 Test Mode = LTE/TM2 10MHz

Date: 1.MAY.2018 04:54:46

Report No.: SZEM180300241701 Page: 18 of 40

5 Band Edges Compliance


Part I –

5.1 For LTE

- 5.1.1 Test Band = LTE band13
- 5.1.1.1 Test Mode = LTE/TM1 5MHz

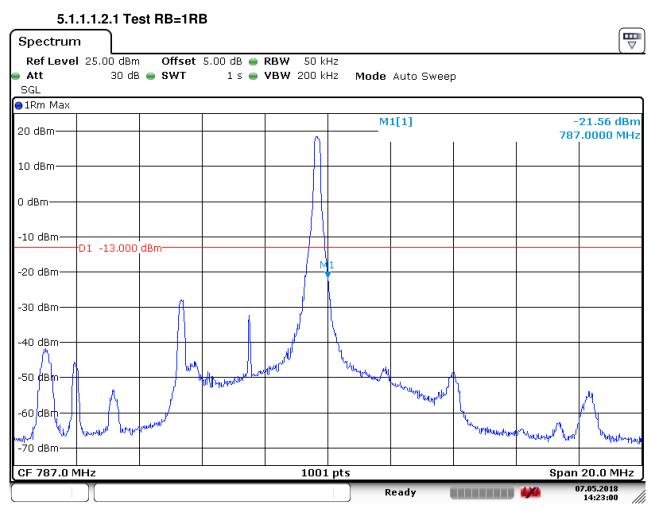
5.1.1.1.1 Test Channel = LCH

5.1.1.1.1.1 Test RB=1RB

Date: 7.MAY.2018 14:18:26

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180300241701 Page: 19 of 40


Spectrun Ref Leve		dBm Off	set 5.00 dB 🔘	RBW 50 k	·Hz				(*
Att		0 dB 🔵 SW		VBW 200 k		le Auto Sw	reep		
SGL									
1Rm Max									
20 dBm						M1[1]			-28.98 dBr
20 UBIII							I	77	7.0000 MH
10 dBm——									_
					phrankether	-undertratively-type	manually		
D dBm——									
-10 dBm—	D1 -13	.000 dBm							
-20 dBm—					1				
				N	₽		K		
-30 dBm—				and and a start of the start of	4		- bogeney	Multime	
				all				Mahwannahantag	- Auron
-40 dBm—				/					- Canada Maria
-50 dBm—				1					
			all way and a second	M					
-60 dBm—			Jul Walk						
kanbular anisara.	June L. Productor	white the property way	Magneter						
-70 dBm—	4		· ·						+
CF 777.01	⊥ ∕IHz	I	1	100 :	l pts	I		Spar	1 1 20.0 MHz

5.1.1.1.1.2 Test RB=25RB

Date: 7.MAY.2018 14:21:15

Report No.: SZEM180300241701 Page: 20 of 40

5.1.1.1.2 Test Channel = HCH

Date: 7.MAY.2018 14:23:00

Report No.: SZEM180300241701 Page: 21 of 40

Spectrum	ı)								
Ref Level Att SGL	25.00 dBm 30 dB	o Offset 8 e SWT	5.00 dB 👄 1 s 👄	RBW 50 k VBW 200 k		Auto Swee	p		
😑 1Rm Max									
20 dBm					M	1[1]	I		28.86 dBm 7.0000 MHz
10 dBm									
0 dBm		μων	www.	allowarden					
-10 dBm—	D1 -13.000	dBm							
-20 dBm									
-30 dBm				M	1				
-40 dBm എന്ന	han all the and a start of the	mun			halmon gall released	the ward war	Georg		
سليدين -50 dBm							high water have	profession and the second s	
-60 dBm								profermane monormation of the	and here here and
-70 dBm									
CF 787.0 M	1Hz			1001	pts			 Span	20.0 MHz
)[teady		44)7.05.2018 14:23:24 //

5.1.1.1.2.2 Test RB=25RB

Date: 7.MAY.2018 14:23:25

5.1.1.2 Test Mode = LTE/TM2 5MHz

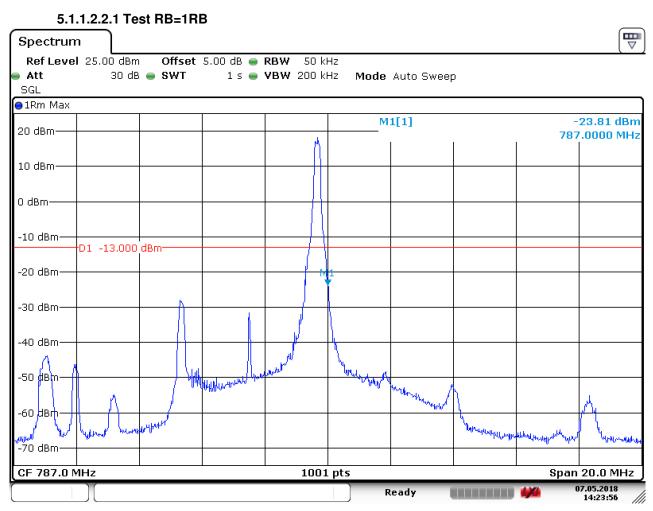
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300241701 Page: 22 of 40

5.1.1.2.1 Test Channel = LCH 5.1.1.2.1.1 Test RB=1RB ₽ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 🔵 RBW 50 kHz Att 30 dB 💿 SWT 1 s 👄 **VBW** 200 kHz Mode Auto Sweep SGL ●1Rm Max M1[1] -22.43 dBm 20 dBm-777.0000 MHz 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBmtiou waltherestation warperter had a plan war had a plan had -70 dBm 1001 pts CF 777.0 MHz Span 20.0 MHz 07.05.2018 14:22:11 Ready

Date: 7.MAY.2018 14:22:11

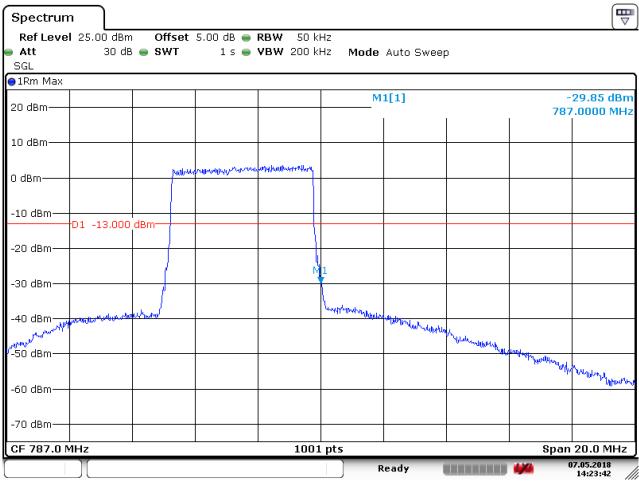
Report No.: SZEM180300241701 Page: 23 of 40



5.1.1.2.1.2 Test RB=25RB

Date: 7.MAY.2018 14:21:36

Report No.: SZEM180300241701 Page: 24 of 40



5.1.1.2.2 Test Channel = HCH

Date: 7.MAY.2018 14:23:57

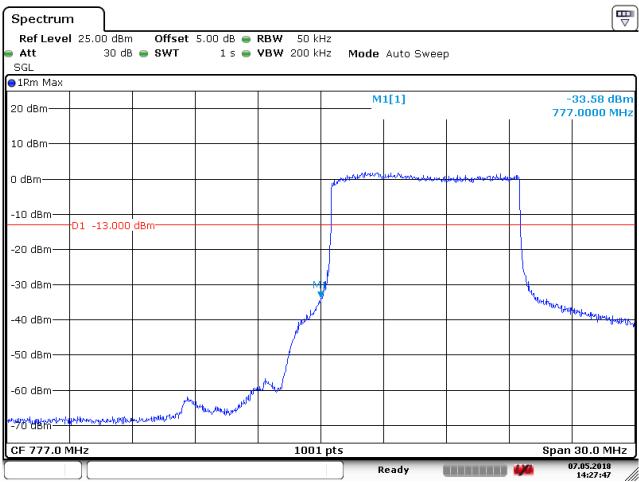
Report No.: SZEM180300241701 Page: 25 of 40

5.1.1.2.2.2 Test RB=25RB

Date: 7.MAY.2018 14:23:42

5.1.1.3 Test Mode = LTE/TM1 10MHz

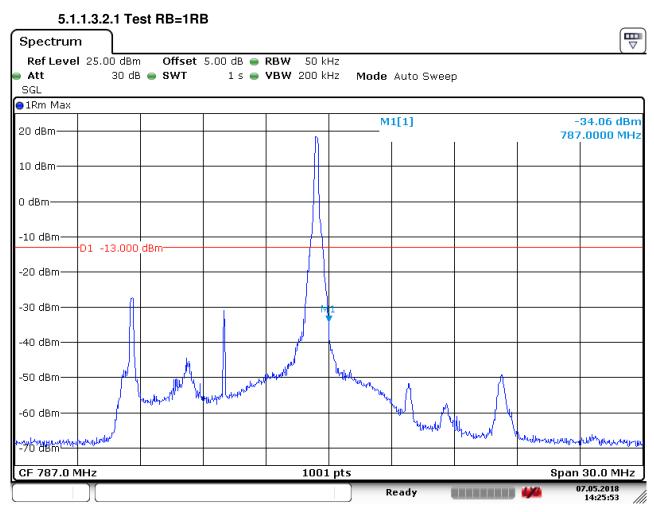
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM180300241701 Page: 26 of 40

5.1.1.3.1 Test Channel = LCH 5.1.1.3.1.1 Test RB=1RB ₩ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 50 kHz Att 30 dB 👄 SWT 1 s 👄 **VBW** 200 kHz Mode Auto Sweep SGL ●1Rm Max M1[1] -35.68 dBm 20 dBm-777.0000 MHz 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm--30 dBm-M -40 dBm-Wylaha -50 dBm--60 dBm· WANNH henry performance R. W. W. Walker to Mar market war 490-aBm to a text to a text to CF 777.0 MHz 1001 pts Span 30.0 MHz 07.05.2018 Ready 14:27:27

Date: 7.MAY.2018 14:27:27

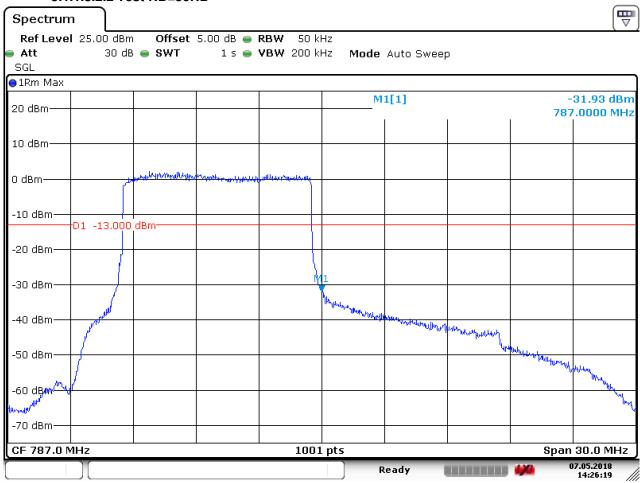
Report No.: SZEM180300241701 Page: 27 of 40



5.1.1.3.1.2 Test RB=50RB

Date: 7.MAY.2018 14:27:48

Report No.: SZEM180300241701 Page: 28 of 40



5.1.1.3.2 Test Channel = HCH

Date: 7.MAY.2018 14:25:53

Report No.: SZEM180300241701 Page: 29 of 40

5.1.1.3.2.2 Test RB=50RB

Date: 7.MAY.2018 14:26:19

5.1.1.4 Test Mode = LTE/TM2 10MHz

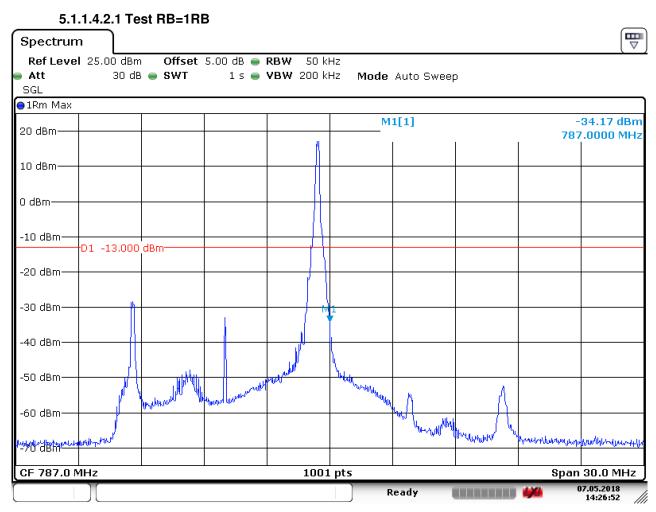
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM180300241701 Page: 30 of 40

5.1.1.4.1 Test Channel = LCH 5.1.1.4.1.1 Test RB=1RB ₽ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 50 kHz Att 30 dB 💿 SWT 1 s 🔵 **VBW** 200 kHz Mode Auto Sweep SGL ●1Rm Max M1[1] -36.65 dBm 20 dBm-777.0000 MHz 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm-M -40 dBm-WWW HA -50 dBm-- The grad -60 dBm--20 BBM when an war when the When you when the work b.r. 1001 pts CF 777.0 MHz Span 30.0 MHz 07.05.2018 14:28:22 Ready

Date: 7.MAY.2018 14:28:22

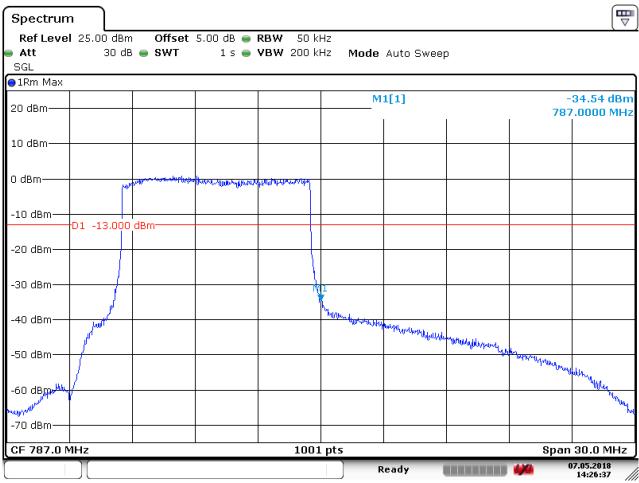
Report No.: SZEM180300241701 Page: 31 of 40



5.1.1.4.1.2 Test RB=50RB

Date: 7.MAY.2018 14:28:07

Report No.: SZEM180300241701 Page: 32 of 40



5.1.1.4.2 Test Channel = HCH

Date: 7.MAY.2018 14:26:53

Report No.: SZEM180300241701 Page: 33 of 40

5.1.1.4.2.2 Test RB=50RB

Date: 7.MAY.2018 14:26:38

Report No.: SZEM180300241701 Page: 34 of 40

6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB. Part I - Test Plots

6.1 For LTE

6.1.1 Test Band = LTE band13

6.1.1.1 Test Mode = LTE / TM1 10MHz RB1#0

6.1.1.1.1 Test Channel = MCH

Spectrum	ן ר									
Ref Level Att	1 30.00 dBm	Offset	5.00 dB 👄	RBW 50 ki VBW 200 ki		Auto Swee	_			
● 1Rm Max	55 46		13 🚽	• D W 200 Ki	12 Ifioue	Auto Swee	J			,
					М	1[1]	M	1		22.02 dBm .6140 MHz
20 dBm——										
10 dBm										
0 dBm										
-10 dBm—	D1 -13.000	dBm								
-20 dBm										
-30 dBm										
-40 dBm——								1		
-50 dBm										
ահիստենովուն				والماعير والمورقي الربين						
and a barrier of the failure of the second	n ponto e la construcción de la con	ann <mark>a bhinh Lua</mark> nda	haladi den filikalingen:	a de la contra de la Contra de la contra d	and the fighter of the	an na statu na statu	and the literation of	1	ne series, program (kadala) (karan	يوليه يستشامانها ودرا
Start 30.0	MHz	<u> </u>	<u> </u>	2000	1 pts	<u> </u>	I		Sto	p 1.0 GHz
	Υ				Mea	suring			1)/0	1.05.2018

Date: 1.MAY.2018 14:14:32

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180300241701 Page: 35 of 40

Spectrun	n)								
Ref Leve	l 15.0			et 5.00 dB 👄						`
Att		30 dB	🔵 SWT	1 s 👄	VBW 3 MHz	Mode A	uto Sweep			
●1Rm Max					1		4541			41.00 Jp
10 dBm						N	1[1]	1		-41.33 dBm 551850 GHz
0 dBm										
-10 dBm—	-D1 -1	.3.000	dBm							
-20 dBm—		.5.000								
-30 dBm—										
-40 dBm										M
-50 dBm										
	1,000			(diget, plant light of other and li			an later in stated in			
-60 dBm——										
-70 dBm—										
-80 dBm										
Start 1.0 C	i GHz				20001	pts	1	1	Stop	1.559 GHz
)[suring		-	07.05.2018 14:32:26 //

Date: 7.MAY.2018 14:32:27

Report No.: SZEM180300241701 Page: 36 of 40

Spectrum	1)										
Ref Level	15.0				5.00 dB 🥃			<u>.</u>				
Att 1Rm Max		30 dB	● SV	T	1 s 🖷	VBW	3 MHz	Mode A	uto Sweep.)		
10 dBm								М	1[1]	1		-54.35 dBm 974840 GHz
0 dBm												
-10 dBm												
-20 dBm												
-30 dBm												
-40 dBm	D1 -4	ю.000	dBm									
וּק5ָ0 dBm ▼	in a train of			((. The second states in second st							
-60 dBm												
-70 dBm												
-80 dBm												
Start 1.559	GHz						20001	pts			Stop	0 1.61 GHz
								Mea	suring		444	07.05.2018 14:31:17 //

Date: 7.MAY.2018 14:31:17

Report No.: SZEM180300241701 Page: 37 of 40

Spectrun	n	J								
Ref Leve	e l 1 5.0			t 5.00 dB 👄						
Att 1Rm Max		30 dE	s 👄 SWT	1 s 👄	VBW 3 MHz	Mode A	uto Sweep)		
10 dBm						M	1[1]			48.88 dBm 33400 GHz
0 dBm										
-10 dBm—	-D1 -:	13.000	dBm							
-20 dBm—										
-30 dBm—										
-40 dBm—										
-50 dBm							M1			
-60 dBm—										
-70 dBm—										
-80 dBm—										
Start 1.61	GHz		I		20001	pts	<u> </u>		Stop	10.0 GHz
						Mea	suring		4/4	07.05.2018 14:32:01

Date: 7.MAY.2018 14:32:01

Report No.: SZEM180300241701 Page: 38 of 40

7 Field Strength of Spurious Radiation

7.1 For LTE

7.1.1 Test Band = LTE band13

7.1.1.1 Test Mode =LTE/TM1 10MHz RB1#0

7.1.1.1.1	Test Channel = M	СН		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
71.953333	-73.54	-13.00	60.54	Vertical
144.006667	-70.53	-13.00	57.53	Vertical
1605.000000	-60.28	-40.00	20.28	Vertical
2332.500000	-54.12	-13.00	41.12	Vertical
3109.850000	-68.04	-13.00	55.04	Vertical
4011.725000	-67.08	-13.00	54.08	Vertical
62.713333	-78.04	-13.00	65.04	Horizontal
144.006667	-75.51	-13.00	62.51	Horizontal
1605.000000	-62.38	-40.00	20.38	Horizontal
2332.500000	-57.11	-13.00	44.11	Horizontal
3110.175000	-68.01	-13.00	55.01	Horizontal
6056.625000	-65.26	-13.00	52.26	Horizontal

NOTE:

1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

2) We have tested all modulation and all Bandwidth, but only the worst case data presented in this report

Report No.: SZEM180300241701 Page: 39 of 40

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	8.41	0.01075	PASS
		LCH	ΤN	VN	-2.33	-0.00297	PASS
				VH	0.16	0.00021	PASS
				VL	-6.82	-0.00872	PASS
	LTE/TM1 10MHz	MCH	TN	VN	2.30	0.00294	PASS
				VH	7.89	0.01009	PASS
		НСН	TN	VL	-3.42	-0.00437	PASS
				VN	-4.79	-0.00612	PASS
LTEband13				VH	2.82	0.00361	PASS
LIEDanuis		LCH	TN	VL	-6.49	-0.00830	PASS
				VN	8.37	0.01070	PASS
				VH	-6.40	-0.00818	PASS
				VL	-2.56	-0.00327	PASS
	LTE/TM2 10MHz	MCH	ΤN	VN	-1.07	-0.00137	PASS
				VH	0.54	0.00069	PASS
				VL	4.50	0.00575	PASS
		HCH	TN	VN	-7.63	-0.00976	PASS
				VH	6.68	0.00854	PASS

Report No.: SZEM180300241701 Page: 40 of 40

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-4.90	-0.00627	PASS
				-20	-6.14	-0.00785	PASS
				-10	5.47	0.00699	PASS
			VN	0	-3.63	-0.00464	PASS
	LTE/TM1 10MHz	MCH		10	7.43	0.00950	PASS
				20	6.03	0.00771	PASS
				30	0.99	0.00126	PASS
				40	-4.50	-0.00575	PASS
LTEband13				50	-4.42	-0.00565	PASS
LIEDanuis				-30	-2.09	-0.00268	PASS
				-20	-6.03	-0.00771	PASS
				-10	0.60	0.00076	PASS
				0	2.34	0.00299	PASS
	LTE/TM2 10MHz	MCH	VN	10	4.16	0.00532	PASS
				20	0.39	0.00050	PASS
				30	9.98	0.01276	PASS
				40	1.61	0.00205	PASS
				50	-4.09	-0.00522	PASS

The End