



# FCC PART 15.249

# TEST REPORT

For

# Qingdao Magene Intelligence Technology Co., Ltd.

Room 302, Building 3, No.328A Chengkang Road, Xiazhuang Subdistrict, Chengyang District, Qingdao, Shandong, China

### FCC ID: 2ALZG-H003

| Report Type:      |                                                                                                                                                                                   | Product Type:    |             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| Original Report   |                                                                                                                                                                                   | Heart Rate Monit | or          |
| Project Engineer: | Tyrone War                                                                                                                                                                        | ng               | Tyrone Wang |
| Report Number:    | RKSA21062                                                                                                                                                                         | 28002-00B        |             |
| Report Date:      | 2021-07-08                                                                                                                                                                        |                  |             |
| Reviewed By:      | Oscar Ye<br>EMC Manag                                                                                                                                                             | ger              | Oscar. Ye   |
| Test Laboratory:  | Bay Area Compliance Laboratories Corp. (Kunshan)<br>No.248 Chenghu Road,Kunshan,Jiangsu province,China<br>Tel: +86-0512-86175000<br>Fax: +86-0512-88934268<br>www.baclcorp.com.cn |                  |             |

# TABLE OF CONTENTS

| GENERAL INFORMATION                                                   | 3  |
|-----------------------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                    | 3  |
| OBJECTIVE                                                             | 3  |
| RELATED SUBMITTAL(S)/GRANT(S)                                         |    |
| TEST METHODOLOGY                                                      |    |
| MEASUREMENT UNCERTAINTY                                               |    |
| TEST FACILITY                                                         | 4  |
| SYSTEM TEST CONFIGURATION                                             |    |
| JUSTIFICATION                                                         |    |
| EUT EXERCISE SOFTWARE                                                 |    |
| SUPPORT EQUIPMENT LIST AND DETAILS                                    |    |
| BLOCK DIAGRAM OF TEST SETUP                                           | 6  |
| SUMMARY OF TEST RESULTS                                               | 8  |
| TEST EQUIPMENT LIST                                                   | 9  |
| FCC§15.203 - ANTENNA REQUIREMENT                                      | 10 |
| APPLICABLE STANDARD                                                   | 10 |
| ANTENNA CONNECTOR CONSTRUCTION                                        | 10 |
| FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION | 11 |
| APPLICABLE STANDARD                                                   | 11 |
| EUT SETUP                                                             |    |
| TEST EQUIPMENT SETUP                                                  |    |
| Test Procedure                                                        |    |
| CORRECTED AMPLITUDE & MARGIN CALCULATION<br>Test Results Summary      |    |
| TEST RESULTS SUMMARY<br>TEST DATA                                     |    |
|                                                                       |    |
| FCC §15.215(C) – 20 DB BANDWIDTH TESTING                              |    |
| APPLICABLE STANDARD                                                   |    |
| TEST PROCEDURE                                                        |    |
| TEST DATA                                                             | 18 |

### **GENERAL INFORMATION**

| Applicant:                     | Qingdao Magene Intelligence Technology Co.,Ltd. |
|--------------------------------|-------------------------------------------------|
| Tested Model:                  | H003                                            |
| Series Model:                  | H303, H603                                      |
| Product Type:                  | Heart Rate Monitor                              |
| Power Supply:                  | DC 3V from battery                              |
| RF Function:                   | ANT+                                            |
| Field strength of fundamental: | 93.21dBµV /m@3m                                 |
| Operating Band/Frequency:      | 2457 MHz                                        |
| Channel Number:                | 1                                               |
| Modulation Type:               | GFSK                                            |
| Antenna Type:                  | PCB antenna                                     |
| *Maximum Antenna Gain:         | -2.0 dBi                                        |

#### **Product Description for Equipment under Test (EUT)**

\*Note: The Maximum Antenna Gain was provided by manufacturer.

Note: The difference between tested model and series model was explained in the attached declaration letter.

All measurement and test data in this report was gathered from production sample serial number: RKSA210628002-1 (Assigned by the BACL. The EUT supplied by the applicant was received on 2021-06-28)

#### Objective

This type approval report is prepared on behalf of *Qingdao Magene Intelligence Technology Co., Ltd.* in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communications Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

#### Related Submittal(s)/Grant(s)

FCC Part15.247 DTS submissions with FCC ID: 2ALZG-H003

#### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Lab Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.249

#### Measurement Uncertainty

| Item               |                        | Uncertainty |
|--------------------|------------------------|-------------|
| AC Power Line      | es Conducted Emissions | 3.19 dB     |
| RF conducte        | ed test with spectrum  | 0.9dB       |
| RF Output Po       | wer with Power meter   | 0.5dB       |
|                    | 30MHz~1GHz             | 6.11dB      |
|                    | 1GHz~6GHz              | 4.45dB      |
| Radiated emission  | 6GHz~18GHz             | 5.23dB      |
|                    | 18GHz~40GHz            | 5.65dB      |
| Occupied Bandwidth |                        | 0.5kHz      |
| Temperature        |                        | 1.0°C       |
| Humidity           |                        | 6%          |

#### **Test Facility**

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 558074 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

### SYSTEM TEST CONFIGURATION

#### Justification

Channel list:

| Channel | Frequency<br>(MHz) |
|---------|--------------------|
| 1       | 2457               |

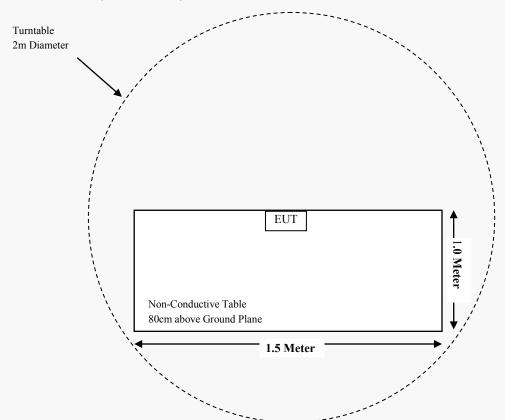
#### **EUT Exercise Software**

RF test software: nRFgo

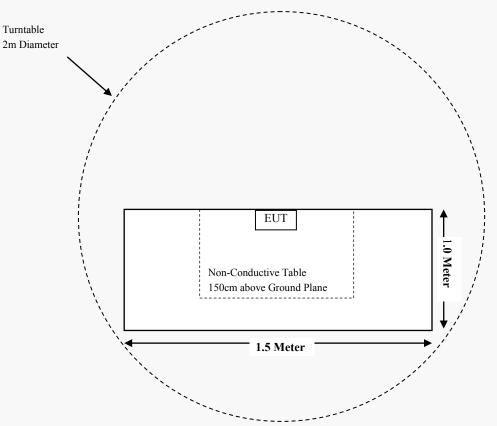
\*Power level: Default

Note\*: The power level declared by manufacturer

### Support Equipment List and Details


| Manufacturer | Description | Model | Serial Number |
|--------------|-------------|-------|---------------|
| /            | /           | /     | /             |

#### External I/O Cable


| Cable Description | Length (m) | From Port | То |
|-------------------|------------|-----------|----|
| /                 | /          | /         | /  |

#### **Block Diagram of Test Setup**

For Radiated Emissions(Below 1GHz):



For Radiated Emissions(Above 1GHz):



### SUMMARY OF TEST RESULTS

| FCC Rules                | Description of Test                         | Result                       |
|--------------------------|---------------------------------------------|------------------------------|
| §15.203                  | Antenna Requirement                         | Compliant                    |
| §15.207(a)               | Conduction Emissions                        | Not Applicable<br>(See Note) |
| 15.205, §15.209, §15.249 | Radiated Emissions& Out of Band<br>Emission | Compliant                    |
| §15.215 (c)              | 20 dB Bandwidth                             | Compliant                    |

Note: The EUT is powered by battery.

### **TEST EQUIPMENT LIST**

| Manufacturer                  | Description        | Model                  | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|-------------------------------|--------------------|------------------------|---------------|---------------------|-------------------------|
|                               | Radiat             | ed Emission Test (Chai | mber 1#)      |                     |                         |
| Rohde & Schwarz               | EMI Test Receiver  | ESCI                   | 100195        | 2020-11-27          | 2021-11-26              |
| Sunol Sciences                | Broadband Antenna  | JB3                    | A090314-1     | 2020-08-05          | 2023-08-04              |
| Sonoma Instrunent             | Pre-amplifier      | 310N                   | 171205        | 2020-08-14          | 2021-08-13              |
| Rohde & Schwarz               | Auto Test Software | EMC32                  | 100361        | N/A                 | N/A                     |
| MICRO-COAX                    | Coaxial Cable      | Cable-8                | 008           | 2020-08-15          | 2021-08-14              |
| MICRO-COAX                    | Coaxial Cable      | Cable-9                | 009           | 2020-08-15          | 2021-08-14              |
| MICRO-COAX                    | Coaxial Cable      | Cable-10               | 010           | 2020-08-15          | 2021-08-14              |
|                               | Radiat             | ed Emission Test (Cha  | mber 2#)      |                     |                         |
| Rohde & Schwarz               | EMI Test Receiver  | ESU40                  | 100207/040    | 2021-04-01          | 2022-03-31              |
| ETS-LINDGREN                  | Horn Antenna       | 3115                   | 9311-4159     | 2020-07-15          | 2023-07-14              |
| ETS-LINDGREN                  | Horn Antenna       | 3116                   | 2516          | 2020-01-07          | 2023-01-06              |
| A.H.Systems,inc               | Amplifier          | PAM-0118P              | 512           | 2020-08-14          | 2021-08-13              |
| EM Electronics<br>Corporation | Amplifier          | EM18G40G               | 060726        | 2021-03-22          | 2022-03-21              |
| MICRO-<br>TRONICS             | Notch filter       | BRM50702               | G024          | 2020-08-05          | 2021-08-04              |
| Narda                         | Attenuator         | 10dB                   | 010           | 2020-08-15          | 2021-08-14              |
| Rohde & Schwarz               | Auto Test Software | EMC32                  | 100361        | N/A                 | N/A                     |
| MICRO-COAX                    | Coaxial Cable      | Cable-6                | 006           | 2020-08-15          | 2021-08-14              |
| MICRO-COAX                    | Coaxial Cable      | Cable-11               | 011           | 2020-08-15          | 2021-08-14              |
| MICRO-COAX                    | Coaxial Cable      | Cable-12               | 012           | 2020-08-15          | 2021-08-14              |
| MICRO-COAX                    | Coaxial Cable      | Cable-13               | 013           | 2020-08-15          | 2021-08-14              |
|                               | RF Conducted Test  |                        |               |                     |                         |
| Rohde & Schwarz               | Signal Analyzer    | FSIQ26                 | 100048/027    | 2020-11-27          | 2021-11-26              |
| Narda                         | Attenuator         | 20dB                   | 020           | 2020-08-15          | 2021-08-14              |
| Qingdao Magene                | RF Cable           | Qingdao Magene C01     | C01           | Each Time           | N/A                     |

\* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

### FCC§15.203 - ANTENNA REQUIREMENT

#### **Applicable Standard**

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

#### **Antenna Connector Construction**

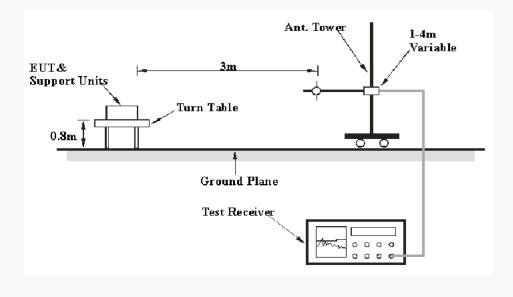
The EUT has a PCB antenna for ANT+ which was permanently attached and the antenna gain is -2.0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

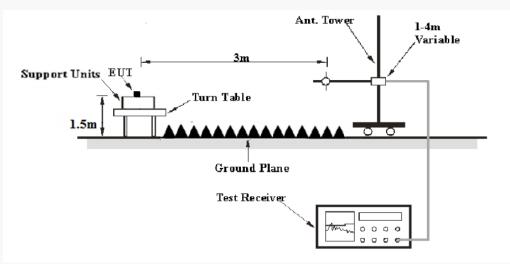
# FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION

#### Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


| Fundamental frequency | Field strength of fundamental<br>(millivolts/meter) | Field strength of harmonics<br>(microvolts/meter) |
|-----------------------|-----------------------------------------------------|---------------------------------------------------|
| 902–928 MHz           | 50                                                  | 500                                               |
| 2400–2483.5 MHz       | 50                                                  | 500                                               |
| 5725–5875 MHz         | 50                                                  | 500                                               |
| 24.0–24.25 GHz        | 250                                                 | 2500                                              |

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.


(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

#### **EUT Setup**

Below 1 GHz:



#### Above 1 GHz:



The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

#### **Test Equipment Setup**

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

| Frequency Range   | RBW     | Video B/W | Detector |
|-------------------|---------|-----------|----------|
| 30 MHz – 1000 MHz | 120 kHz | 300 kHz   | QP       |
| Above 1GHz        | 1MHz    | 3 MHz     | Peak     |
| Above IGHZ        | 1MHz    | 3 MHz     | AVG      |

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

#### **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ( $dB\mu V/m$ ) = Meter Reading ( $dB\mu V$ ) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB $\mu$ V/m) – Corrected Amplitude (dB $\mu$ V/m)

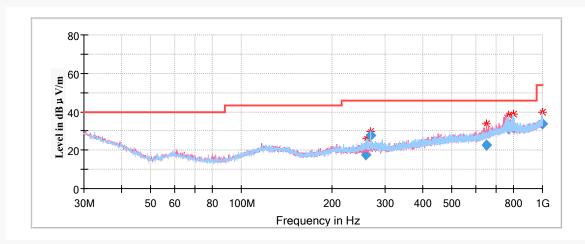
#### **Test Results Summary**

According to the data in the following table, the EUT complied with the FCC Part 15.209 &15.205 & 15.249.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 25.3 °C |
|---------------------------|---------|
| <b>Relative Humidity:</b> | 53 %    |
| ATM Pressure:             | 102 kPa |


The testing was performed by Tyrone Wang on 2021-07-07.

Test Mode: Transmitting

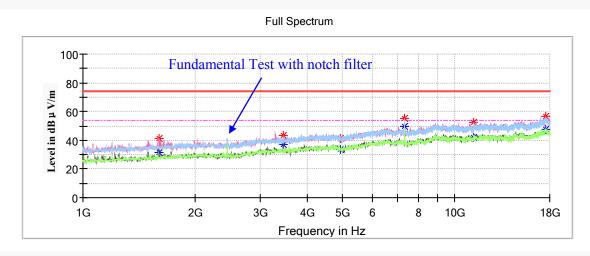
#### **Spurious Emission Test:**

#### 30MHz-1GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case **Y-axis of orientation** was recorded)



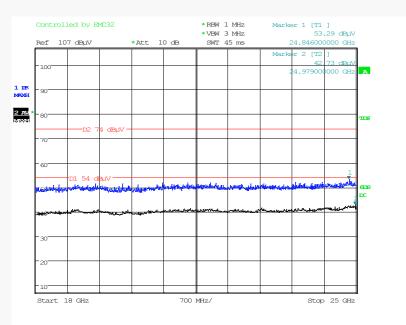
| Frequency  | Corrected<br>Amplitude | Rx A           | Rx Antenna     |        | Corrected<br>Factor    | Limit    | Margin |
|------------|------------------------|----------------|----------------|--------|------------------------|----------|--------|
| (MHz)      | Quasi-peak<br>(dBµV/m) | Height<br>(cm) | Polar<br>(H/V) | Degree | $(dB/m)$ $(dB\mu V/m)$ | (dBµV/m) | (dB)   |
| 259.709450 | 17.55                  | 100.0          | Н              | 352.0  | -11.7                  | 46.00    | 28.45  |
| 268.456300 | 27.89                  | 100.0          | Н              | 257.0  | -11.5                  | 46.00    | 18.11  |
| 649.318100 | 22.79                  | 100.0          | V              | 328.0  | -3.4                   | 46.00    | 23.21  |
| 771.374150 | 31.08                  | 100.0          | Н              | 296.0  | -1.0                   | 46.00    | 14.92  |
| 798.830150 | 31.47                  | 200.0          | Н              | 313.0  | -0.7                   | 46.00    | 14.53  |
| 997.805500 | 33.74                  | 200.0          | Н              | 280.0  | 2.9                    | 54.00    | 20.26  |


#### 1GHz-18GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case **Y-axis of orientation** was recorded.)

Note:

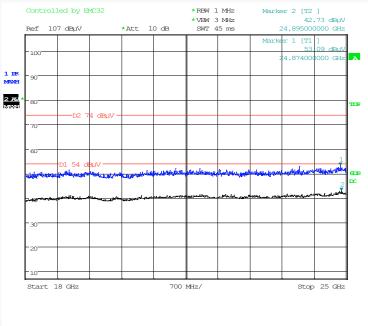
- 1. This test was performed with the 2.4-2.5GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dB $\mu$ V/m) = Corrected Factor (dB/m) + Reading (dB $\mu$ V) Margin (dB) = Limit (dB $\mu$ V/m) – Corrected Amplitude (dB $\mu$ V/m)


#### **Channel Frequency: 2457MHz**



| Frequency    | Corrected Amplitude |                     | Rx Antenna     |                | Turntable | Corrected        | Limit    | Margin |
|--------------|---------------------|---------------------|----------------|----------------|-----------|------------------|----------|--------|
| (MHz)        | MaxPeak<br>(dBµV/m) | Average<br>(dBµV/m) | Height<br>(cm) | Polar<br>(H/V) | Degree    | Factor<br>(dB/m) | (dBµV/m) | (dB)   |
| 1598.400000  | 41.47               |                     | 200.0          | V              | 276.0     | -6.2             | 74.00    | 32.53  |
| 1598.400000  |                     | 31.39               | 200.0          | V              | 276.0     | -6.2             | 54.00    | 22.61  |
| 3449.700000  | 43.31               |                     | 200.0          | V              | 174.0     | -1.7             | 74.00    | 30.69  |
| 3449.700000  |                     | 37.25               | 200.0          | V              | 174.0     | -1.7             | 54.00    | 16.75  |
| 4914.000000  |                     | 33.46               | 150.0          | Н              | 117.0     | 0.4              | 54.00    | 20.54  |
| 4914.000000  | 41.56               |                     | 150.0          | Н              | 117.0     | 0.4              | 74.00    | 32.44  |
| 7318.900000  |                     | 49.44               | 200.0          | Н              | 50.0      | 5.1              | 54.00    | 4.56   |
| 7318.900000  | 55.07               |                     | 200.0          | Н              | 50.0      | 5.1              | 74.00    | 18.93  |
| 11251.000000 |                     | 41.78               | 200.0          | V              | 174.0     | 10.1             | 54.00    | 12.22  |
| 11251.000000 | 52.14               |                     | 200.0          | V              | 174.0     | 10.1             | 74.00    | 21.86  |
| 17573.300000 |                     | 47.34               | 200.0          | V              | 187.0     | 14.3             | 54.00    | 6.66   |
| 17573.300000 | 56.57               |                     | 200.0          | V              | 187.0     | 14.3             | 74.00    | 17.43  |

#### 18GHz-25GHz


(Pre-scan in the X,Y and Z axes of orientation, the worst case **Y-axis of orientation** was recorded)



#### Horizontal

Date: 7.JUL.2021 14:06:00





Date: 7.JUL.2021 14:06:41

#### Fundamental Test & Restricted Bands Emissions Test:

(Pre-scan in the X, Y and Z axes of orientation, the worst case Y-axis of orientation was recorded.)

Note:

- 1. This test was performed with the 10dB attenuator.
- Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dBμV/m) = Corrected Factor (dB/m) + Reading (dBμV) Margin (dB) = Limit (dBμV/m) – Corrected Amplitude (dBμV/m)

| Frequency | Corrected Amplitude        |                     | Rx Antenna     |                | Turntable | Corrected        | Limit         | Margin |
|-----------|----------------------------|---------------------|----------------|----------------|-----------|------------------|---------------|--------|
| (MHz)     | MaxPeak<br>(dBµV/m)        | Average<br>(dBμV/m) | Height<br>(cm) | Polar<br>(H/V) | Degree    | Factor<br>(dB/m) | $(dB\mu V/m)$ | (dB)   |
|           | Channel Frequency: 2457MHz |                     |                |                |           |                  |               |        |
| 2400.00   | 48.81                      |                     | 200.0          | Н              | 273.0     | 3.8              | 74.00         | 25.19  |
| 2400.00   |                            | 45.74               | 200.0          | Н              | 273.0     | 3.8              | 54.00         | 8.26   |
| 2457.00   |                            | 93.18               | 200.0          | V              | 0.0       | 4.0              | 94.00         | 0.82   |
| 2457.00   | 93.21                      |                     | 200.0          | V              | 0.0       | 4.0              | 114.00        | 20.79  |
| 2457.00   |                            | 92.69               | 150.0          | Н              | 313.0     | 4.0              | 94.00         | 1.31   |
| 2457.00   | 93.17                      |                     | 150.0          | Н              | 313.0     | 4.0              | 114.00        | 20.83  |
| 2483.50   |                            | 46.40               | 150.0          | Н              | 226.0     | 4.1              | 54.00         | 7.60   |
| 2483.50   | 49.54                      |                     | 150.0          | Н              | 226.0     | 4.1              | 74.00         | 24.46  |

### FCC §15.215(c) – 20 dB BANDWIDTH TESTING

#### **Applicable Standard**

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

#### **Test Procedure**

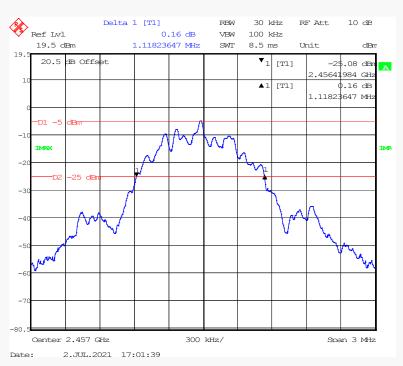
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 23.9 °C   |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 52 %      |
| ATM Pressure:             | 101.3 kPa |

The testing was performed by Tyrone Wang on 2021-07-02.


Test Result: Compliant

Bay Area Compliance Laboratories Corp. (Kunshan)

Test Mode: Transmitting

| Channel | Frequency<br>(MHz) | 20 dB Bandwidth<br>(MHz) |  |  |
|---------|--------------------|--------------------------|--|--|
| 1       | 2457               | 1.118                    |  |  |

#### **Channel Frequency: 2457MHz**



#### Declarations

1: BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '\*'. Customer model name, addresses, names, trademarks etc. are not considered data.

2: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

3: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

4: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

5: This report cannot be reproduced except in full, without prior written approval of the Company.

6: This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

#### \*\*\*\*\* END OF REPORT \*\*\*\*\*