

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.

TEST REPORT

FCC Rules Part 15.249

Report Reference No...... MTEB24040009-R2

FCC ID.....: 2ALZG-309

Compiled by

(position+printed name+signature)..: File administrators Alisa Luo

Supervised by

(position+printed name+signature)..: Test Engineer Sunny Deng

Approved by

(position+printed name+signature)..: Manager Yvette Zhou

Date of issue...... Apr.08,2024

Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd.

Nanshan, Shenzhen, Guangdong, China.

Applicant's name...... Qingdao Magene Intelligence Technology Co., Ltd.

Subdistrict, Chengyang, Qingdao, Shandong, China.

Alisa Luc Sunny Deng Yutter

Test specification/ Standard...... FCC Part15 Subpart C, Section 15.249

TRF Originator...... Shenzhen Most Technology Service Co., Ltd.

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Smart GPS Bike Computer

Trade Mark..... Magene

Model/Type reference...... P0101293

Listed Models: NA

Modulation Type.....: GFSK

Operation Frequency.....: 2457MHz

Rating...... DC 3.8V from Battery

DC 5V from Power supply

Result..... PASS

Report No.: MTEB24040009-R2 Page 2 of 27

TEST REPORT

Equipment under Test : Smart GPS Bike Computer

Model /Type : P0101293

Listed Models : NA

Remark NA

Applicant : Qingdao Magene Intelligence Technology Co., Ltd.

Address Room 302, Building 3, No.328A Chengkang Road, Xiazhuang

Subdistrict, Chengyang, Qingdao, Shandong, China.

Manufacturer : Qingdao Magene Intelligence Technology Co., Ltd.

Address : Room 302, Building 3, No.328A Chengkang Road, Xiazhuang

Subdistrict, Chengyang, Qingdao, Shandong, China.

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1.	REVIS	ION HISTORY	4
2.	TEST	STANDARDS	5
3.	SUMM	ARY	6
3.1.		Remarks	6
3.2.		Description	错
误!木 3.3.	定义书签。	ant Under Teet	c
ა.ა. 3.4.		ent Under Test escription of the Equipment under Test (EUT)	6 6
3.5.		eration mode	6
3.6.	Block Di	agram of Test Setup	7
3.7.		n (Equipment Under Test) Description*	7
3.8. 3.9.		/ Equipment (AE) Description	7
ა. ა . 3.10.		Information* figuration	7 7
3.11.	Modifica		7
4.	TEST	ENVIRONMENT	8
4.1.		of the test laboratory	8
4.2.		mental conditions	8
4.3. 4.4.	Test Des	scription nt of the measurement uncertainty	9 9
4.5.		ents Used during the Test	10
5.	TEST	CONDITIONS AND RESULTS	11
	5.1.	AC Power Conducted Emission	
	5.2. 5.3.	Radiated Spurious Emissions and Bandedge Emission	
	5.3. 5.4.	Radiated field strength of the fundamental signal	
	5.5.	Antenna Requirement	
6.	TEST	SETUP PHOTOS OF THE EUT	2 6
7.	EXTER	RNAL AND INTERNAL PHOTOS OF THE EUT	26

Report No.: MTEB24040009-R2 Page 4 of 27

1. Revision History

Revision	Issue Date	Revisions	Revised By
00	2024.04.08	Initial Issue	Alisa Luo

Report No.: MTEB24040009-R2 Page 5 of 27

2. TEST STANDARDS

The tests were performed according to following standards:

The tests were performed according to following standards: FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

RSS-210: Licence-Exempt Radio Apparatus: Category I Equipment ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

Report No.: MTEB24040009-R2 Page 6 of 27

3. SUMMARY

3.1. General Remarks

Date of receipt of test sample	:	2024.03.26
Testing commenced on	:	2024.03.27
Testing concluded on	:	2024.04.08

3.2. Product Description

Product Name:	Smart GPS Bike Computer		
Model/Type reference:	P0101293		
Power Supply:	DC 3.8V by Battery DC 5V by USB Port		
Testing sample ID:	MTYP04646		
ANT+:			
Supported Type: ANT+			
Modulation: GFSK			
Operation frequency:	2457MHz		
Channel number:	1		
Antenna type: PCB antenna			
Antenna gain: -1.5dBi			

3.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 3.8V by Battery DC 5V by USB Port

3.4. Short description of the Equipment under Test (EUT)

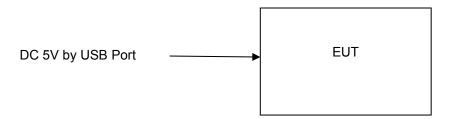
This is a Smart GPS Bike Computer For more details, refer to the user's manual of the EUT.

3.5. EUT operation mode

Channel	Freq.(MHz)	Note(Modulation Type)
01	2457	GFSK

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit. (duty cycle>98%). For AC power line conducted emissions:


The EUT was set to connect with large package sizes transmission.

For Radiated spurious emissions test item:

Report No.: MTEB24040009-R2 Page 7 of 27

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

3.6. Block Diagram of Test Setup

3.7. Test Item (Equipment Under Test) Description*

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A	/	1	/	/	1
EUT B	/	1	1	/	/

^{*:} declared by the applicant. According to customers information EUTs A and B are the same devices.

3.8. Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	Adapter	UP0512	1	1
AE 2	-	1	I	I

3.9. Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		1	2457		-1.5dBi
Antenna 2	1	1	1	1	/

^{*:} declared by the applicant.

3.10. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

O - supplied by the manufacturer

Supplied by the lab

C	ADAPTER	M/N:	UP0512
		Manufacturer:	Salcomp (Shenzhen) Co., Ltd.

3.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: MTEB24040009-R2 Page 8 of 27

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.2. Environmental conditions

Radiated Emission:

Radiated Effission.					
Temperature:	23 ° C				
Humidity:	48 %				
Atmospheric pressure:	950-1050mbar				

Conducted testing:

on an other testing.							
Temperature:	24 ° C						
Humidity:	45 %						
Atmospheric pressure:	950-1050mbar						

Report No.: MTEB24040009-R2 Page 9 of 27

4.3. Test Description

FCC and IC Requirements							
FCC Part 15.203	Antenna Requirement	PASS					
FCC Part 15.207	AC Power Conducted Emission	PASS					
FCC Part 15. 15.249(a)	Field strength of the Fundamental signal	PASS					
FCC Part 15.209/15.249(a)	Spurious Emissions	PASS					
FCC Part 15.205/15.249(d)	Band edge Emissions	PASS					
FCC Part 15.215/15.249	20dB Occupied Bandwidth	PASS					

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

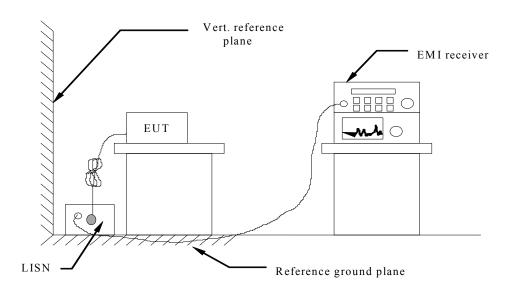
Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.5. Equipments Used during the Test

					- :	
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware versions	Last Cal.
1.	L.I.S.N.	R&S	ENV216	100093	1	2024/03/15
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	1	2024/03/15
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2024/03/15
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2024/03/15
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2024/03/15
6	Bilong Antenna	Sunol Sciences	JB3	A121206	1	2023/08/15
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	1	2024/03/15
8	Loop antenna	Beijing Daze	ZN30900B	/	1	2024/03/15
9	Horn antenna	R&S	OBH100400	26999002	1	2024/03/15
10	Wireless Communication Test Set	R&S	CMW500	1	CMW-BASE- 3.7.21	2024/03/15
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2024/03/15
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	1	2024/03/15
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	1	2024/03/15
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	/	2024/03/15
15	Pre-amplifier	Agilent	83051A	MT-E392	1	2024/03/15
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	1	2024/03/15
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	1	2024/03/15
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	1	2024/03/15
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	1	2024/03/15
20	Power meter	R&S	NRVS	100444	1	2024/03/15


Note: 1. The Cal.Interval was one year.

Report No.: MTEB24040009-R2 Page 11 of 27

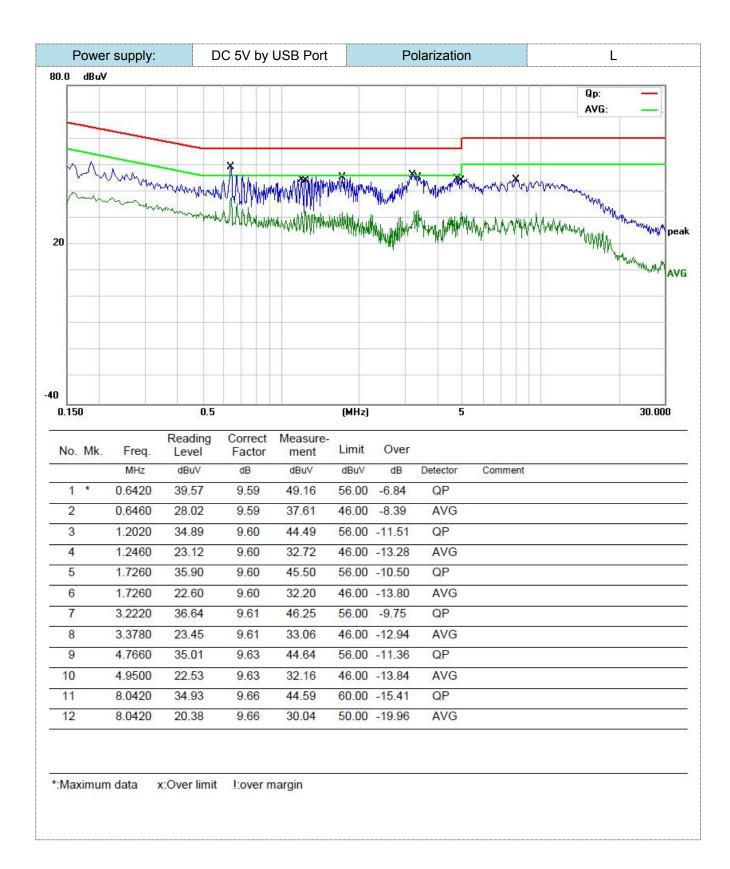
5. TEST CONDITIONS AND RESULTS

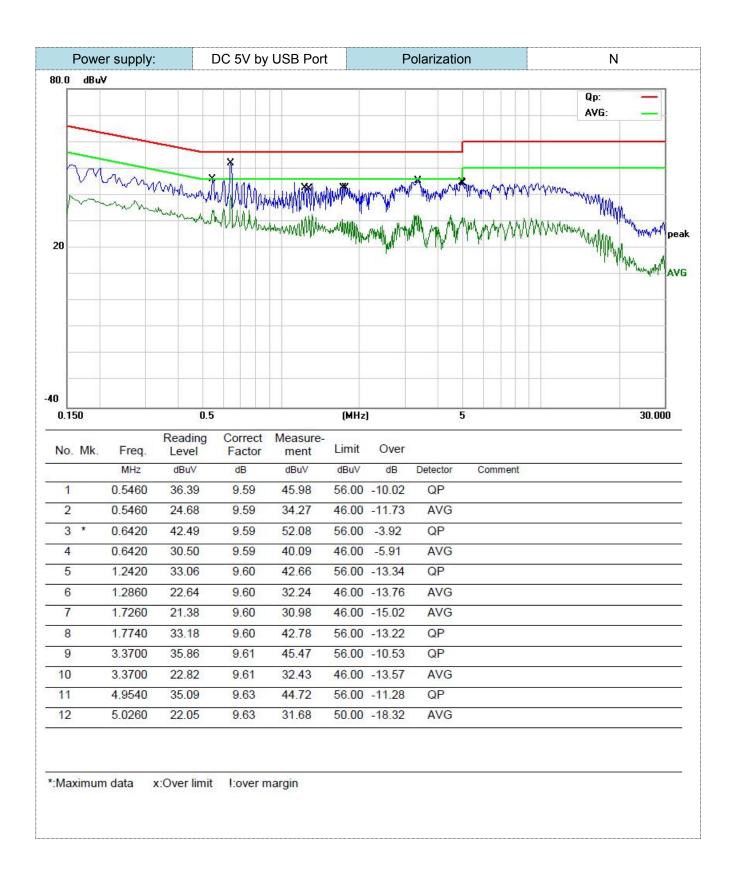
5.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC5V power, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

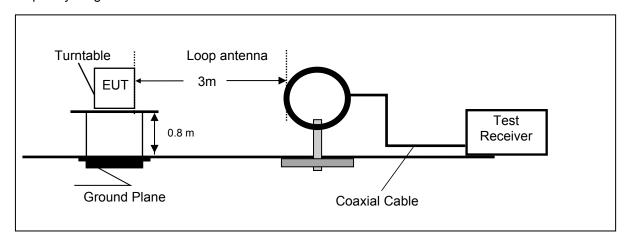

AC Power Conducted Emission Limit

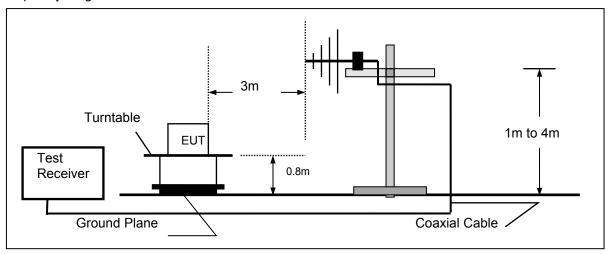

For unintentional device, according to RSS Gen 8.8 and § 15.207(a) Line Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)				
Frequency range (wiriz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

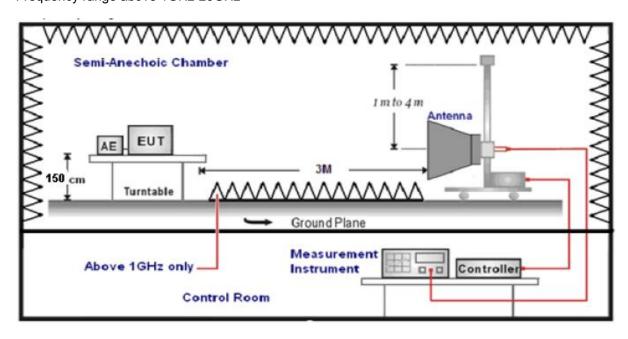
TEST RESULTS

Pass




5.2. Radiated Spurious Emissions and Bandedge Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: MTEB24040009-R2 Page 15 of 27

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.1 meter above ground for below 1 GHz, and 0.1 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings

Span shall wide enough to fully capture the emission being measured; (1)Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(2)From 1 GHz to 10th harmonic:

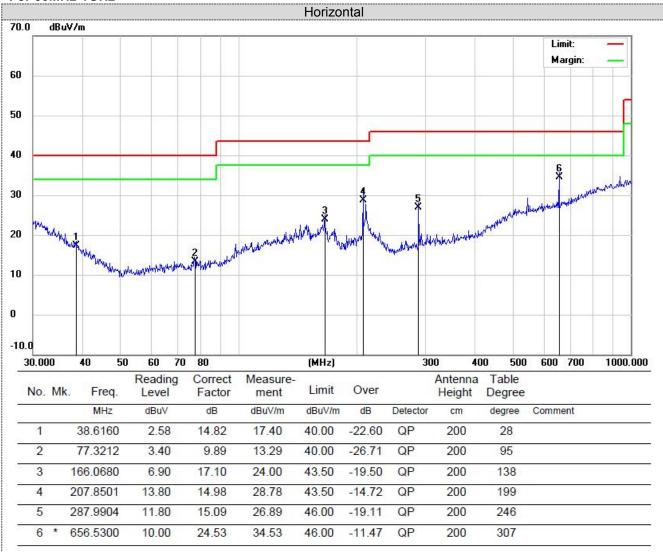
RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

RADIATION LIMIT

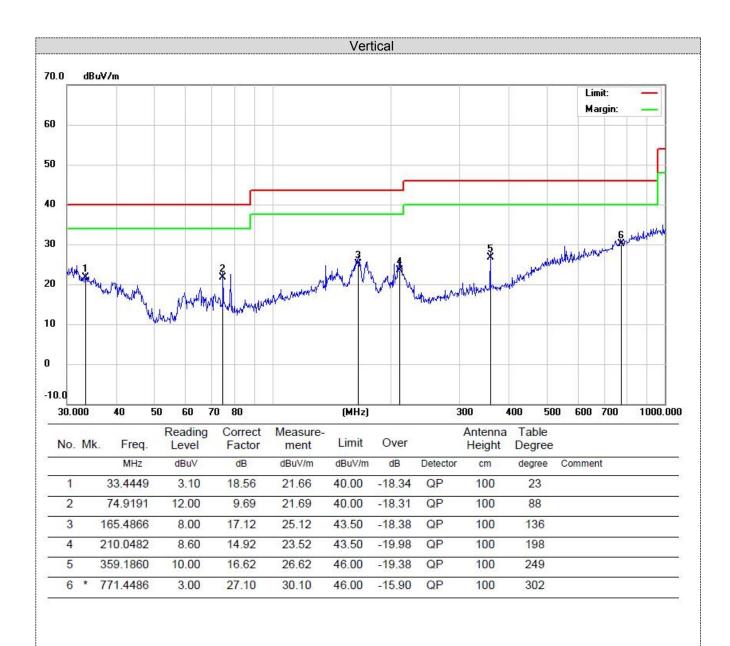
FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
AL 40U-	54.00	Average
Above 1GHz	74.00	Peak


Test Results

Radiated Spurious Emissions

For 9 kHz ~ 30 MHz


The EUT was pre-scanned the frequency band (9 kHz \sim 30 MHz), found the radiated level lower than the limit, so don't show on the report.

For 30MHz-1GHz

^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB24040009-R2 Page 17 of 27

^{*:}Maximum data x:Over limit !:over margin

For Above 1 GHz

Frequency(MHz):		24	2457 Polarity:		arity:	HORIZONTAL			
Frequency	Emis	ssion	Limit Margin	Raw	Antenna	Cable	Pre-	Correction	
Frequency (MHz)	Le	vel		Margin	Value	Factor	Factor	amplifier	Factor
(IVITZ)	(dBu	V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4914.00	58.28	PK	74	15.72	56.38	31.42	6.98	36.5	1.9
4914.00	45.01	AV	54	8.99	43.11	31.42	6.98	36.5	1.9
7371.00	52.86	PK	74	21.14	42.26	37.03	8.87	35.3	10.6
7371.00	42.96	AV	54	11.04	32.36	37.03	8.87	35.3	10.6

Frequency(MHz):		2457 Polarit		arity:	ity: VERTICAL				
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4914.00	53.13	PK	74	20.87	51.23	31.42	6.98	36.5	1.9
4914.00	44.29	AV	54	9.71	42.39	31.42	6.98	36.5	1.9
7371.00	51.49	PK	74	22.51	40.89	37.03	8.87	35.3	10.6
7371.00	42.61	AV	54	11.39	32.01	37.03	8.87	35.3	10.6

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average limit.
- $\label{eq:continuous} 5. \quad \text{The other emission levels were very low against the limit.}$

Report No.: MTEB24040009-R2 Page 19 of 27

Bandedge Emission

GFSK

Frequency(MHz):		2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	56.05	PK	74	17.95	61.46	27.49	3.32	36.22	-5.41
2390.00	41.39	ΑV	54	12.61	46.8	27.49	3.32	36.22	-5.41
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	56.65	PK	74	17.35	62.06	27.49	3.32	36.22	-5.41
2390.00	40.14	AV	54	13.86	45.55	27.49	3.32	36.22	-5.41
Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.39	PK	74	15.61	63.9	27.45	3.38	36.34	-5.51
2483.50	40.04	AV	54	13.96	45.55	27.45	3.38	36.34	-5.51
Freque	ncy(MHz)	:	24	80	Polarity:		VERTICAL		
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.33	PK	74	16.67	62.84	27.45	3.38	36.34	-5.51
2483.50	40.05	AV	54	13.95	45.56	27.45	3.38	36.34	-5.51

Report No.: MTEB24040009-R2 Page 20 of 27

5.3. 20dB Bandwidth

TEST CONFIGURATION

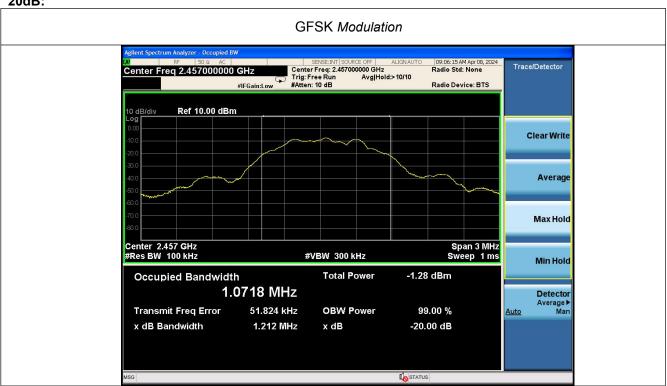
TEST PROCEDURE

- 1:The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2:Set to the maximum power setting and enable the EUT transmit continuously.
- 3:Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a test channel RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW

Sweep = auto, Detector function = peak, Trace = max hold

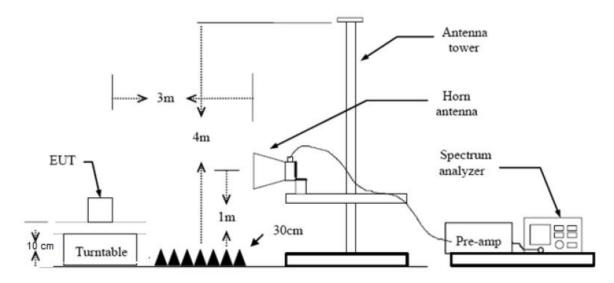
4:Measure and record the results in the test report.


TEST RESULTS

Modulation	Channel Frequency (MHz)	99% OBW (KHz)	20dB bandwidth (KHz)	Result
GFSK	2457	1038.4	1110	Pass

Test plot as follows:

Report No.: MTEB24040009-R2 Page 22 of 27

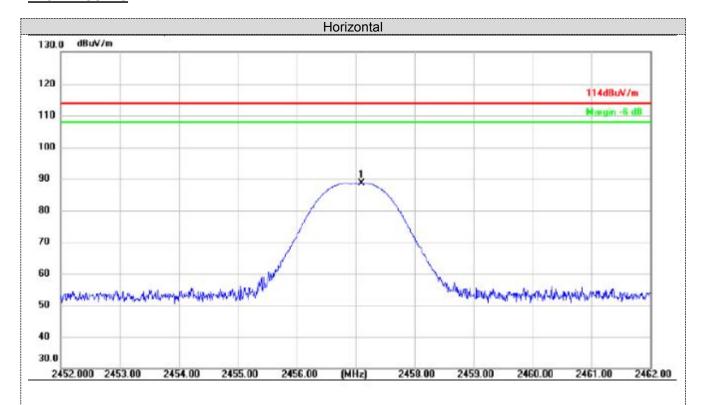

5.4. Radiated field strength of the fundamental signal

<u>Limit</u>

Fundamental frequency	Field strength of fundamental (millivolts/meter/ AVG)	Field strength of harmonics (microvolts/meter/ AVG)		
902-928 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)		
2400-2483.5 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)		
5725-5875 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)		
24.0-24.25 GHz	250 (108dBuV/m @3m)	2500 (68dBuV/m @3m)		

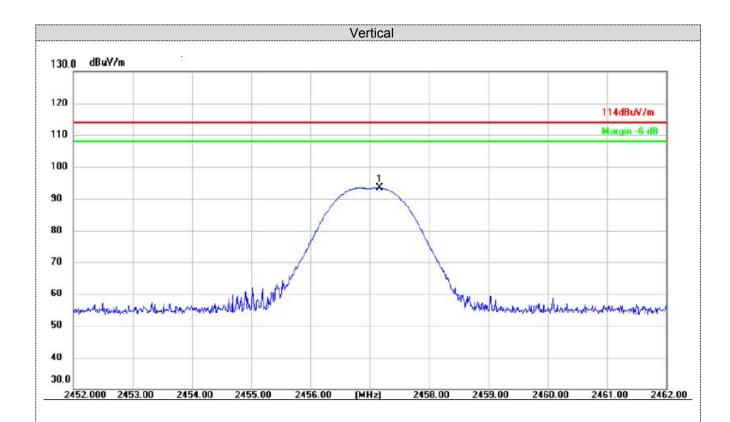
Frequencies above 1000 MHz, the field strength limits are based on average limits

Test Configuration



TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2: The EUT is placed on a turn table which is 0.1 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3: The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4: The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5: The receiver set as follow: RBW=1MHz, VBW=3MHz Peak detector for Peak value.


Report No.: MTEB24040009-R2 Page 23 of 27

TEST RESULTS

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2457.100	57.50	31.12	88.62	114.00	-25.38	peak

Report No.: MTEB24040009-R2 Page 24 of 27

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2457.150	62.27	31.12	88.39	114.00	-25.61	peak

Report No.: MTEB24040009-R2 Page 25 of 27

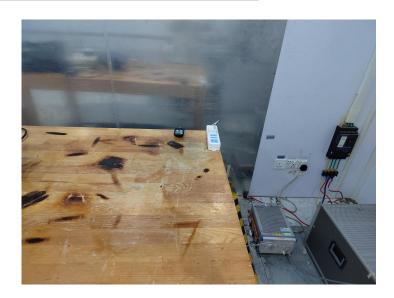
5.5. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.


Antenna Connected Construction

The directional gains of antenna used for transmitting is -1.5dBi, and the antenna is a PCB antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

Results: Compliance.

Report No.: MTEB24040009-R2 Page 26 of 27

6. Test Setup Photos of the EUT

Report No.: MTEB24040009-R2 Page 27 of 27

7. External and Internal Photos of the EUT

See related photo report.

.....End of Report.....