

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

No. 1 Workshop, M-10, Middle section, Science & Technology Park,
Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: SZEM170800884703
Page: 1 of 29

1 Cover Page

RF TEST REPORT

Application No.:	SZEM1708008847CR
Applicant:	Hangzhou EZVIZ Network Co., Ltd
FCC ID:	2ALZF-T9
IC:	22696-T9
Equipment Under Test (EUT):	
NOTE: The following sample(s) submitted was/were identified on behalf of the client as	
Product Name:	Home Sense Siren with Strobe Light
Model No.(EUT):	CS-AS290
Added Model No.:	CS-AS291, CS-AS292
Standards:	FCC PART 15 Subpart C Section 15.249: 2016 RSS-210 Issue 9 (August 2016) RSS-Gen Issue 4 (November 2014)
Date of Receipt:	2017-07-10
Date of Test:	2017-07-10 to 2017-08-16
Date of Issue:	2017-08-22
Test Result:	Pass*

*In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Jack Zhang

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

**SGS-CSTC Standards Technical Services Co., Ltd.
Shenzhen Branch**

Report No.: SZEM170800884703

Page: 2 of 29

Revision Record				
Version	Chapter	Date	Modifier	Remark
00	/	2017-08-22	/	Original

Authorized for issue by:			
Engineer		Eddy Zong /Project Engineer	2017-08-22
Reviewer		Parlam Zhan /Reviewer	2017-08-22

2 Test Summary

Test Item	Test Requirement	IC Reference	Test method	Result
Antenna Requirement	FCC Part 15, Subpart C Section 15.203	RSS-Gen Section 8.1.3	---	PASS
AC Power Line Conducted Emission	FCC Part 15, Subpart C Section 15.207	RSS-Gen Issue 3 Section 7.2.4	ANSI C63.10 (2013) Section 6.2	PASS
Field Strength of the Fundamental Signal	FCC Part 15, Subpart C Section 15.249 (a)	RSS-210 Issue 8 Annex 2.9 (a)	ANSI C63.10 (2013) Section 6.11	PASS
Radiated Spurious Emissions	FCC Part 15, Subpart C Section 15.249 (a) &15.209&15.205	RSS-Gen Issue 3 Section 4.9 RSS-Gen Issue 3 Section 7.2.2	ANSI C63.10 (2013) Section 6.4&6.5&6.6&6.10	PASS
20dB Bandwidth	FCC Part 15, Subpart C Section 15.215 (c)	RSS-210 Issue 8 Annex 8	ANSI C63.10 (2013) Section 6.9	PASS
99% Occupied bandwidth	---	RSS-Gen Section 6.6	RSS-Gen section 6.6	PASS

Note: There are series models mentioned in this report, and they are the identical in electrical and electronic characters. Only the model CS-AS290 was tested since their differences were the software version, their naming and color silk.

3 Contents

	Page
1 COVER PAGE	1
2 TEST SUMMARY	3
3 CONTENTS.....	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION.....	5
4.1 GENERAL DESCRIPTION OF E.U.T	5
4.2 TECHNICAL SPECIFICATIONS.....	5
4.3 DESCRIPTION OF SUPPORT UNITS	5
4.4 TEST MODE.....	5
4.5 TEST LOCATION	6
4.6 TEST FACILITY	6
4.7 MEASUREMENT UNCERTAINTY	7
5 EQUIPMENTS USED DURING TEST	8
6 TEST RESULTS	9
6.1 E.U.T. TEST CONDITIONS	9
6.2 ANTENNA REQUIREMENT	9
6.3 CONDUCTED EMISSIONS ON MAINS TERMINALS	10
6.4 FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL	14
6.5 RADIATED SPURIOUS EMISSIONS AND BAND-EDGE	16
6.5.1 <i>Radiated Spurious Emissions</i>	19
6.5.2 <i>Radiated Band edge</i>	22
6.6 20DB BANDWIDTH.....	25
6.7 99% OCCUPIED BANDWIDTH	27
7 TEST SETUP PHOTOGRAPHS.....	29
8 EUT CONSTRUCTIONAL DETAILS.....	29

4 General Information

4.1 Client Information

Applicant:	Hangzhou EZVIZ Network Co., Ltd
Address of Applicant:	Floor 7, Building 1, No. 700, Dongliu Road, Binjiang District, Hangzhou, Zhejiang,310052,China.
Manufacturer:	Hangzhou EZVIZ Network Co., Ltd
Address of Manufacturer:	Floor 7, Building 1, No. 700, Dongliu Road, Binjiang District, Hangzhou, Zhejiang,310052,China.
Factory:	1. Hangzhou Hikvision Technology Co., Ltd. 2. Hangzhou Hikvision Electronics Co., Ltd.
Address of Factory:	1. No.700, Dongliu Road, Binjiang District, Hangzhou City, Zhejiang, 310052, China 2. No.299, Qiushi Road, Tonglu Economic Development Zone, Tonglu County, Hangzhou, Zhejiang, 310052, China.

4.1 General Description of E.U.T.

Product Description:	Fixed product with 915MHz function
Trade mark:	
EUT Power Supply:	DC 5V 1 A
Test Voltage:	AC 120V 60Hz for Adapter

Rated Input:	DC 5V via USB port	
Adapter:	Model No.:	ED1-050100UA
	Rated Input:	AC 100V-240V 50/60Hz, 0.2A
	Rated Output:	DC 5.0V 1.0A
	Cable length:	AC port: 2 wires DC port: 100 cm

4.2 Technical Specifications

Operation Frequency:	915MHz
Modulation Technique:	FSK
Number of Channel:	1
Antenna Type	Monopole Antenna

4.3 Description of Support Units

The EUT has been tested independently.

4.4 Test Mode

Test Mode	Description of Test Mode
Engineering mode	Using test software to control EUT working in continuous transmitting

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch
No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China.
518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **CNAS (No. CNAS L2929)**

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

- **A2LA (Certificate No. 3816.01)**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

- **VCCI**

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

- **FCC –Designation Number: CN1178**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

- **Industry Canada (IC)**

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.7 Measurement Uncertainty

No.	Parameter	Measurement Uncertainty
1	Radio Frequency	$< \pm 1 \times 10^{-5}$
2	Total RF power, conducted	$< \pm 1.5$ dB
3	RF power density, conducted	$< \pm 3$ dB
4	Spurious emissions, conducted	$< \pm 3$ dB
5	All emissions, radiated	$< \pm 6$ dB (30MHz – 1GHz) $< \pm 6$ dB (above 1GHz)
6	Temperature	$< \pm 1^\circ\text{C}$
7	Humidity	$< \pm 5$ %
8	DC and low frequency voltages	$< \pm 3$ %

5 Equipments Used during Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
1	Spectrum Analyzer	R&S	FSP-30	2705121009	2017-01-14	2018-01-13
2	Spectrum Analyzer	Agilent	N9020A	MY51240197	2017-07-03	2018-07-02
3	Power meter	R&S	NRP	101641	2017-01-14	2018-01-13
4	Power Sensor	R&S	NRP-Z22	101096	2016-08-06	2017-08-05
5	Signal Generator	R&S	SMR40	100555	2017-07-03	2018-07-02
6	Signal Generator	Agilent	N5182A	MY50143776	2017-07-03	2018-07-02
7	Communication Tester	R&S	CMW500	1201.0002K75	2016-12-24	2017-12-23
8	Switcher	Tonscend	JS0806	JS0806-2	/	/
9	Splitter	Anritsu	MA1612A	M12265	/	/
10	Coupler	e-meca	803-S-1	900-M01	/	/
11	High-low Temperature Cabinet	Suzhou Zhihe	TL-40	50110050	2016-09-11	2017-09-10
12	AC Power Stabilizer	WOCEN	6100	51122	2017-01-14	2018-01-13
13	DC Power Supply	QJE	QJ30003SII	3573/4/3	2017-01-14	2018-01-13
14	EMI Test Receiver	R&S	ESU40	100109	2017-02-13	2018-01-15
15	Active Loop Antenna (9kHz to 30MHz)	R&S	FMZB1519	1519-034	2017-02-13	2018-01-15
16	Broadband Antenna (25MHz to 2GHz)	Schwarzbeck	VULB9168	9168-313	2017-02-13	2018-01-15
17	Broadband Antenna (25MHz to 3GHz)	R&S	HL562	100227	2016-08-30	2017-08-29
18	Horn Antenna (1 -18GHz)	R&S	HF906	100284	2017-02-13	2018-01-15
19	Horn Antenna (1 - 18GHz)	Schwarzbeck	BBHA9120D	9120D-679	2017-02-13	2018-01-15
20	Horn Antenna (14 - 40GHz)	Schwarzbeck	BBHA 9170	BBHA917-0373	2017-02-13	2018-01-15
21	Pre-amplifier (9KHz – 2GHz)	LNA6900	TESEQ	71033	2017-02-13	2018-01-15
22	Pre-amplifier (1 – 26.5GHz)	Schwarzbeck	SCU-F0118-G40-BZ4-CSS(F)	10001	2017-01-14	2018-01-13
23	Pre-amplifier (14 – 40GHz)	Schwarzbeck	SCU-F1840-G35-BZ3-CSS(F)	10001	2017-01-14	2018-01-13
24	Tunable Notch Filter	Wainwright	WRCT800.0/880.0-0.2/40-5SSK	170397 169777 169780 192507	/	/
25	High pass Filter	FSCW	HP 12/2800-5AA2	19A45-02	/	/
26	EMI test receiver	Rohde & Schwarz	ESR7	101391	2016-12-29	2017-12-28
27	Line impedance stabilization network	SCHWARZBECK	NSLK8127	8127490	2017-01-14	2018-01-13
28	Line impedance stabilization network	EMCO	3816/2	00034161	2017-01-14	2018-01-13

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only

6 Test Results

6.1 E.U.T. test conditions

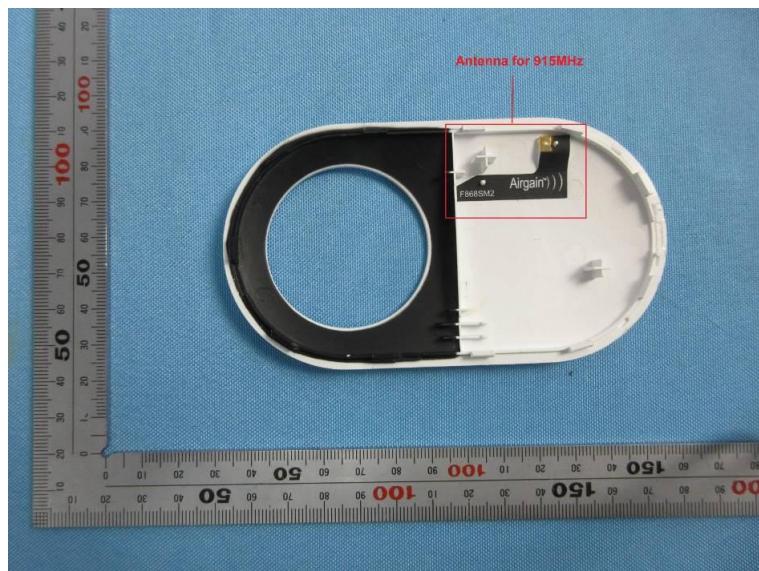
Test Voltage: AC 120V 60Hz

Requirements: 15.31(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Operating Environment:

Temperature:	20.0 -25.0 °C
Humidity:	35-75 % RH
Atmospheric Pressure:	99.2 -102.0 kPa

6.2 Antenna Requirement


Standard requirement:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

EUT Antenna:

The antenna is Monopole Antenna and no consideration of replacement.

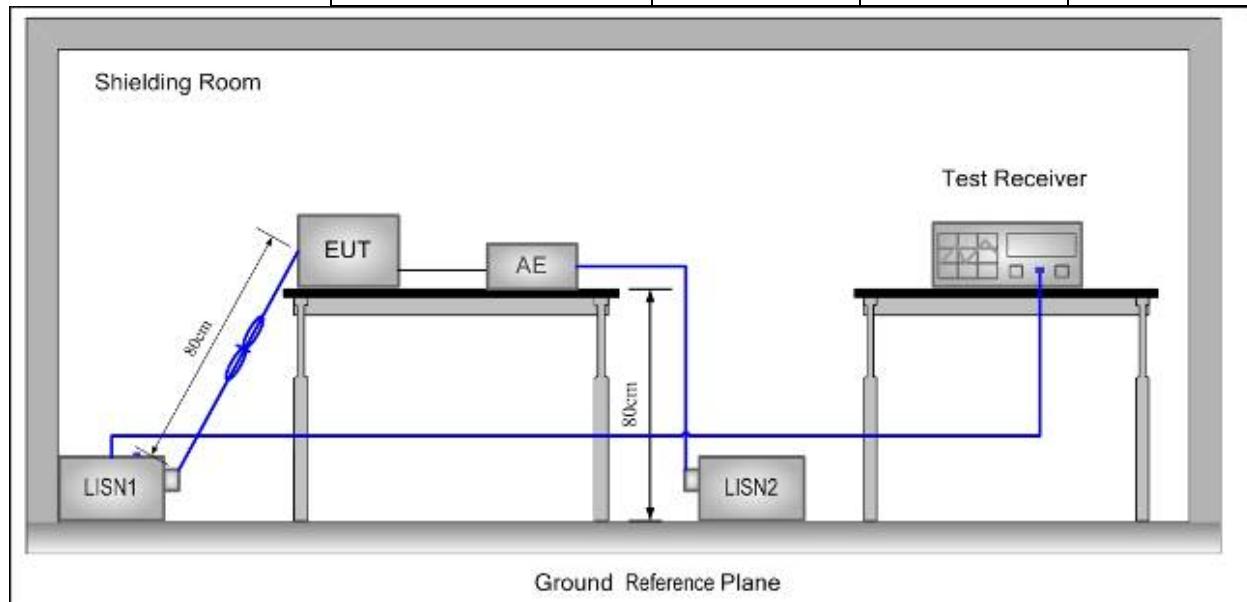
6.3 Conducted Emissions on Mains Terminals

Frequency Range: 150 KHz to 30 MHz

Class/Severity: Class B

Limit:

Frequency range MHz	Class B Limits: dB (μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50


Note1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

Note2: The lower limit is applicable at the transition frequency.

Test site/setup:

Test instrumentation set-up:

Frequency Range	Detector	RBW	VBW
9KHz to 150Hz	Quasi-peak	200Hz	500Hz
150KHz to 30MHz	Quasi-peak	9kHz	30kHz

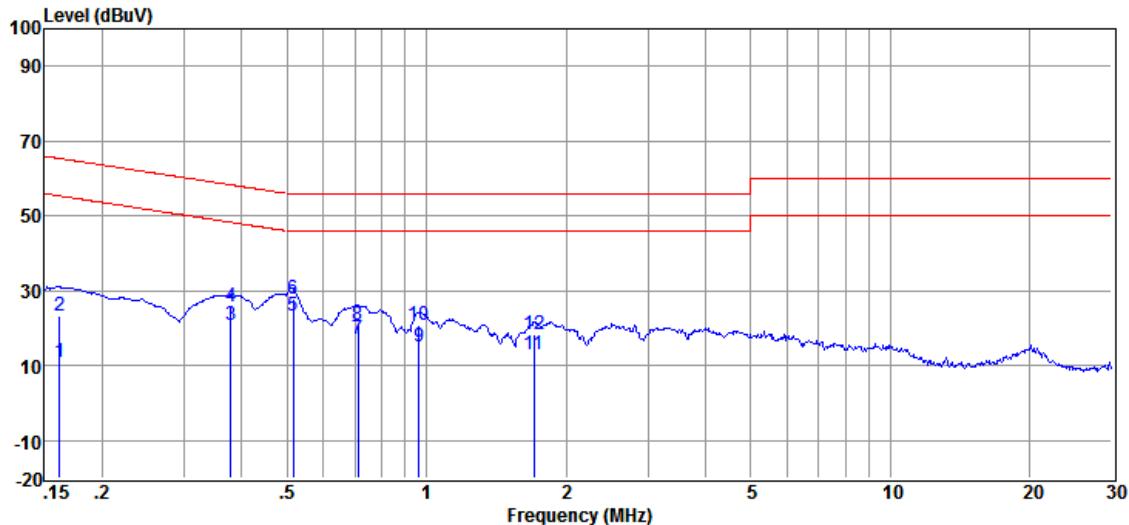
Test Procedure:

1. The mains terminal disturbance voltage was measured with the EUT in a shielded room.
2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN, which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

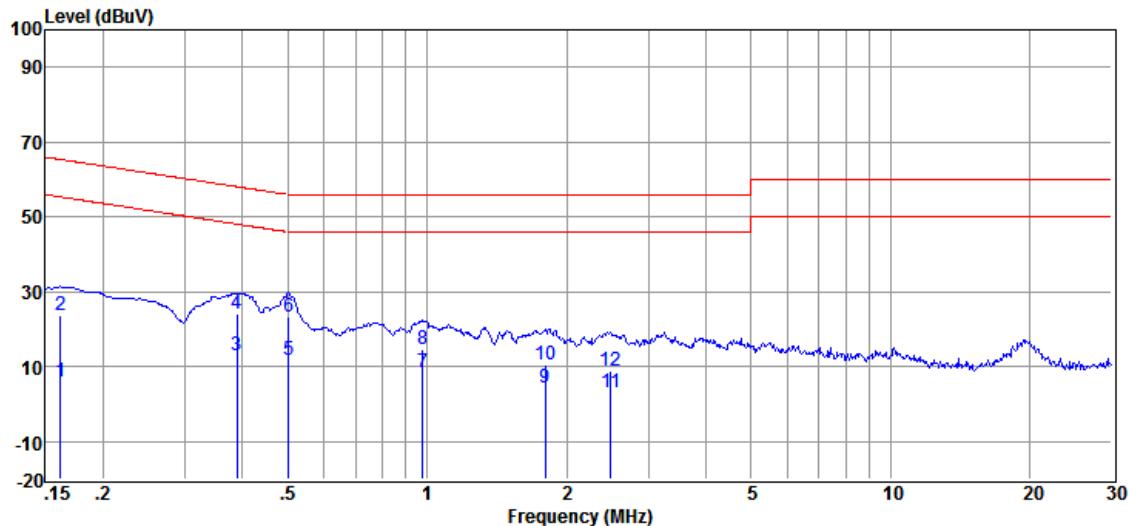
Report No.: SZEM170800884703

Page: 11 of 29


3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN and the EUT. The mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m. All other units of the EUT and associated equipment were at least 0.8 m from the LISN.

Remark: Pre-scan was performed with peak detected on all ports, Quasi-peak & average measurements were performed at the frequencies at which maximum peak emission level were detected. Please see the attached Quasi-peak and Average test results.

Test Result: Pass


Test Data:

Live Line:

Item	Freq.	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dB μ V)	(dB)	(dB)	(dB μ V)	(dB μ V)	(dB)	
1	0.162	1.01	0.06	9.81	10.88	55.38	-44.50	Average
2	0.162	13.43	0.06	9.81	23.30	65.38	-42.08	QP
3	0.379	11.07	0.10	9.81	20.98	48.30	-27.32	Average
4	0.379	16.01	0.10	9.81	25.92	58.30	-32.38	QP
5	0.516	13.51	0.10	9.82	23.43	46.00	-22.57	Average
6	0.516	17.82	0.10	9.82	27.74	56.00	-28.26	QP
7	0.712	7.12	0.10	9.83	17.05	46.00	-28.95	Average
8	0.712	11.02	0.10	9.83	20.95	56.00	-35.05	QP
9	0.963	5.33	0.08	9.84	15.25	46.00	-30.75	Average
10	0.963	10.86	0.08	9.84	20.78	56.00	-35.22	QP
11	1.707	3.01	0.08	9.85	12.94	46.00	-33.06	Average
12	1.707	8.52	0.08	9.85	18.45	56.00	-37.55	QP

Neutral Line:

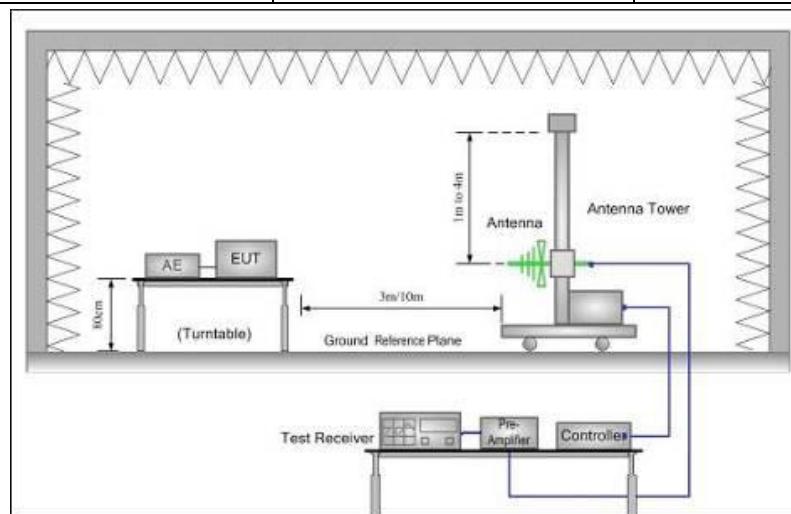
Item	Freq.	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dB μ V)	(dB)	(dB)	(dB μ V)	(dB μ V)	(dB)	
1	0.162	-3.90	0.05	9.81	5.96	55.38	-49.42	Average
2	0.162	13.90	0.05	9.81	23.76	65.38	-41.62	QP
3	0.389	3.05	0.04	9.81	12.90	48.08	-35.18	Average
4	0.389	14.35	0.04	9.81	24.20	58.08	-33.88	QP
5	0.502	1.75	0.04	9.82	11.61	46.00	-34.39	Average
6	0.502	13.39	0.04	9.82	23.25	56.00	-32.75	QP
7	0.979	-1.56	0.05	9.84	8.33	46.00	-37.67	Average
8	0.979	4.80	0.05	9.84	14.69	56.00	-41.31	QP
9	1.800	-5.69	0.06	9.85	4.22	46.00	-41.78	Average
10	1.800	0.58	0.06	9.85	10.49	56.00	-45.51	QP
11	2.487	-6.73	0.09	9.85	3.21	46.00	-42.79	Average
12	2.487	-1.09	0.09	9.85	8.85	56.00	-47.15	QP

Level = Read Level + LISN/ISN Factor + Cable Loss.

6.4 Field Strength of the Fundamental Signal

Test Site:

Measurement Distance: 3m


Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

Limit:

Frequency	Limit (dBuV/m)	Remark
902-928 MHz	114	Peak
	94	Quasi-Peak

Test Setup:

Test Procedure:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Results:

Pass

Measurement Data

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
915	109.67	-16.58	93.09	94	-0.91	Peak	Horizontal
	109.01	-16.58	92.43	94	-1.57	Peak	Vertical

Remark:

- 1) The basic equation with a sample calculation is as follows: Level = Read Level + Factor.
(The Factor is calculated by adding the Antenna Factor, Cable Loss and Preamp Factor)
- 2) If the Peak value below the Quasi-Peak Limit, the Quasi-Peak test doesn't perform for this submission.

6.5 Radiated Spurious Emissions and Band-edge

Frequency Range: 9KHz to 10GHz

Test site/setup: Measurement Distance: 3m
Test instrumentation set-up:

Frequency Range	Detector	RBW	VBW
0.009MHz-0.090MHz	Peak	10kHz	30kHz
0.009MHz-0.090MHz	Average	10kHz	30kHz
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz
0.110MHz-0.490MHz	Peak	10kHz	30kHz
0.110MHz-0.490MHz	Average	10kHz	30kHz
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz
30MHz-1GHz	Quasi-peak	100kHz	300kHz
Above 1GHz	Peak	RBW=1MHz	VBW≥RBW
	Average		VBW=10Hz

Sweep=Auto

15.209 Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)
0.009MHz-0.490MHz	2400/F(KHz)	128.5 ~ 93.8
0.490MHz-1.705MHz	24000/F(KHz)	73.8 ~63.0
1.705MHz-30MHz	30	69.5
30MHz-88MHz	100	40.0
88MHz-216MHz	150	43.5
216MHz-960MHz	200	46.0
960MHz-1GHz	500	54.0
Above 1GHz	500	54.0

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Configuration: Receive antenna scan height 1 m - 4 m. polarization Vertical / Horizontal

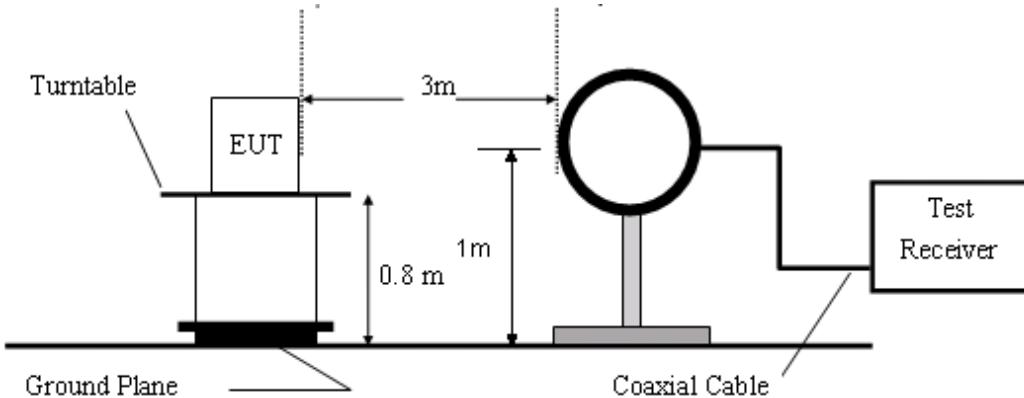


Figure1. Blow 30MHz radiated emissions test configuration

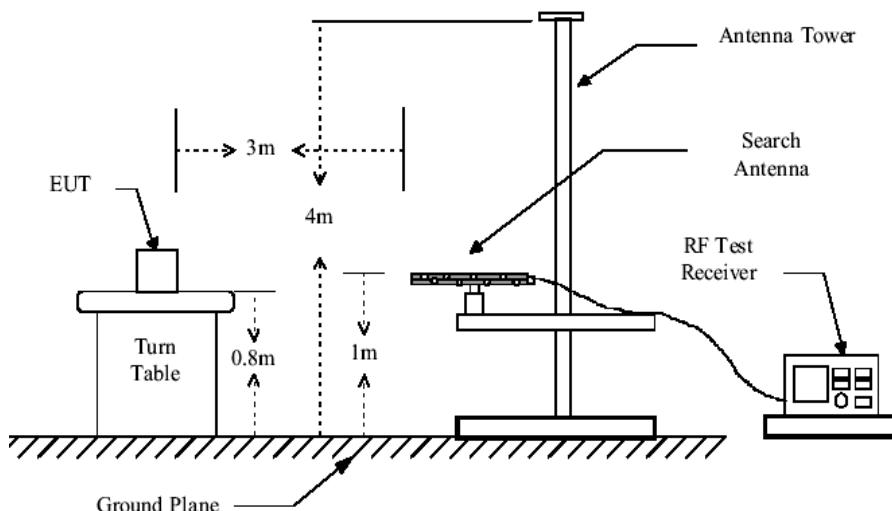


Figure2. 30MHz to 1GHz radiated emissions test configuration

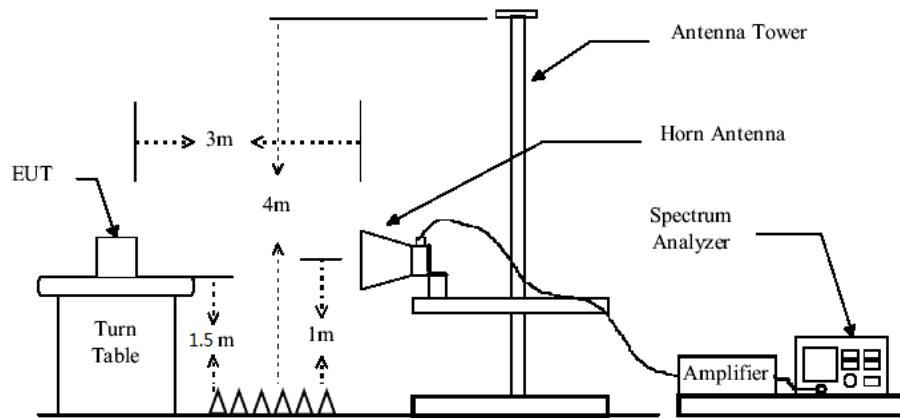


Figure3. Above 1GHz radiated emissions test configuration

Test Procedure: The procedure used was ANSI Standard C63.10. The receiver was scanned from 9KHz to 10GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

Low noise amplifier was used below 1GHz, High pass Filter was used above 3GHz.

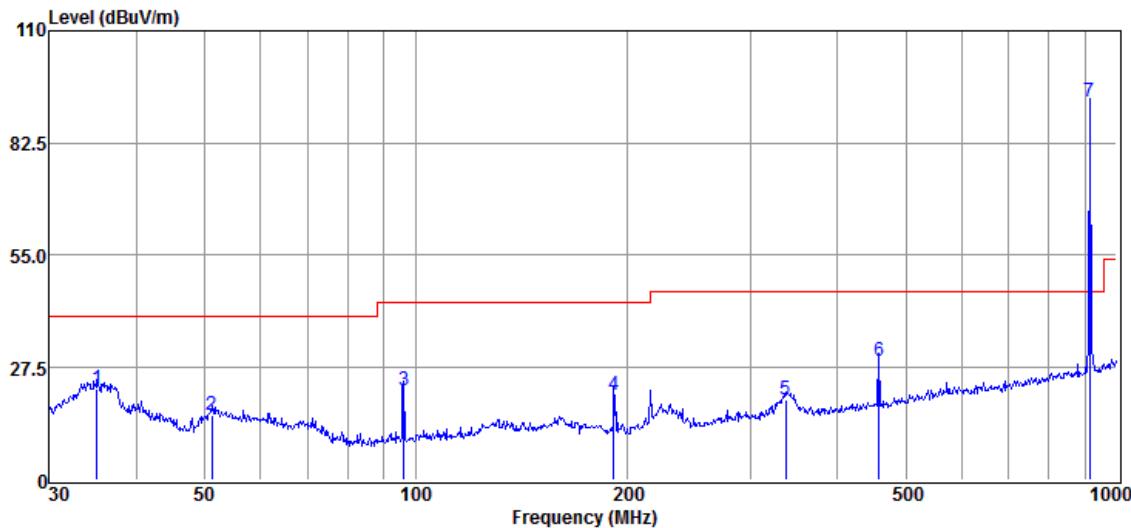
Between 1G and 3GHz, we did not use any amplifier or filter.

Pre-test was performed on Antenna A and Antenna B mode, Compliance test was performed on worse case (Antenna A mode).

Test were performed for their spatial orthogonal(X, Y, Z), the worst test data (X orthogonal) was submitted.

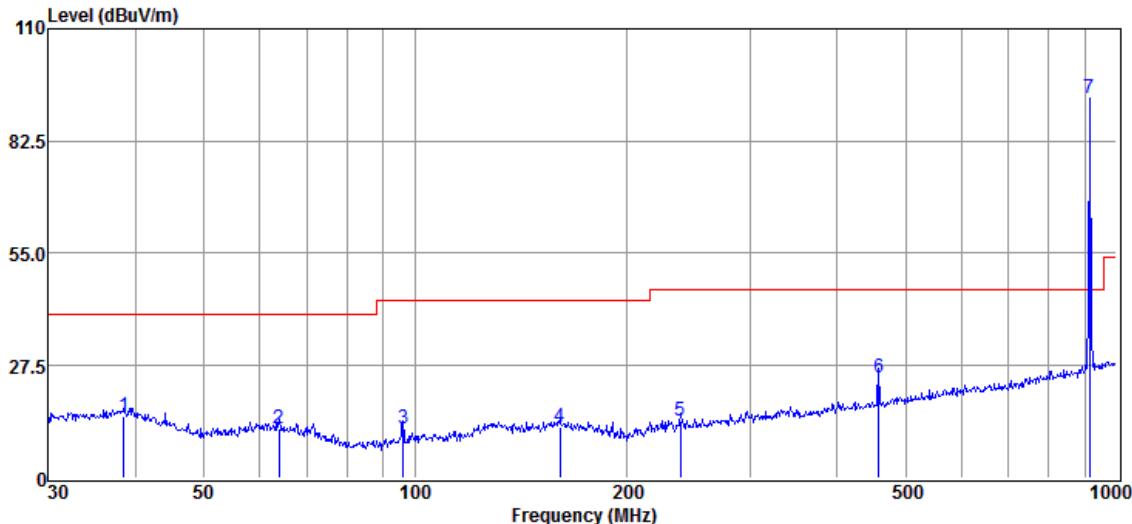
1) For this intentional radiator operates below 25 GHz. the spectrum shall be investigated to the tenth harmonic of the highest fundamental frequency. And above the third harmonic of this intentional radiator, the disturbance is very low. So the test result only displays to 5rd harmonic.

2) As shown in Section, for frequencies above 1000MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

Test Result: Pass

6.5.1 Radiated Spurious Emissions


30MHz-1GHz:

Vertical:

Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dB μ V)	(dB/m)	(dB)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)	
1	35.13	49.05	15.85	42.68	0.20	22.42	40.00	-17.58	QP
2	51.12	47.65	10.83	42.68	0.26	16.06	40.00	-23.94	QP
3	96.10	55.31	8.99	42.70	0.44	22.04	43.50	-21.46	QP
4	191.75	52.44	10.12	42.51	0.68	20.73	43.50	-22.77	QP
5	337.22	47.08	13.96	42.24	0.90	19.70	46.00	-26.30	QP
6	457.51	53.72	16.37	42.09	1.10	29.10	46.00	-16.90	QP
7	915.00	109.01	22.88	41.95	2.49	92.43	Fundamental signal		

Horizontal:

Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dB μ V)	(dB/m)	(dB)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)	
1	38.48	41.32	16.17	42.68	0.22	15.03	40.00	-24.97	QP
2	63.98	42.46	12.11	42.69	0.31	12.19	40.00	-27.81	QP
3	96.10	45.36	8.99	42.70	0.44	12.09	43.50	-31.41	QP
4	160.91	41.49	12.93	42.56	0.64	12.50	43.50	-31.00	QP
5	239.15	44.47	11.07	42.44	0.75	13.85	46.00	-32.15	QP
6	457.51	49.38	16.37	42.09	1.10	24.76	46.00	-21.24	QP
7	915.00	109.67	22.88	41.95	2.49	93.09	Fundamental signal		

Level = Read Level + Antenna Factor + Cable Loss – Preamp Factor.

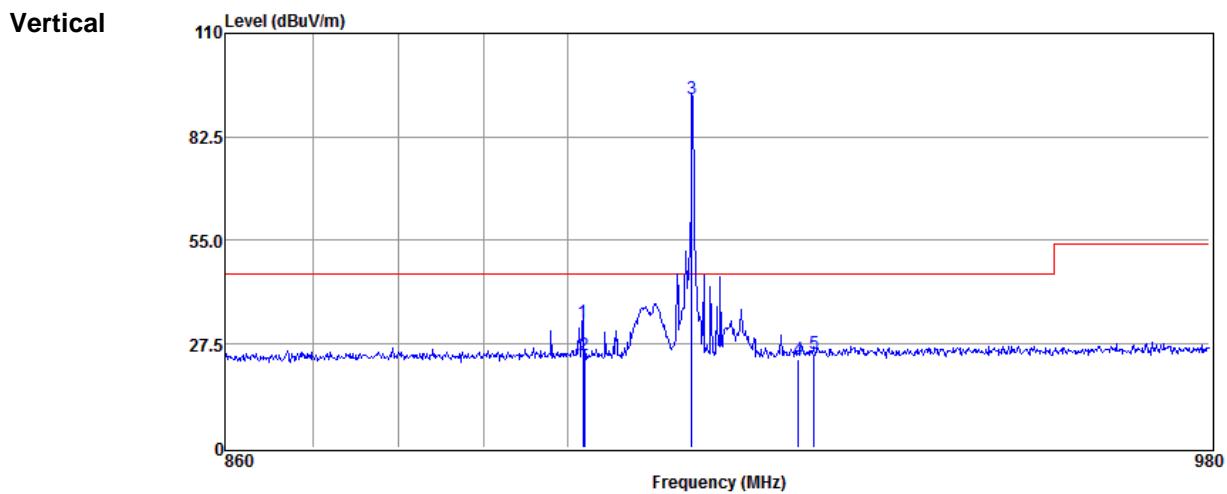
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM170800884703

Page: 21 of 29

Above 1GHz:

Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	2115	33.24	-3.02	30.22	54	-23.78	peak	Horizontal
2	3155	42.98	0.63	43.61	54	-10.39	peak	Horizontal
3	3640	42.97	2.58	45.55	54	-8.45	peak	Horizontal
4	2150	33.25	-2.96	30.29	54	-23.71	peak	Vertical
5	3400	40.97	1.88	42.85	54	-11.15	peak	Vertical
6	4085	40.84	3.31	44.15	54	-9.85	peak	Vertical


Remark: 1. Test Level = Receiver Reading + Antenna Factor + Cable Loss- Preamplifier Factor
2. No any other emission which falls in restricted bands can be detected and be reported.
3. If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

All frequencies within the "Restricted bands" have been evaluated to compliance. Section 15.205 Restricted bands of operation.

6.5.2 Radiated Band edge

Channel: 915MHz

MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	900.23	53.48	-16.87	36.61	46.00	-9.39	Peak	Horizontal
2	902.00	40.37	-16.83	23.54	46.00	-22.46	Peak	Horizontal
3	915.05	109.75	-16.58	93.17	46.00	47.17	Peak	Horizontal
4	928.00	39.61	-16.29	23.32	46.00	-22.68	Peak	Horizontal
5	930.72	44.38	-16.21	28.17	46.00	-17.83	Peak	Horizontal
1	901.76	49.97	-16.83	33.14	46.00	-12.86	Peak	Vertical
2	902.00	41.39	-16.83	24.56	46.00	-21.44	Peak	Vertical
3	914.93	109.38	-16.58	92.80	46.00	46.80	Peak	Vertical
4	928.00	39.90	-16.29	23.61	46.00	-22.39	Peak	Vertical
5	929.87	41.28	-16.29	24.99	46.00	-21.01	Peak	Vertical

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

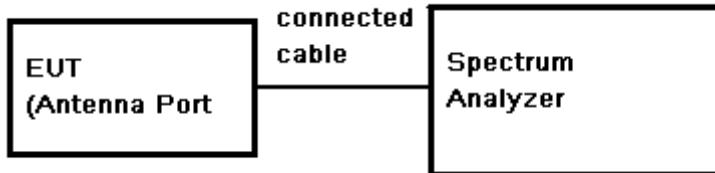
Report No.: SZEM170800884703

Page: 23 of 29

Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

1. FCC Part 15, Subpart C Section 15.205 Restricted bands of operation.

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.5 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			



2. RSS-Gen section 7.2.2 Restricted bands of operation

MHz	MHz	GHz
0.090-0.110	240-285	9.0-9.2
2.1735-2.1905	322-335.4	9.3-9.5
3.020-3.026	399.9-410	10.6-12.7
4.125-4.128	608-614	13.25-13.4
4.17725-4.17775	960-1427	14.47-14.5
4.20725-4.20775	1435-1626.5	15.35-16.2
5.677-5.683	1645.5-1646.5	17.7-21.4
6.215-6.218	1660-1710	22.01-23.12
6.26775-6.26825	1718.8-1722.2	23.6-24.0
6.31175-6.31225	2200-2300	31.2-31.8
8.291-8.294	2310-2390	36.43-36.5
8.362-8.366	2655-2900	Above 38.6
8.37625-8.38675	3260-3267	
8.41425-8.41475	3332-3339	
12.29-12.293	3345.8-3358	
12.51975-12.52025	3500-4400	
12.57675-12.57725	4500-5150	
13.36-13.41	5350-5460	
16.42-16.423	7250-7750	
16.69475-16.69525	8025-8500	
16.80425-16.80475		
25.5-25.67		
37.5-38.25		
73-74.6		
74.8-75.2		
108-138		
156.52475-156.52525		
156.7-156.9		

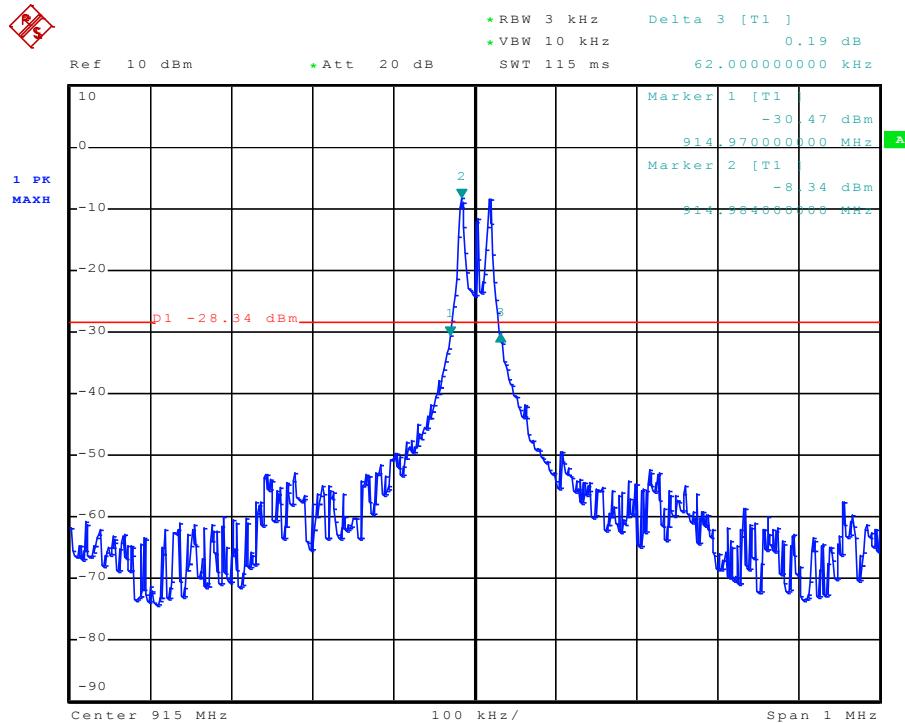
6.6 20dB Bandwidth

Test Configuration:

Test Procedure:

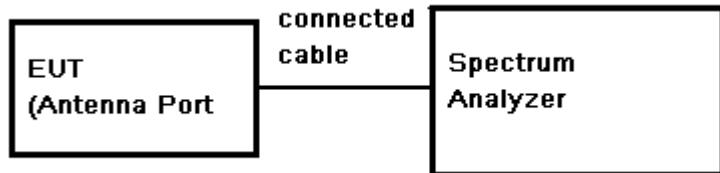
1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set the spectrum analyzer as RBW = approximately 1 % to 5 % of the OBW (set 3 kHz), VBW =3* RBW, Span=1MHz, Sweep=auto
4. Mark the peak frequency and -20dB (upper and lower) frequency.
5. Repeat above procedures until all frequency measured was complete.

Limit: N/A


Test Result: Pass

Test Data:

Frequency (MHz)	Bandwidth (kHz)	Result
915	62.0	PASS


Test plot as follows:

915MHz:

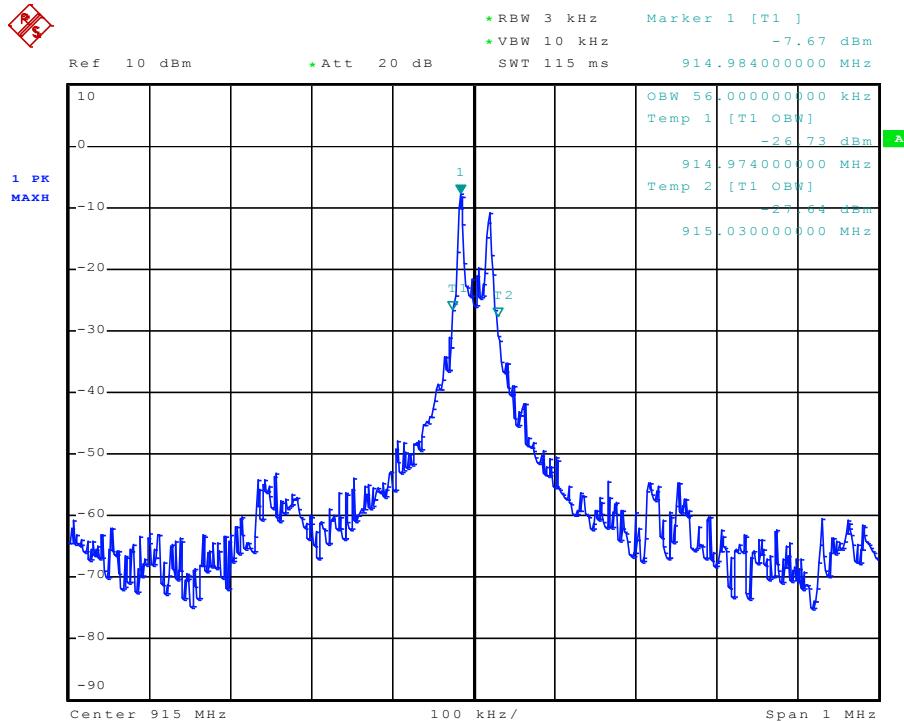
6.7 99% Occupied Bandwidth

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centred on the hopping channel;
3. Set the spectrum analyzer: RBW = 1% of the span (set 3 kHz). VBW >= RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
4. Mark the peak frequency and using the 99% OBW function measure the bandwidth.

Test Result:


Pass

Test Date:

Frequency (MHz)	Bandwidth (kHz)	Result
915	56.0	PASS

Test plot as follows:

915MHz:

7 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

8 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

--End of the Report--