

For

Shenzhen PA. Times Technology Co., Ltd

Camcorder

Test Model: HDR-AC5PLUS

Additional Model No.: Please Refer to Page 8

Prepared for Address

Prepared by Address

Tel Fax Web

Mail

Date of receipt of test sample Number of tested samples Sample number Serial number Date of Test Date of Report Shenzhen PA. Times Technology Co., Ltd Room D-E, Floor 14, Block B, Xuesong Building, Tairan Road 6, Tairan Science & Technology Park, Futian District, Shenzhen, China Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China (86)755-82591330 (86)755-82591332 www.LCS-cert.com

webmaster@LCS-cert.com

2

:	January 09, 2024
:	1
:	A12273004-1
:	Prototype
:	January 09 ~ January 15, 2024
:	January 16, 2024

	SAR TEST REPORT
Report Reference No	LCSA12273004EB
Date Of Issue	January 16, 2024
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address:	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Testing Location/ Procedure:	Full application of Harmonised standards
	Partial application of Harmonised standards \Box
	Other standard testing method \Box
Applicant's Name	Shenzhen PA. Times Technology Co., Ltd
Address	Room D-E, Floor 14, Block B, Xuesong Building, Tairan Road 6, Tairan Science & Technology Park, Futian District, Shenzhen, China
Test Specification:	The to
Standard	FCC 47CFR §2.1093, ANSI/IEEE C95.1-2019, IEEE 1528-2013
Test Report Form No	LCSEMC-1.0
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF	Dated 2014-09
This publication may be reproduced in LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing I	ing Laboratory Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzhen Ltd. is acknowledged as copyright owner and source of the material. Laboratory Ltd. takes noresponsibility for and will not assume liability for terpretation of the reproduced material due to its placement and context.
Test Item Description	Camcorder
Trade Mark	OFDFO [®] 欧达 OIGIOO で徳浦
Model/Type Reference	
Ratings:	Input: 5V 2.1A DC 3.7V by Rechargeable Li-ion Battery, 1700mAh
Result	Positive

Compiled by: Jayzhan

Supervised by: (any Luo

Approved by: Jams Frang

Jay Zhan/ File administrators

Cary Luo / Technique principal

Gavin Liang/ Manager

Report No.: LCSA12273004EB

SAR -- TEST REPORT

LCSA12273004EB

January 16, 2024 Date of issue

EUT	: Camcorder		
Type/Model	: HDR-AC5PLUS		
Applicant	: Shenzhen PA. Times Technology Co., Ltd		
Address	 Room D-E, Floor 14, Block B, Xuesong Building, Tairan Road 6, Tairan Science & Technology Park, Futian District, Shenzhen, China 		
Telephone	: /		
Fax	: /		
Manufacturer	Shenzhen PA. Times Technology Co., Ltd		
Address	Room D-E, Floor 14, Block B, Xuesong Building, Tairan Road 6, Tairan Science & Technology Park, Futian District, Shenzhen,		
一時份	China		
Telephone	The ming Lab		
Fax	LCS Testing		
Factory	: Shenzhen PA. Times Technology Co., Ltd		
Address	: Room D-E, Floor 14, Block B, Xuesong Building, Tairan Road 6, Tairan Science & Technology Park, Futian District, Shenzhen, China		
Telephone	: /		
Fax	: /		
- UX	 41 		

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Scan code to check authenticity

	Revison		
Revision	Issue Date	Revision Content	Revised By
000	January 16, 2024	Initial Issue	

TABLE OF CONTENTS

1. TEST STANDARDS AND TEST I	DESCRIPTION		6
 TEST LOCATION	ИЕNT	1.557 1.02 .	
2. SAR MEASUREMENTS SYSTEM			
 2.2. ISOTROPIC E-FIELD PROBE EX. 2.3. DATA ACQUISITION ELECTRON 2.4. SAM TWIN PHANTOM 2.5. ELI PHANTOM 2.6. DEVICE HOLDER FOR TRANSMI 	3DV4 NCS (DAE) ITTERS		
3. SAR MEASUREMENT VARIABI	LITY AND UNCERTAI	NTY	23
4. DESCRIPTION OF TEST POSIT			
4.1. TEST POSITIONS CONFIGURATI	ON		24
5. SAR SYSTEM VERIFICATION H	PROCEDURE	Trill Section 9 Lab	25
		100 100	
6. SAR MEASUREMENT PROCED	URE		
6.2. POWER REDUCTION			
7. TEST CONDITIONS AND RESUL	LTS		
7.1. CONDUCTED POWER RESULTS1.1. STAND-ALONE SAR TEST EVAI1.2. SAR MEASUREMENT RESULTS	LUATION		
APPENDIX A: DETAILED SYSTEM	A CHECK RESULTS	(8en	
APPENDIX B: DETAILED TEST R	ESULTS		
APPENDIX C: CALIBRATION CEI	RTIFICATE		
APPENDIX D: PHOTOGRAPHS			57

立课检测股份 LCS Testing Lab

可用检测服份 **TEST STANDARDS AND TEST DESCRIPTION 1.1. Statement of Compliance**

The maximum of results of SAR found during testing for HDR-AC5PLUS are follows:

<Highest Reported standalone SAR Summary>

Classment	Frequency	Body (Report SAR1-g (W/kg)
Class	Band	(Separation Distance 0mm)
DTS	WLAN 2.4G	0.262

Note

1) This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

1.2. Test Location

Company:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address:	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Telephone:	(86)755-82591330
Fax:	(86)755-82591330
Web:	www.LCS-cert.com
E-mail:	webmaster@LCS-cert.com

1.3. Test Facility

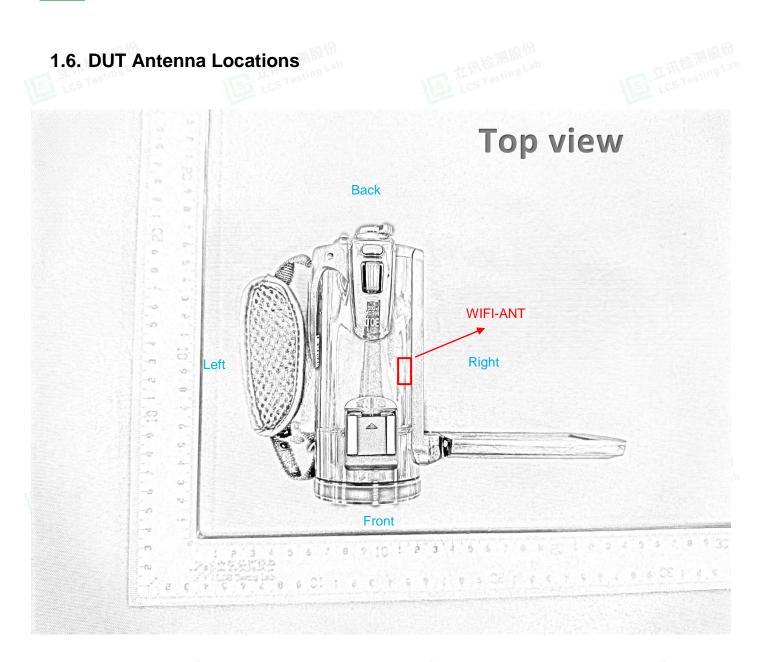
The test facility is recognized, certified, or accredited by the following organizations: Site Description SAR Lab. NV/LAD Access to the

FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. Test Firm Registration Number: 254912.

1.4. Test Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Atmospheric pressure:	950-1050mbar
Ambient noise is checked and found very low and in Reflection of surrounding objects is minimized and in	

1.5. Product Description


The **Shenzhen PA. Times Technology Co., Ltd** 's Model: HDR-AC5PLUS or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description	
EUT	Camcorder
Test Model	HDR-AC5PLUS
Additional Model No.	Ordro AC5PLUS, Ordro AC5PLUS US, Ordro AC5PLUS EU, Ordro AC5PLUS Combo, Ordro AC5PLUS BASE, Ordro AC5PLUS DE, Ordro AC5PLUS UK, Ordro AC5PLUS ES, Ordro AC5PLUS FR, Ordro AC5PLUS IT, OD AC5plsu, AC5XP
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested
Power Supply	Input: 5V2.1A DC 3.7V by Rechargeable Li-ion Battery, 1700mAh
Hardware Version	V1.0
Software Version	V1.0

Technical Characteristics	
2.4G WLAN	
Frequency Range:	2412 – 2462 MHz
Channel Number	11 Channels for 20MHz bandwidth (2412~2462MHz) 7 Channels for 40MHz bandwidth (2422~2452MHz)
Channel Spacing	5MHz
Modulation Type	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)
Antenna Description	Ceramic antenna, 2.0dBi(Max.)
Exposure category:	Uncontrolled Environment General Population

Distance f	rom the ante	nna to the El	JT edge(mm	ı)		
Mode	Front	Back	Left	Right	Тор	Bottom
WIFI Antenna	60	62	47	12	15	45


Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 L E-mail: webmaster@lcs-cert.com LWeb: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Report No.: LCSA12273004EB

1.7. Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 447498 D01	General RF Exposure Guidance v06
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	RF Exposure Reporting v01r02

1.8. RF exposure limits

	Occupational
1.60 mW/g	8.00 mW/g
0.08 mW/g	0.40 mW/g
4.00 mW/g	20.00 mW/g

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

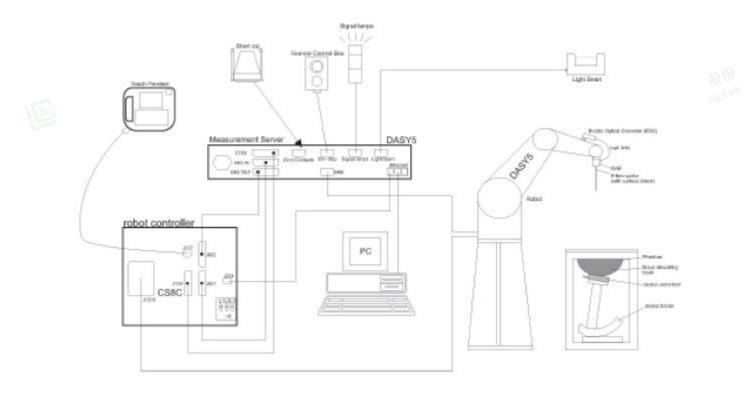
1.9. Equipment list

1.	.9. Equipment	list						
	Test Platform	SPEA	G DASY5 Profes	sional	LCS TO		LCS TO	1
	Description	SAR 1	Test System (Free	quency range 30	0MHz-6GHz)			
S	oftware Reference	DASY	52; SEMCAD X					
			Harc	lware Referenc	e]
	Equipment		Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration	
\boxtimes	PC		Lenovo	NA	NA	NA	NA	
\boxtimes	Twin Phantom	1	SPEAG	SAM V5.0	1850	NCR	NCR	1
\boxtimes	ELI Phantom	份	SPEAG	ELI V6.0	2010	NCR	NCR	1
\boxtimes	DAE	Lab	SPEAG	DAE3	373	2024/1/3	2025/1/2	1
\boxtimes	E-Field Probe		SPEAG	EX3DV4	3805	2023/11/23	2024/11/22]
\boxtimes	Validation Kits	5	SPEAG	D2450V2	808	2023/10/23	2026/10/22]
\boxtimes	Agilent Network An	alyzer	Agilent	8753E	SU38432944	2023/6/9	2024/6/8]
\boxtimes	Dielectric Probe	Kit	SPEAG	DAK3.5	1425	NCR	NCR]
\boxtimes	Universal Radi Communication Te		R&S	CMW500	42115	2023/10/29	2024/10/28	
\boxtimes	Directional Coup	ler	MCLI/USA	4426-20	03746	2023/6/9	2024/6/8	
\boxtimes	Power meter		Agilent	E4419B	MY45104493	2023/10/29	2024/10/28	
\boxtimes	Power meter		Agilent	E4419B	MY45100308	2023/10/29	2024/10/28	NRE!
\boxtimes	Power sensor		Agilent	E9301H	MY41495616	2023/10/29	2024/10/28	ing
\boxtimes	Power sensor	·	Agilent	E9301H	MY41495234	2023/10/29	2024/10/28	1
\boxtimes	Signal Generat	or	Agilent	E4438C	MY49072627	2023/6/9	2024/6/8]
\boxtimes	Broadband Pream	olifier	/	BP-01M18G	P190501	2023/6/15	2024/6/14	1
\boxtimes	DC POWER SUP	PLY	I-SHENG	SP-504	NA	NCR	NCR	1
\boxtimes	Speed reading thermometer)	HTC-1	NA	LCS-E-138	2023/6/13	2024/6/12	

Note: All the equipments are within the valid period when the tests are performed.

2. SAR MEASUREMENTS SYSTEM CONFIGURATION

2.1. SAR Measurement System


This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation $SAR = \sigma$ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY5 system for performing compliance tests consists of the following items: A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
 - A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

2.2. Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 <u>calibration service</u> available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

2.3. Data Acquisition Electronics (DAE)

2.3. Data Acquis	sition Electronics (DAE)	
Model	DAE	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 f A	
Dimensions	60 x 60 x 68 mm	

2.4. SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE- GF)	n	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)		的聪明
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	I I I I I I I I I I I I I I I I I I I	sting Lab
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet		
Filling Volume	approx. 25 liters	-	
Wooden Support	SPEAG standard phantom table		

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

Report No.: LCSA12273004EB

2.5. ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)	tin
Liquid	Compatible with all SPEAG tissue	
Compatibility	simulating liquids (incl. DGBE type)	l
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm	
	Minor axis: 400 mm	
Filling Volume	approx. 30 liters	
Wooden Support	SPEAG standard phantom table	

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

2.6. Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.7. Measurement procedure

2.7.1. Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of $32mm^*32mm^*30mm$ (f $\leq 2GHz$), $30mm^*30mm^*30mm$ (f for 2-3GHz) and $24mm^*24mm^*22mm$ (f for 5-6GHz) was assessed by measuring 5x5x7 points (f $\leq 2GHz$), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification).The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Report No.: LCSA12273004EB

			\leq 3 GHz	> 3 GHz	
	timum distance from closest measurement point metric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	L立讯检测股份
Maximum probe angle surface normal at the n			30°±1°	20° ± 1°	LCS Testing Lab
			$\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 12 \text{ mm} \\ 4-6 \text{ GHz:} \leq 10 \text{ mm} \end{array}$	
Maximum area scan spatial resolution: $\Delta x_{Area}, \Delta y_{Area}$			When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one	
Maximum zoom scan s	spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$ 4 - 6 GHz: $\leq 4 \text{ mm}^*$		股份
	uniform	grid: ∆z _{Z∞m} (n)	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \ \text{GHz:} \leq 4 \ \text{mm} \\ 4-5 \ \text{GHz:} \leq 3 \ \text{mm} \\ 5-6 \ \text{GHz:} \leq 2 \ \text{mm} \end{array}$	N9 L.
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Z_{000m}}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	∆z _{Zoom} (n>1): between subsequent points	≤1.5·∆z	z _{Zoom} (n-1)	
Minimum zoom scan volume	x, y, z	•	\ge 30 mm	$\begin{array}{l} 3-4 \text{ GHz:} \geq 28 \text{ mm} \\ 4-5 \text{ GHz:} \geq 25 \text{ mm} \\ 5-6 \text{ GHz:} \geq 22 \text{ mm} \end{array}$	上CS Testing Lab

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

2.7.2. Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

2.7.3. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: -	Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi	
- Diode compression	point Dcpi	
Device parameters: -	Frequency	f
 Crest factor 	cf	
Media parameters: -	Conductivity	3
- Density	ρ	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

 $V_i = U_i + U_i^2 \cdot c f / d c p_i$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes:

 $H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2})/f$ With Vi = compensated signal of channel i Normi = sensor sensitivity of channel I (i = x, y, z) (i = x, y, z)[mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$ The primary field data are used to calculate the derived field units.

$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$

with SAR = local specific absorption rate in mW/g Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field. 民主任用检测股份 LCS Testing Lab

 $P_{pwe} = E_{tot}^2 / 3770_{or} P_{pwe} = H_{tot}^2 \cdot 37.7$

Ppwe = equivalent power density of a plane wave in mW/cm2 with Etot = total electric field strength in V/m Htot = total magnetic field strength in A/m

3. SAR measurement variability and uncertainty

3.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \ge 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

3.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

4. Description of Test Position

4.1. Test Positions Configuration

Per FCC KDB616217 D04, The required minimum test separation distance for incorporating transmitters and antennas into laptop, notebook and netbook computer displays is determined with the display screen opened at an angle of 90° to the keyboard compartment. If a computer has other operating configurations that require a different or more conservative display to keyboard angle for normal use, a KDB inquiry should be submitted to determine the test requirements. When antennas are incorporated in the keyboard section of a laptop computer, SAR is required for the bottom surface of the keyboard.

Provided tablet use conditions are not supported by the laptop computer, SAR tests for bystander exposure from the edges of the keyboard and display screen of laptop computers are generally not required. However, when edge testing is necessary, the similar concerns for simultaneous transmission on adjacent or multiple edges described for tablets also apply.

For this device, the transmit antenna are located at the screen section. Body operating configurations are tested with the device bottom side positioned against a flat phantom with test separation distance of 0mm in a normal use configuration.

SAR System Verification Procedure 5. 立讯检测股份

5.1. Tissue Simulate Liquid

5.1.1. Recipes for Tissue Simulate Liquid

LCS Testing Lat The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients		Frequency (MHz)					
(% by weight)	450	700-900	1750-2000	2300-2500	2500-2700		
Water	38.56	40.30	55.24	55.00	54.92		
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23		
Sucrose	56.32	57.90	0	0	0		
HEC	0.98	0.24	0	0	0		
Bactericide	0.19	0.18	0	0	0		
Tween	0	0	44.45	44.80	44.85		
	d, 16 M Ω^+ resistivi thylene (20) sorbit	ty d	Sucrose: 98⁺% Pure HEC: Hydroxyethyl (立讯校 测 Lab LCS Testing Lab		
HSL5GHz is com	posed of the follow	wing ingredients:					
Water: 50-65%							
Mineral oil: 10-30%							
Emulsifiers: 8-25	5%						
Sodium salt: 0-1	.5%						

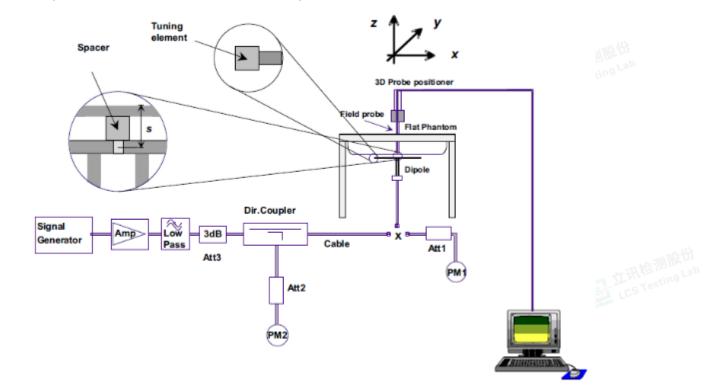
Table 1: Recipe of Tissue Simulate Liquid

5.1.2. Measurement for Tissue Simulate Liquid

The dielectric properties for this Tissue Simulate Liquids were measured by using the DAKS. The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

Tissue Type	Measured Target Tissue (±5%)		Measured Tissue		Liquid Temp.	Measured	
	(MHz)	٤r	σ(S/m)	٤r	σ(S/m)	(°C)	Date
2450 Head	2450	39.2 (37.24~41.16)	1.8 (1.71~1.89)	37.999	1.855	22.1	January 15, 2023

Table 2: Measurement result of Tissue electric parameters



5.2. SAR System Check

The microwave circuit arrangement for system Check is sketched in F-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-1. the microwave circuit arrangement used for SAR system check

5.2.1. Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 20% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.

2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

5.2.2. Summary System Check Result(s)

Validation Kit		Measured SAR 250mW 1g (W/kg)	Measured SAR 250mW 10g (W/kg)	Measured SAR (normalized to 1W) 1g (W/kg)	Measured SAR (normalized to 1W) 10g (W/kg)	Target SAR (normalized to 1W) (±10%) 1-g(W/kg)	Target SAR (normalized to 1W) (±10%) 10-g(W/kg)	Liquid Temp. (℃)	Measured Date
		ig (Wing)	10g (11/kg)	19 (1 /Kg)	10g (11/kg)	1-9(1 /Kg)	10-g(11/kg)		
D2450V2	Head	13.00	5.97	52.00	23.88	53.5 (48.15~58.85)	24.8 (22.32~27.28)	22.1	January 15, 2023

Table 3: Please see the Appendx A

6. SAR measurement procedure

The measurement procedures are as follows:

6.1. Conducted power measurement

a. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
b. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

6.2. Power Reduction

The product without any power reduction.

6.3. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within \pm 0.2dB.

TEST CONDITIONS AND RESULTS

7.1. Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE.

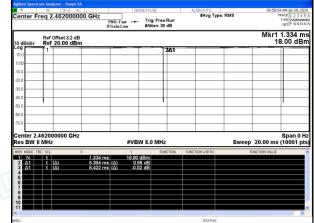
7.1.1. Conducted Power Measurement Results(WIFI 2.4G)

Test Mode	Antenna	Freq(MHz)	Conducted Power (dBm)	Tune up
		2412	15.24	15.50
11B	Ant1	2437	15.30	16.00
	a Lab	2462	15.51	16.00
LCS Test		2412	14.04	14.50
11G	Ant1	2437	14.30	15.00
		2462	14.36	15.00
		2412	13.49	14.00
11N20SISO	Ant1	2437	13.42	14.00
		2462	13.36	14.00
		2422	12.30	13.00
11N40SISO	Ant1	2437	12.29	13.00
	and a large state of the second se	2452	12.30	13.00
Note:	立讯检测	ab	立 讯检测 Lab	立讯检测mu

Note:

TestingLab a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.


1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WIFI 2.4G (802.11b):

Duty cycle=99.55%

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

1.1. Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and Product specific 10g SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

	MHz	5	10	15	20	25	mm	
	150	39	77	116	155	194		
	300	27	55	82	110	137	1	13
	450	22	45	67	89	112	1	Lab
	835	16	33	49	66	82		
	900	16	32	47	63	79		
	1500	12	24	37	49	61	SAR Test	
	1900	11	22	33	44	54	Exclusion Threshold (mW)	
	2450	10	19	29	38	48	1// conota (mitt)	
	3600	8	16	24	32	40		
	5200	7	13	20	26	33	1	
	5400	6	13	19	26	32	1	
	5800	6	12	19	25	31	1	
1	MHz	30	35	40	45	50	mm	A MILES
, 11 , 5 ¹	150	232	271	310	349	387		
~	300	164	192	219	246	274		LCS Testing
	450	134	157	179	201	224		
	835	98	115	131	148	164		
[900	95	111	126	142	158		
	1500	73	86	98	110	122	SAR Test Exclusion	
	1900	65	76	87	98	109	Threshold (mW)	
	2450	57	67	77	86	96		
	3600	47	55	63	71	79		
	5200	39	46	53	59	66]	
	5400	39	45	52	58	65		(3)
	5800	37	44	50	56	62		1 ab
	Testi	-			line a		Testin	

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and \leq 50 mm

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

The test exclusions are applicable only when the minimum test separation distance is > 50 mm and for transmission frequencies between 100 MHz and 6 GHz.

OAN Test Exclusion Thresholds for foo mile = 0 one and > 30 mill																	
MHz	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm	
100	474	481	487	494	501	507	514	<u></u> б21	527	534	541	547	554	561	567		
150	387	397	407	417	427	437	447	457	467	477	487	497	507	517	527		
300	274	294	314	334	354	374	394	414	434	454	474	494	514	534	554		
450	224	254	284	314	344	374	404	434	464	494	524	554	584	614	644		
835	164	220	275	331	387	442	498	554	609	665	721	776	832	888	943		
900	158	218	278	338	398	458	518	578	638	698	758	818	878	938	998		
1500	122	222	322	422	522	622	722	822	922	1022	1122	1222	1322	1422	1522	mW	
1900	109	209	309	409	509	609	709	809	909	1009	1109	1209	1309	1409	1509		
2450	96	196	296	396	496	596	696	796	896	996	1096	1196	1296	1396	1496		
3600	79	179	279	379	479	579	679	779	879	979	1079	1179	1279	1379	1479		
5200	66	166	266	366	466	566	666	766	866	966	1066	1166	1266	1366	1466		
5400	65	165	265	365	465	565	665	765	865	965	1065	1165	1265	1365	1465		
5800	62	162	262	362	462	562	662	762	862	962	1062	1162	1262	1362	1462		

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and > 50 mm

According to the table above, Standalone SAR exclusion calculation for this device are as below:											
Freq. Band	Frequency (MHz)	Position	Test Separation (mm)	Max Power (dBm)	Max Power (mW)	Exclusion Threshold (mW)	Exclusion (Yes/No)				
	2462	Front side	60	16.0	39.81	196	Yes				
	2462	Back side	62	16.0	39.81	216	Yes				
Wi-Fi	2462	Left side	47	16.0	39.81	90	Yes				
2.4G	2462	Right side	12	16.0	39.81	23	No				
	2462	Top side	15	16.0	39.81	29	No				
	2462	Bottom side	45	16.0	39.81	86	Yes				

From what is shown in the table above, we can draw the conclusion that:

EUT Sides for SAR Testing											
Mode	Front	Back	Left	Right	Тор	Bottom					
WIFI 2.4G	Body	No	No	No	Yes	Yes	No				

EUT Sides for SAR Testing.

1.2. SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

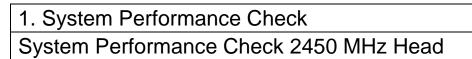
P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift) Reported SAR which including Power Drift and Scaling factor

1.2.1. SAR Results [WIFI 2.4G]

SAR Values [WIFI 2.4G]												
Ch/	Channel Type	Test Position		Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (dB)	Scaling Factor	SAR _{1-g} results(W/kg)				
Freq. (MHz)			Duty Cycle					Measured	Reported			
measured / reported SAR numbers - Body (Test data distance 0mm)												
11/2462	802.11b	Right side	1.005	15.51	16.00	-0.03	1.119	0.233	0.262			
11/2462	802.11b	Top side	1.005	15.51	16.00	-0.15	1.119	0.185	0.208			


Note:

1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.

APPENDIX A: DETAILED SYSTEM CHECK RESULTS

Report No.: LCSA12273004EB

Date: 2024/1/15

Test Laboratory: LCS-SAR Lab

System Check_2450Mhz

DUT: D2450V2; Type: D2450V2; Serial: 808

Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.855 S/m; ϵ_r = 37.999; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3805; ConvF(7.42, 7.42, 7.42); Calibrated: 2023/11/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated: 2024/1/3
- Phantom: SAM v5.0; Type: SAM; Serial: 1850
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Unnamed procedure/Area Scan (4x8x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 17.6 W/kg

Configuration/Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.94 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.97 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

1. WLAN 2.4G WLAN 2.4G for Body

Date: 2024/1/15

Test Laboratory: LCS-SAR Lab

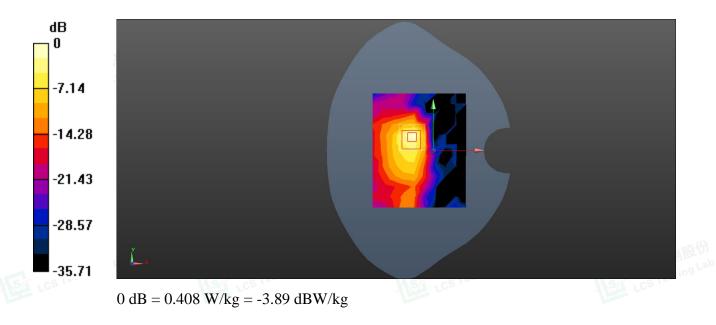
WIFI 2.4G 802.11b 11CH Right side 0mm

DUT: HDR-AC5PLUS; Type: Camcorder; Serial: A12273004-1

Communication System: UID 0, WIFI 2.4GHz (0); Frequency: 2462 MHz;Duty Cycle: 1:1.005 Medium parameters used: f = 2462 MHz; σ = 1.874 S/m; ϵ_r = 37.961; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:

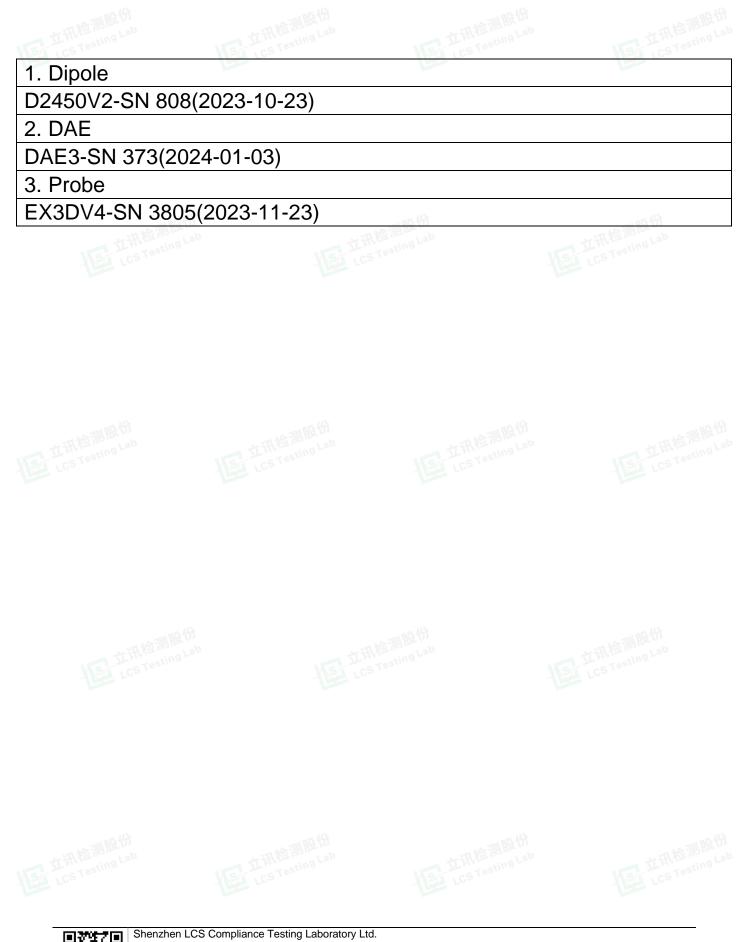
- Probe: EX3DV4 SN3805; ConvF(7.42, 7.42, 7.42); Calibrated: 2023/11/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated: 2024/1/3
- Phantom: SAM v5.0; Type: SAM; Serial: 1850
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

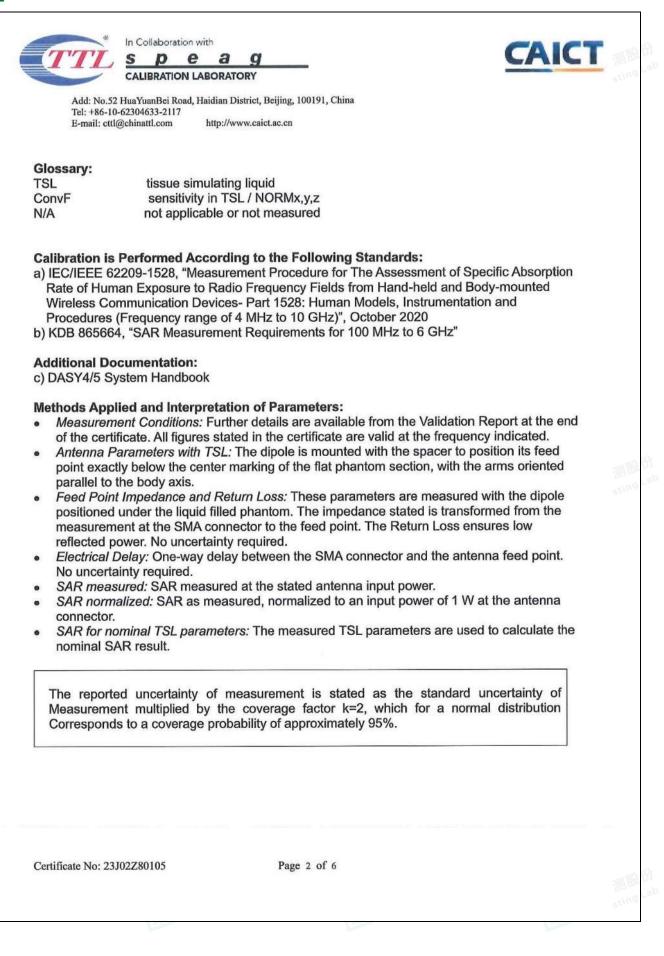

Configuration/Unnamed procedure/Area Scan (10x12x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.395 W/kg

Configuration/Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.159 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.618 W/kg

SAR(1 g) = 0.233 W/kg; SAR(10 g) = 0.091 W/kg


Maximum value of SAR (measured) = 0.408 W/kg



E-mail: cttl@chinattl.com Client SHEN	ad, Haidian District, http://www.cai IZHEN LCS	ct.ac.cn	J02Z80105
CALIBRATION CE			
Object	D2450\	/2 - SN: 808	
Calibration Procedure(s)		-003-01 tion Procedures for dipole validation kits	
Calibration date:	Octobe	r 23, 2023	
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	conducted in t	he closed laboratory facility: environment or calibration)	temperature (22±3)°C and
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	15-May-23 (CTTL, No.J23X04183)	May-24
Power sensor NRP6A	101369	15-May-23 (CTTL, No.J23X04183)	May-24
Reference Probe EX3DV4		31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430		Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24
	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	A MAN
Calibrated by:			TAK-86
Calibrated by: Reviewed by:	Lin Hao	SAR Test Engineer	
	Lin Hao Qi Dianyuan	SAR Test Engineer SAR Project Leader	-toR
Reviewed by: Approved by:	Qi Dianyuan		

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

In Collaboration with S p CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

a

g

e

Measurement Conditions

DASY system configuration, as far as not given on page 1.

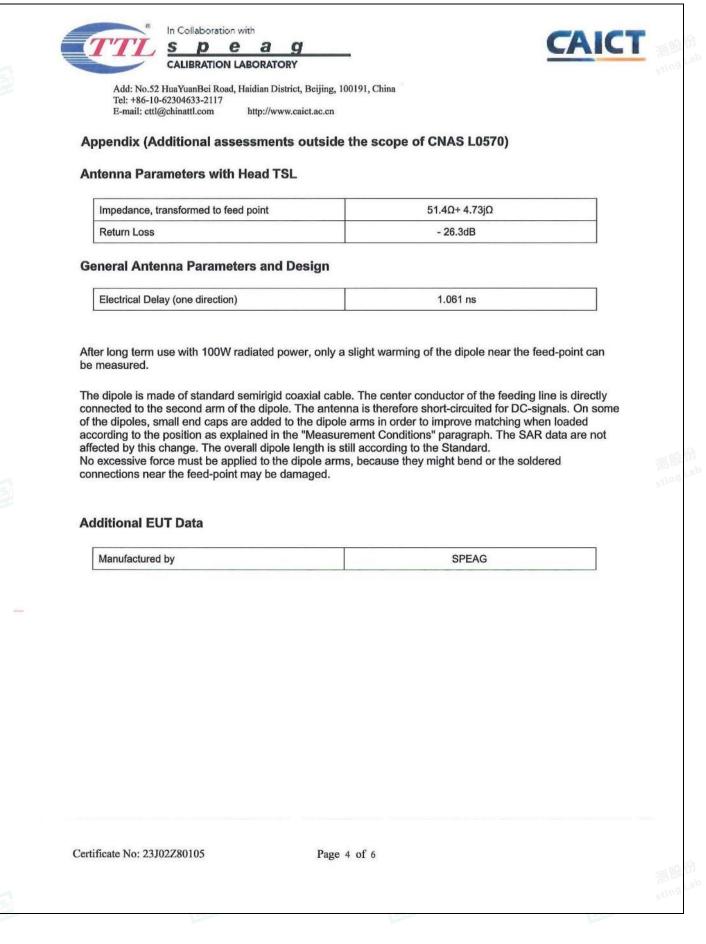
DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

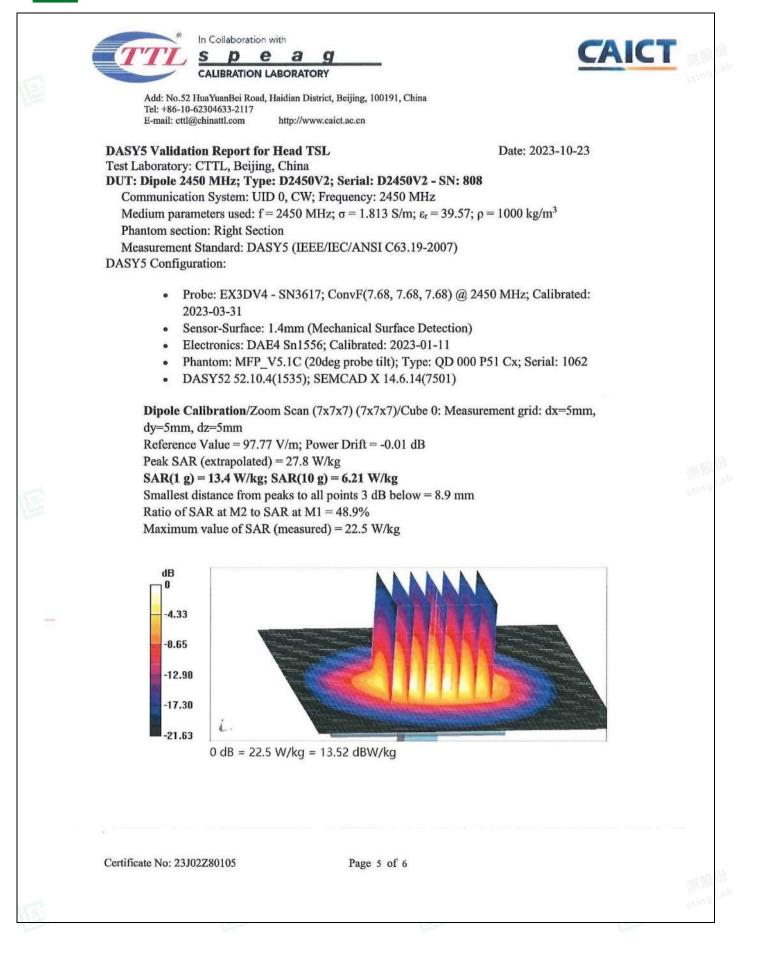
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

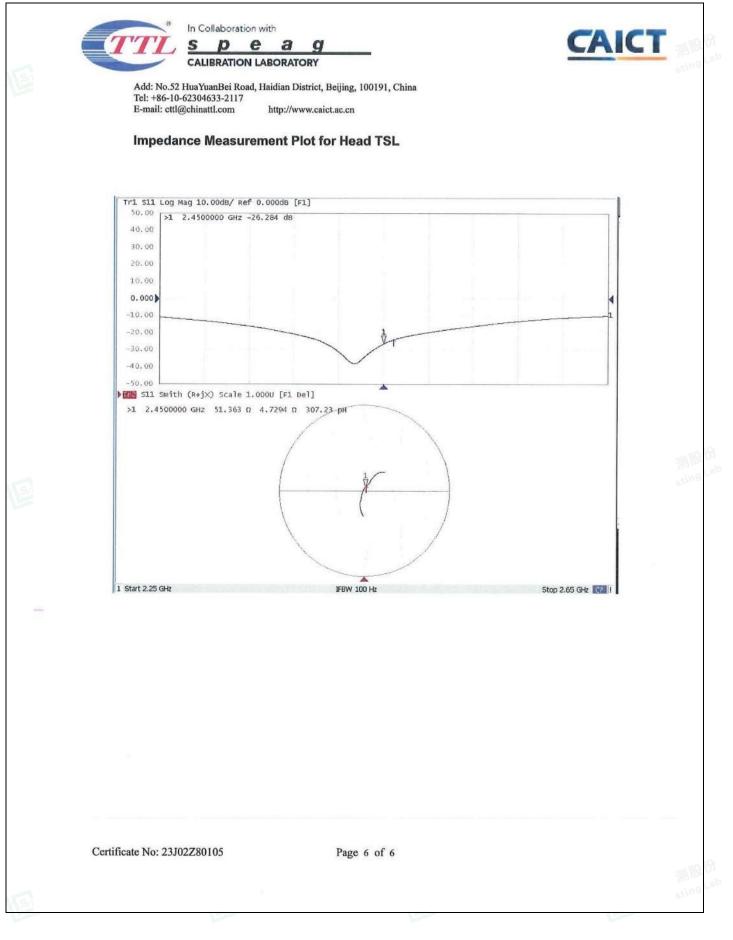
SAR result with Head TSL


SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.5 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 18.7 % (k=2)

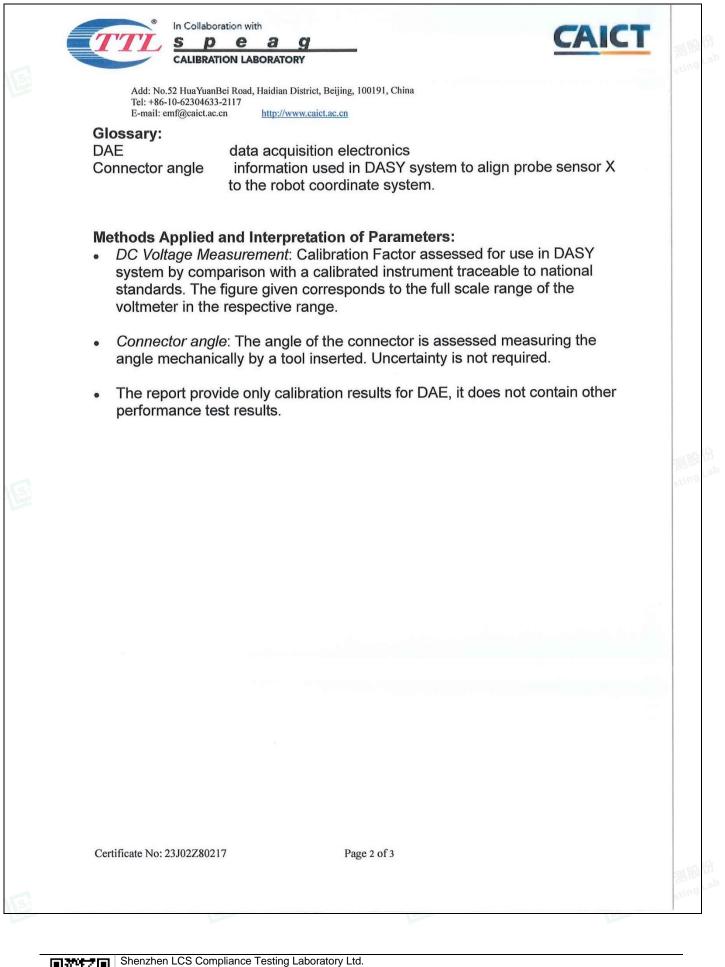
Certificate No: 23J02Z80105

Page 3 of 6

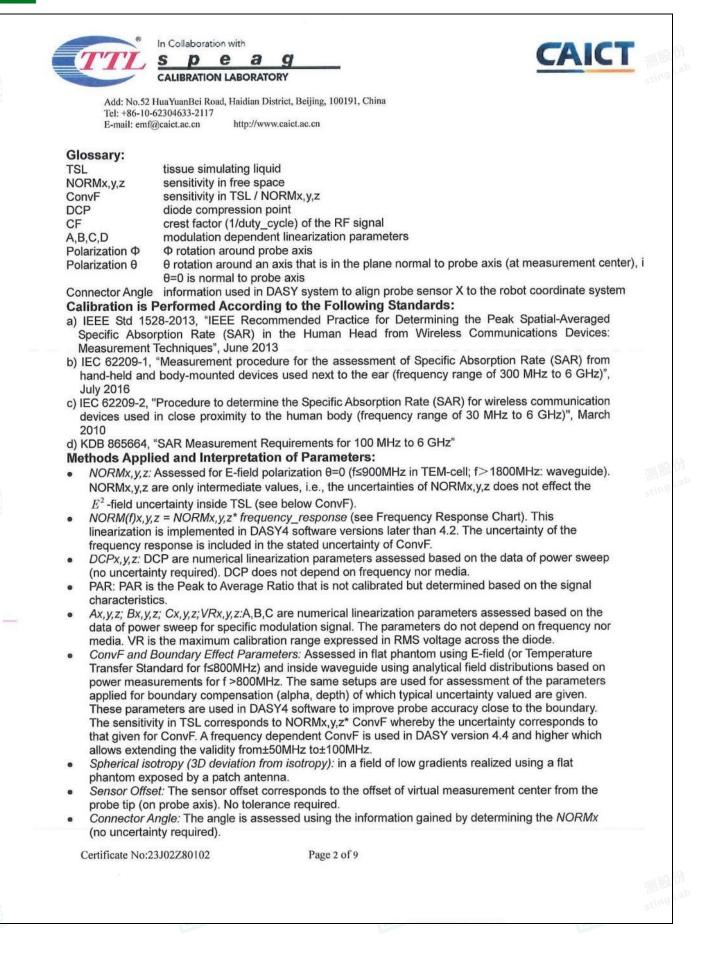




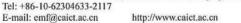
Scan code to check authenticity



	CERTIFICAT		
Object	DAE3 -	SN: 373	
Calibration Procedure(s)	FF-211-	002-01 ion Procedure for the Data /	Acquisition Electronics
Calibration date:	January	03, 2024	
measurements(SI). The pages and are part of th	measurements and t e certificate.	he uncertainties with confidence	Is, which realize the physical units of e probability are given on the following environment temperature(22±3)°C and
Calibration Equipment u	sed (M&TE critical fo	or calibration)	
Primary Standards	ID # Cal	Date(Calibrated by, Certificate	No.) Scheduled Calibration
Process Calibrator 753	1971018	12-Jun-23 (CTTL, No.J23X0543	36) Jun-24
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	2-nts
Reviewed by:	Lin Jun	SAR Test Engineer	mz
Approved by:	Qi Dianyuan	SAR Project Leader	dia
Approved by.			
	te shall not be reproc	luced except in full without writt	Issued: January 04, 2024 ten approval of the laboratory.



E-mail: emf@caict.ac.cn	http://www.caict.ac.c		0.00700400
Oliciti	ZHEN LCS		23J02Z80102
CALIBRATION CI	ERTIFICATE		
Object	EX3DV4 -	SN : 3805	
Calibration Procedure(s)	FF-Z11-00 Calibration	04-02 n Procedures for Dosimetric E-field Probes	
Calibration date:	November	r 23, 2023	
Calibration Equipment used (M8	TE critical for calibratio		
Primary Standards		al Date(Calibrated by, Certificate No.) Scheduled (
Power Meter NRP2 Power sensor NRP-Z91	101919 101547	12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435)	Jun-24 Jun-24
Power sensor NRP-Z91 Power sensor NRP-Z91	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 3846	31-May-23(SPEAG, No.EX-3846_May23)	May-24
DAE4	SN 1555	24-Aug-23(SPEAG, No.DAE4-1555_Aug23)	Aug-24
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-23(CTTL, No.J23X05434)	Jun-24
Network Analyzer E5071C	MY46110673	10-Jan-23(CTTL, No.J23X00104)	Jan-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator OCP DAK-3.5	BT0267 SN 1040	11-May-23(CTTL, No.J23X04062) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan/	May-25 23) Jan-24
		Function Signature	
Calibrated by:	Yu Zongying	SAR Test Engineer	0
Reviewed by:	Lin Hao	SAR Test Engineer	the
Approved by:	Qi Dianyuan	SAR Project Leader	362
This calibration certificate shall r	not be reproduced exce	Issued: Nove pt in full without written approval of the laboratory.	mber 28, 2023



Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3805

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.49	0.63	0.45	±10.0%
DCP(mV) ^B	101.4	97.7	101.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0 CW	X	0.0	0.0	1.0	0.00	169.0	±2.5%	
		Y	0.0	0.0	1.0		189.9	1
	Z	0.0	0.0	1.0		155.5	1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:23J02Z80102

Page 3 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3805

Calibration Parameter Determined in Head Tissue Simulating Media

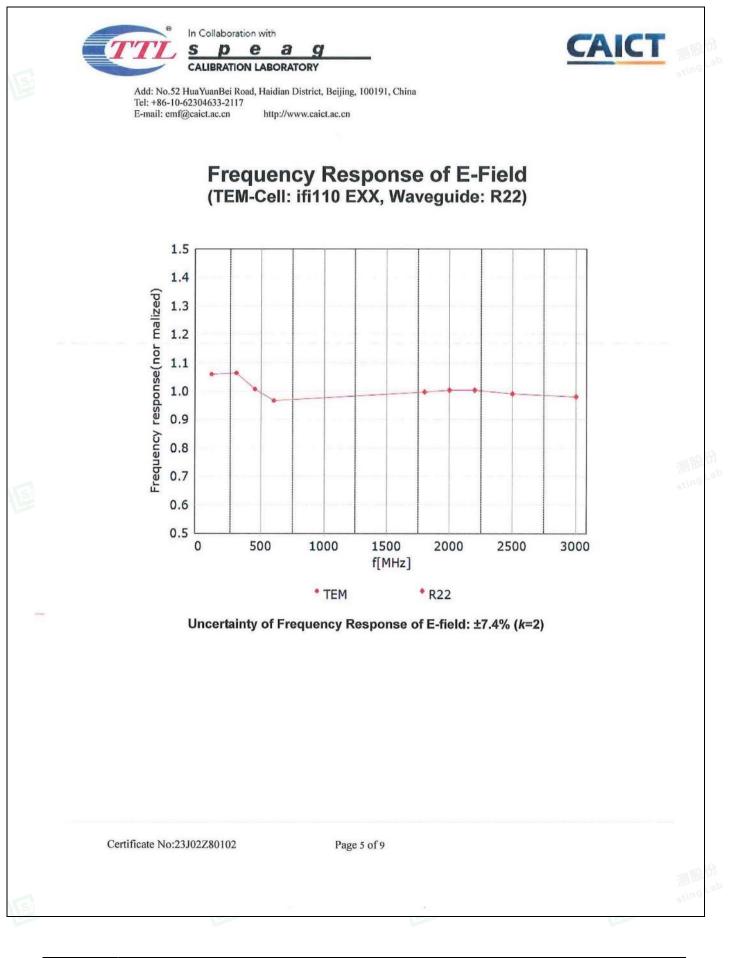
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	9.66	9.66	9.66	0.14	1.30	±12.7%
835	41.5	0.90	9.26	9.26	9.26	0.13	1.43	±12.7%
1750	40.1	1.37	8.16	8.16	8.16	0.23	1.09	±12.7%
1900	40.0	1.40	7.85	7.85	7.85	0.24	1.04	±12.7%
2000	40.0	1.40	7.83	7.83	7.83	0.22	1.13	±12.7%
2300	39.5	1.67	7.66	7.66	7.66	0.40	0.87	±12.7%
2450	39.2	1.80	7.42	7.42	7.42	0.36	0.94	±12.7%
2600	39.0	1.96	7.17	7.17	7.17	0.39	0.97	±12.7%
3300	38.2	2.71	7.01	7.01	7.01	0.47	0.90	±13.9%
3500	37.9	2.91	6.87	6.87	6.87	0.45	1.02	±13.9%
3700	37.7	3.12	6.65	6.65	6.65	0.35	1.25	±13.9%
3900	37.5	3.32	6.60	6.60	6.60	0.40	1.25	±13.9%
4100	37.2	3.53	6.54	6.54	6.54	0.40	1.15	±13.9%
4200	37.1	3.63	6.45	6.45	6.45	0.35	1.35	±13.9%
4400	36.9	3.84	6.36	6.36	6.36	0.40	1.25	±13.9%
4600	36.7	4.04	6.26	6.26	6.26	0.40	1.30	±13.9%
4800	36.4	4.25	6.20	6.20	6.20	0.40	1.38	±13.9%
4950	36.3	4.40	5.95	5.95	5.95	0.40	1.40	±13.9%
5250	35.9	4.71	5.38	5.38	5.38	0.40	1.50	±13.9%
5600	35.5	5.07	4.75	4.75	4.75	0.50	1.30	±13.9%
5750	35.4	5.22	4.88	4.88	4.88	0.45	1.40	±13.9%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

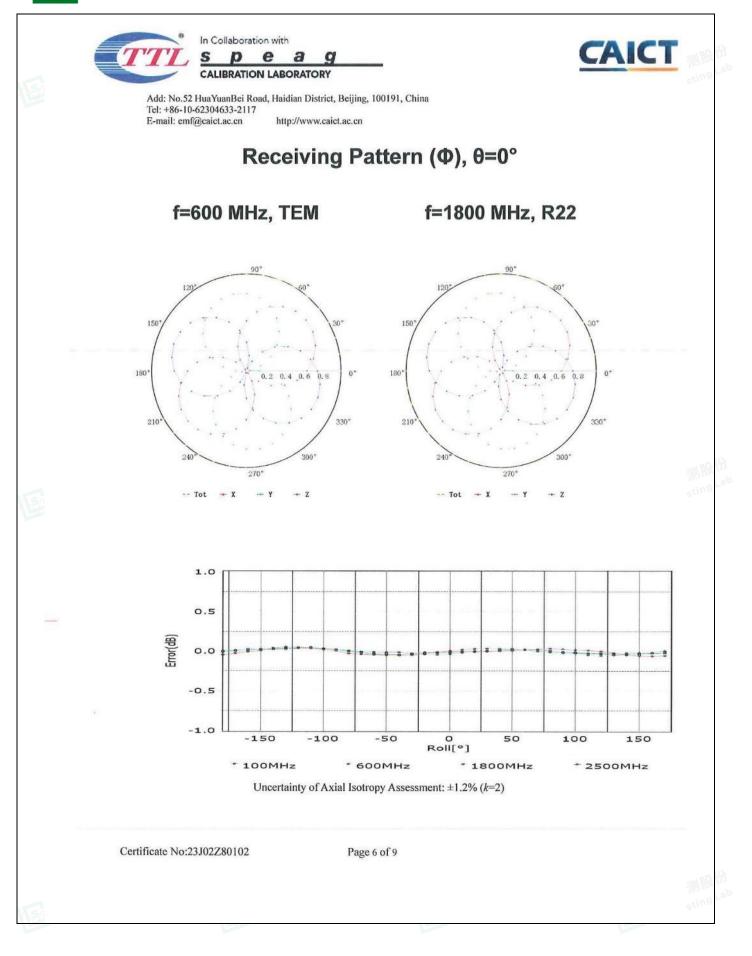
^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:23J02Z80102

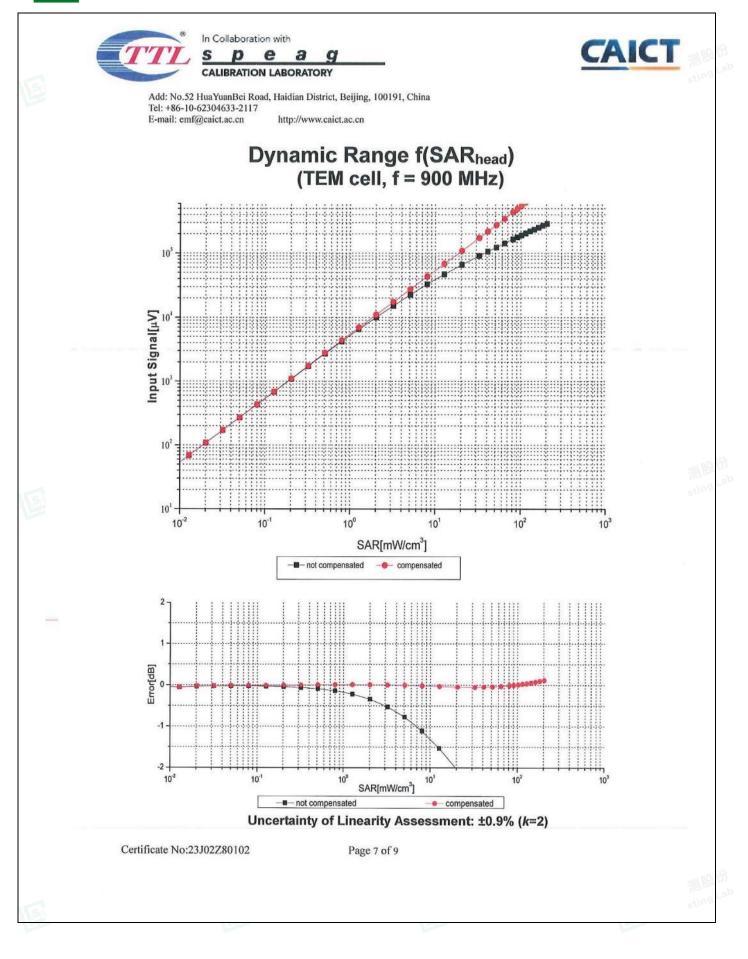

Page 4 of 9

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China


Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

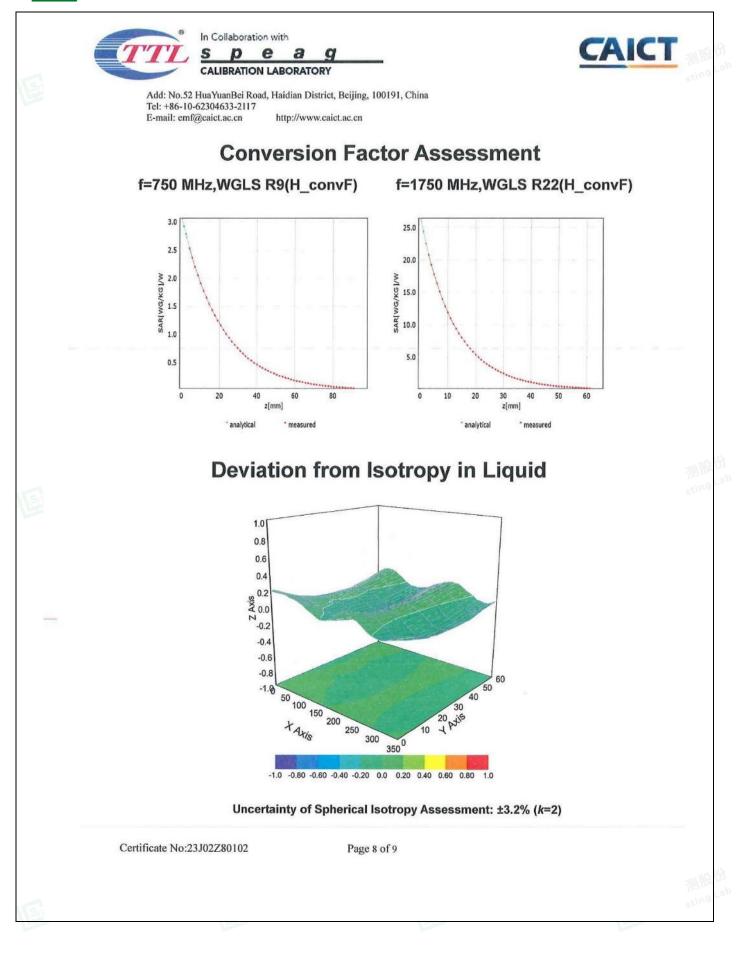
Page 52	of 61

Page	53	of	61

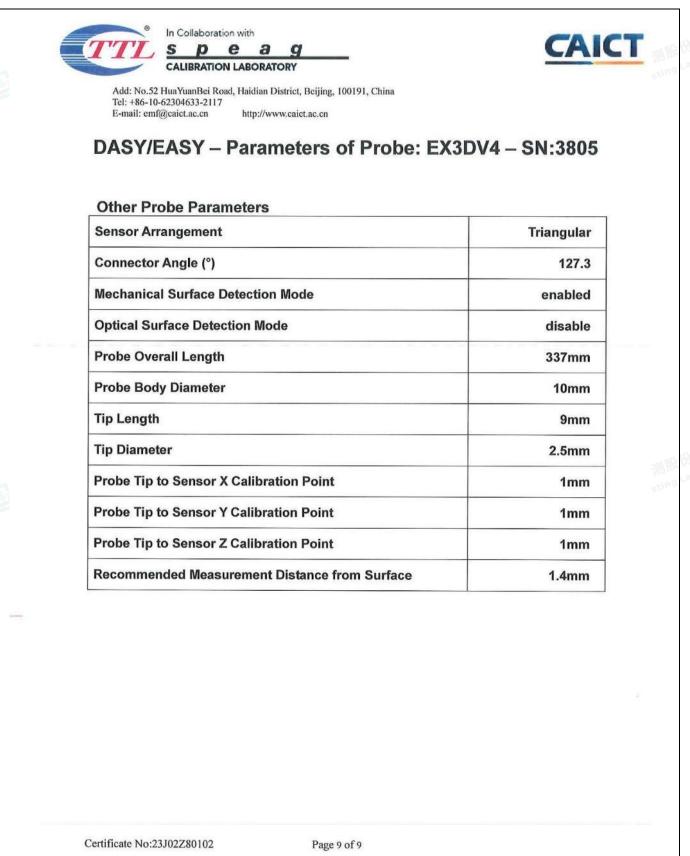


Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity



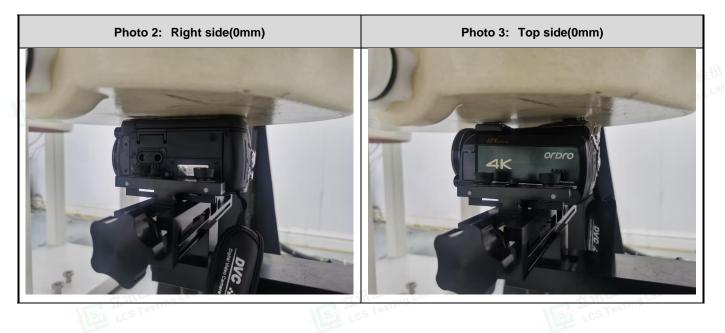
Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com


Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-Scan code to check authenticity

Page	55	of	61

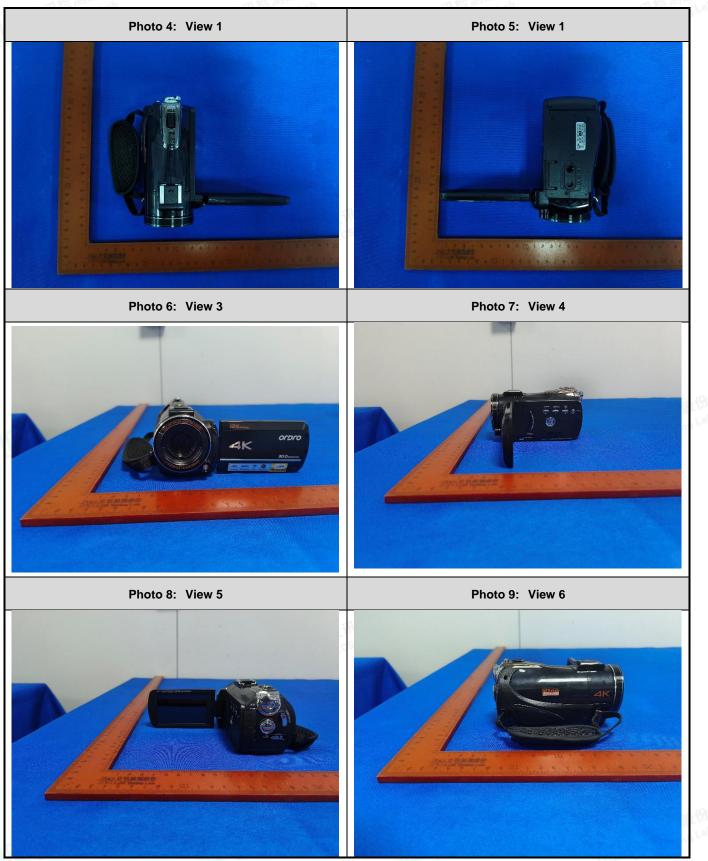
APPENDIX D: PHOTOGRAPHS

- 1. SAR measurement System
- 2. Photographs of Tissue Simulate Liquid
- 3. Photographs of EUT test position
- 4. EUT Constructional Details



2. Photographs of Tissue Simulate Liquid

3. Photographs of EUT test position



Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

4. EUT Constructional Details

