Uni⊛nTrust

FCC TEST REPORT

Product Name:	ORIGINAL III AM/FM RADIO &
	BLUETOOTH SPEAKER
Trade Mark:	MUZEN
Model No.:	R303I
Add. Model No.:	R303AI, R303BI, R303CI, R303DI
	R303EI, R303FI, R303GI, R303HI
	R303JI, R303KI, R303LI, R303MI
Report Number:	1807 8016RFC-1
Test Standards:	FCC 47 CFR Part 15 Subpart C
FCC ID:	2ALXL-R303I
Test Result:	PASS
Date of Issue:	October 30, 2018

Prepared for:

Shenzhen Airsmart Technology Co.,Ltd. Unit 616, Ant's Union Start-up Accelerator, No.9 Keji Road, Science and Technology Park, Nanshan District, Shenzhen, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	Zoryon Zheny	Reviewed by:	h
	Eason Zhong		Kevin Liang
			Assistant Manager
Approved by:	* Certi Bart	Date:	October 30, 2018
	Technical Director		

Version

Version No.	Date	Description
V1.0	October 30, 2018	Original

CONTENTS

1.	GENI	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT INFORMATION	
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES.	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	4
	1.4	OTHER INFORMATION	5
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	5
	1.7	TEST FACILITY	6
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	6
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	1.11	MEASUREMENT UNCERTAINTY	6
2.	TEST	SUMMARY	7
2. 3.	-	PMENT LIST	
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
	1.0	4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	-
	4.4	PRE-SCAN	
		4.4.1 PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL	
		4.4.2 WORST-CASE DATA PACKETS	
		4.4.3 TESTED CHANNEL DETAIL	
	4.5	Test setup 4.5.1 For Radiated Emissions test setup	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
	4.6	4.5.5 FOR CONDUCTED RETEST SETUP	
	4.7	DUTY CYCLE	
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	15
	5.1	REFERENCE DOCUMENTS FOR TESTING	15
	5.2	ANTENNA REQUIREMENT	
	5.3	CONDUCTED PEAK OUTPUT POWER	16
	5.4	20 dB BANdwidth	
	5.5	CARRIER FREQUENCIES SEPARATION	22
	5.6	NUMBER OF HOPPING CHANNEL	
	5.7	Dwell Time	
	5.8	CONDUCTED OUT OF BAND EMISSION	
	5.9	RADIATED SPURIOUS EMISSIONS	
	5.10	BAND EDGE MEASUREMENTS (RADIATED)	
	5.11	CONDUCTED EMISSION	48
		X 1 PHOTOS OF TEST SETUP	51
APF	PENDI	X 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Shenzhen Airsmart Technology Co.,Ltd.		
Address of Applicant:	Unit 616, Ant's Union Start-up Accelerator, No.9 Keji Road, Science and Technology Park, Nanshan District, Shenzhen, China		
Manufacturer:	: Shenzhen Airsmart Technology Co.,Ltd.		
Address of Manufacturer:	Unit 616, Ant's Union Start-up Accelerator, No.9 Keji Road, Science and Technology Park, Nanshan District, Shenzhen, China		

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	ORIGINAL III AM/FM RADIO & BLUETOOTH SPEAKER				
Model No.:	R303I	R303I			
Add. Model No.:	R303AI, R303BI, R303CI, R303DI R303EI, R303FI, R303GI, R303HI R303JI, R303KI, R303LI, R303MI				
Trade Mark:	MUZEN				
DUT Stage:	Production Unit				
EUT Supports Function:	2.4 GHz ISM Band: Bluetooth V4.0 (LE mode is not supported)				
Software Version:	6369				
Hardware Version:	R303-002-EQ				
Sample Received Date:	July 30, 2017				
Sample Tested Date:	August 7, 2018 to August 17, 2018				
Note: The test data is gathered from a production sample, provided by the manufacturer. The appearance of others models listed in the report is different from main-test model R303I, but the circuit and the electronic					

construction do not change, declared by the manufacturer.

1.2.2 Description of Accessories

None.

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2402 MHz to 2480 MHz		
Bluetooth Version:	Bluetooth EDR		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK		
Number of Channels:	79		
Channel Separation:	1 MHz		
Hopping Channel Type:	Adaptive Frequency Hopping Systems		
Antenna Type:	PCB Antenna		
Antenna Gain:	0 dBi		
Maximum Peak Power:	7.8 dBm		
Normal Test Voltage:	120V~60Hz		

1.4 OTHER INFORMATION

Operation Frequency Each of Channel

f = 2402 + k MHz, k = 0,...,78

Note:

f k is the operating frequency (MHz);

is the operating channel.

Modulation Configure					
Modulation	Modulation Packet Packet Type Packet Size				
	1-DH1	4	27		
GFSK	1-DH3	11	183		
	1-DH5	15	339		
	2-DH1	20	54		
π/4 DQPSK	2-DH3	26	367		
	2-DH5	30	679		
8DPSK	3-DH1	24	83		
	3-DH3	27	552		
	3-DH5	31	1021		

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust
Mobile phone	VIVO	X7	NA	UnionTrust
Earphone	STERED	ST-371	NA	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	USB Cable	N/A	0.5 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Page 6 of 51

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194 Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases				
Test Item	Test Requirement	Test Method	Result	
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	PASS	
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Section 6.2	PASS	
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.5	PASS	
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 6.9.2	PASS	
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.2	PASS	
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.3	PASS	
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.4	PASS	
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8	PASS	
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS	
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.10.5	PASS	

3. EQUIPMENT LIST

		Radiated Er	nission Test E	Equipment List		
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018
v	Receiver	R&S	ESIB26	100114	Dec. 10, 2017	Dec. 10, 2018
>	Loop Antenna	ETS-LINDGREN	6502	00202525	Dec. 22, 2017	Dec. 22, 2018
>	Broadband Antenna ETS-LINDGF		3142E	00201566	Dec. 17, 2017	Dec. 17, 2018
>	Preamplifier HP		8447F	2805A02960	Dec. 10, 2017	Dec. 10, 2018
2	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019
٢	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Dec. 17, 2017	Dec. 17, 2018
Y	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	June 06, 2018	June 06, 2019
	Wideband Radio Communication Tester	R&S	CMW500	116254	June 07, 2018	June 07, 2019
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

ſ		Conducted Emission Test Equipment List														
	Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)									
	K	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 10, 2017	Dec. 10, 2018									
ſ	<	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Dec. 10, 2017	Dec. 10, 2018									
Γ	K	LISN	R&S	ESH2-Z5	860014/024	Dec. 10, 2017	Dec. 10, 2018									
		LISN	ETS-Lindgren	3816/2SH	00201088	Dec. 10, 2017	Dec. 10, 2018									
	<	Test Software	Audix	e3	Sof	tware Version: 9.16	0323									

	Conducted RF test Equipment List													
Used	Equipment	Manufacturer	Model No. Serial Number		Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)								
K	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec.10, 2017	Dec. 10, 2018								
R	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 10, 2017	Dec. 10, 2018								
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 10, 2017	Dec. 10, 2018								
	Wideband Radio Communication Tester	deband Radio R&S mmunication		116254	June 07, 2018	June 07, 2019								

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	S	elected Values During T	ests						
Test Condition	Ambient								
Test Condition	Temperature (°C)	Voltage	Relative Humidity (%)						
NT/NV	+15 to +35	120V~60Hz	20 to 75						
Remark: 1) NV: Normal Voltage; NT: Normal Temperature									

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by
AC Power Line Conducted Emission	25.4	46	100.11	Gemini Huang
Conducted Peak Output Power	24.8	48	103.5	Fire Huo
20 dB Bandwidth	24.8	48	103.5	Fire Huo
Carrier Frequencies Separation	24.8	48	103.5	Fire Huo
Number of Hopping Channel	24.8	48	103.5	Fire Huo
Dwell Time	24.8	48	103.5	Fire Huo
Conducted Out of Band Emission	24.8	48	103.5	Fire Huo
Radiated Emissions	25.4	46	100.11	Andy Lin
Band Edge Measurement	24.8	48	103.5	Andy Lin

4.2TEST CHANNELS

Mode	Tx/Rx Frequency	Test RF Channel Lists					
Wode	TANKATTequency	Lowest(L)	Middle(M)	Highest(H)			
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz			
π/4DQPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz			
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz			

4.3EUT TEST STATUS

Type of Modulation	Tx Function	Description						
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency. 						

Power Setting

Power Setting: not applicable, test used software default power level.

Test Software

Test software name: Blue Test 3;

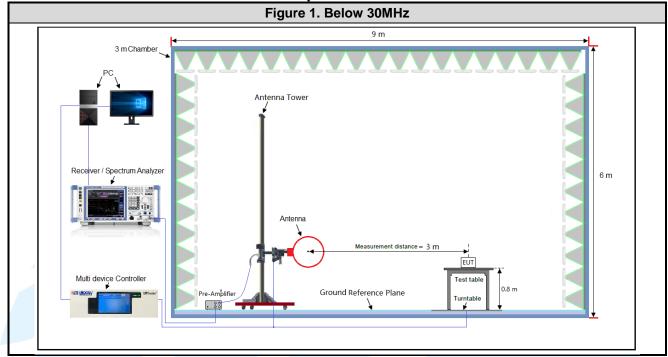
4.4 PRE-SCAN

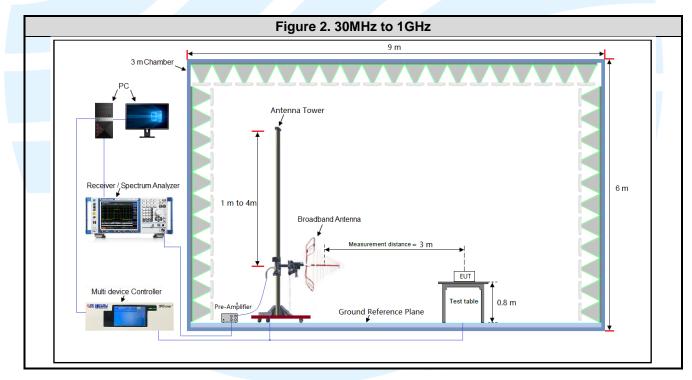
4.4.1 Pre-scan under all packets at middle channel

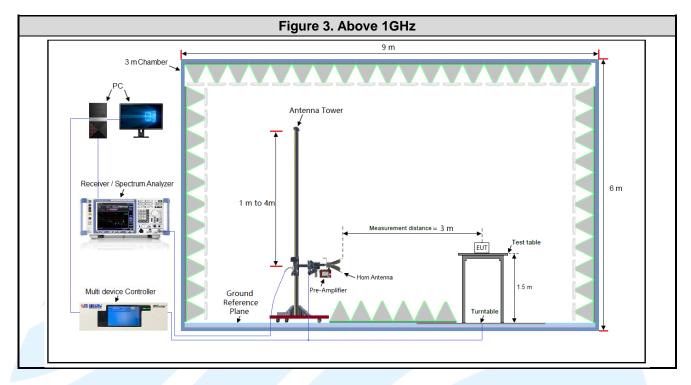
Conducted Average Power (dBm) for packets									
Type of Modulation	GFSK			π/4DQPSK			8DPSK		
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5
Power (dBm)	-2.36	0.14	0.88	-2.67	0.10	0.73	-2.67	0.08	0.69

4.4.2 Worst-case data packets

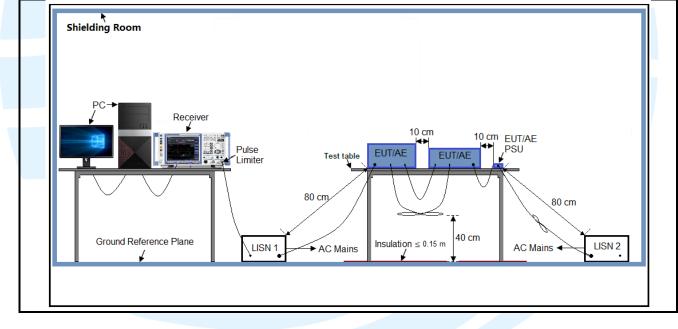
Type of Modulation	Worst-case data rates
GFSK	1-DH5
π/4DQPSK	2-DH5
8DPSK	3-DH5

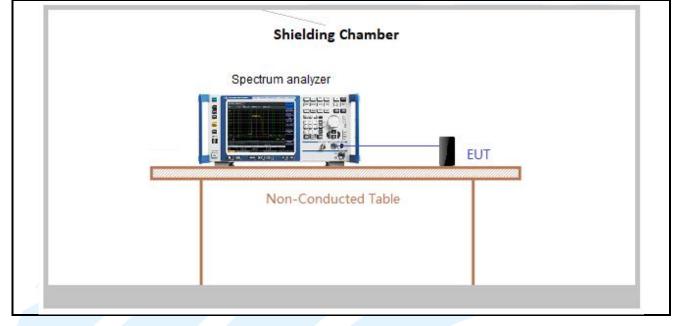

4.4.3 Tested channel detail


Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.


Type of Modulation		GFSK		Π	r/4DQPS	K		8DPSK			
Data Packets	1- DH1	1- DH3	1- DH5	2- DH1	2- DH3	2- DH5	3- DH1	3- DH3	3- DH5		
Available Channel					0 to 78						
Test Item			Test cha	nnel and	d choose	e of data	packets	;			
AC Power Line Conducted			Freq	uency Ho	opping Cl	nannel 0	to 78				
Emission					Link						
Conducted Peak Output				Chanr	nel 0 & 39	9 & 78					
Power			N			K			>		
20 dB Bandwidth				Chanr	nel 0 & 39	9 & 78					
20 dB Bandwidth			<			•			▼		
Carrier Frequencies		Frequency Hopping Channel 0 to 78									
Separation			•						V		
Number of Henning Channel	Frequency Hopping Channel 0 to 78										
Number of Hopping Channel			K			K			>		
Dwell Time				C	hannel 3	9					
Dweir Time	<	<	K	K	S	<	<		>		
Conducted Out of Band				Chanr	nel 0 & 39	9 & 78					
Emission			<			•			>		
Radiated Emissions				Chanr	nel 0 & 39	9 & 78					
Radiated Emissions			•								
Band Edge Measurements				Cha	annel 0 8	78					
(Radiated)			•								
Remark: 1. The mark " I " means is chos 2. The mark "□" means is not		•].								

4.5TEST SETUP


4.5.1 For Radiated Emissions test setup



4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 120V AC power supply. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

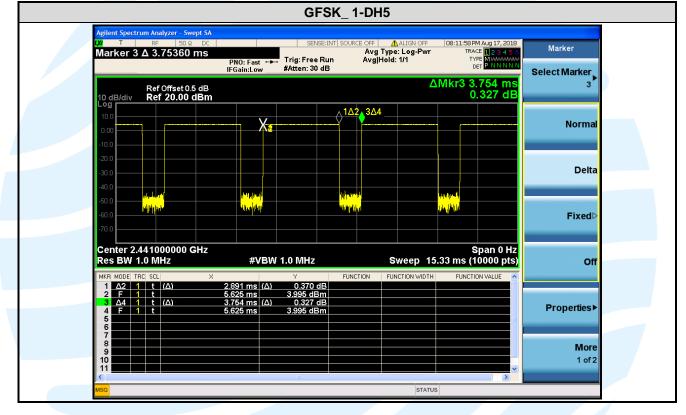
Frequency	Mode	Antenna Port	Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	Y axis	

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.


Test Results

Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1-DH1	2.891	3.754	0.77	77.01	1.13	0.35	-2.27

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title			
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations			
2	FCC 47 CFR Part 15	Radio Frequency Devices			
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices			

5.2ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

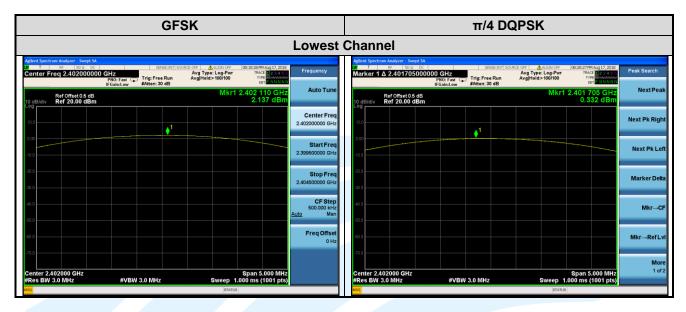
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 0 dBi.

Page 16 of 51


5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: Test Method: Limit:	 FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1) ANSI C63.10-2013 Section 7.8.5 For frequency hopping systems operating in the 2400-2483.5 MHz band employing a least 75 non-overlapping hopping channels, and all frequency hopping systems in th 5725-5850 MHz band: 1 watt. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band ma have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the system 						
Test Procedure:	operate with an output power no greater than 125 mW. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.						
	 a) Use the following spectrum analyzer settings: Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel. RBW > 20 dB bandwidth of the emission being measured. VBW ≥ RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold. 						
	 b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. 						
Toot Satura	e) A plot of the test results and setup description shall be included in the test report. Refer to section 4.5.3 for details.						
Test Setup:							
Instruments Used:	Refer to section 3 for details						
Test Mode:	Transmitter mode						
Test Results:	Pass						
Test Data:							

Type of	Peak	Output Power (dBm)	Peak Output Power (mW)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	0.72	4.81	7.80	1.18	3.03	6.03	
π/4 DQPSK	0.33	4.12	-12.09	1.08	2.58	0.06	
8DPSK	0.73	4.29	-12.11	1.18	2.69	0.06	

Note: The antenna gain of 0 dBi less than 6dBi maximum permission antenna gain value based on 125mW peak output power limit.

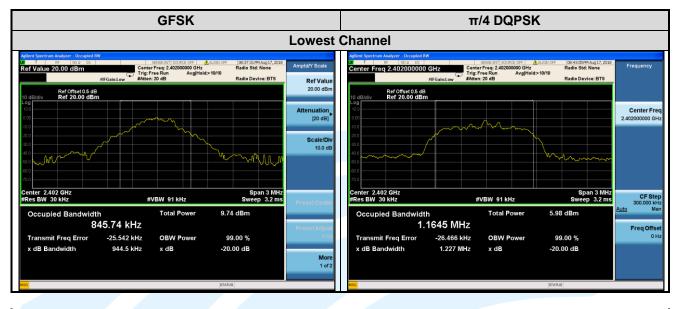
The test plot as follows:

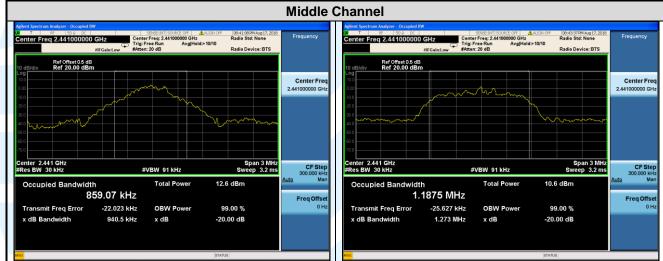
	Middle Channel											
glient Spectrum Analyzer - Swept SA T RF S0 2 DC Aarker 1 Δ 2.440830000000 IPI IPI		URCE OFF ALIGN OFF 08:2 Avg Type: Log-Pwr Avg Hold>100/100	20:50 PM Aug 17, 2018 TRACE 2 3 4 5 6 TYPE MWWWWW OET P.N.N.N.N.N	Peak Search	LXI T	rum Analyzer - Swept RF 50 ♀ 1 ▲ 2.4408150		Trig: Free Run	SOURCE OFF ALIG Avg Type: Lo Avg[Hold>100	N OFF 08:28: g-Pwr /100	56 PM Aug 17, 2018 TRACE 2 3 4 5 6 TYPE MUMUMUM DET P. N.N.N.N.N	Peak Search
Ref Offset 0.5 dB		Mkr1 2.4	40 830 GHz 4.808 dBm	NextPeak	10 dB/div	Ref Offset 0.5 d Ref 20.00 dB	dB 3m			Mkr1 2.44	0 815 GHz .119 dBm	NextPe
	·····			Next Pk Right	10.0			1				Next Pk Rig
-10.0				Next Pk Left	-10.0							Next Pk L
-20.0				Marker Delta	-20.0							Marker D
-40.0				Mkr→CF	-40.0							Mkr
-60.0				Mkr→RefLvl	-60.0							Mkr→Ref
Center 2.441000 GHz		Sp	an 5.000 MHz	More 1 of 2	Center 2	.441000 GHz				Spa	n 5.000 MHz	M 1
#Res BW 3.0 MHz	#VBW 3.0 MHz	Sweep 1.000				3.0 MHz	#V	BW 3.0 MHz	Swe	ep 1.000 m	is (1001 pts)	

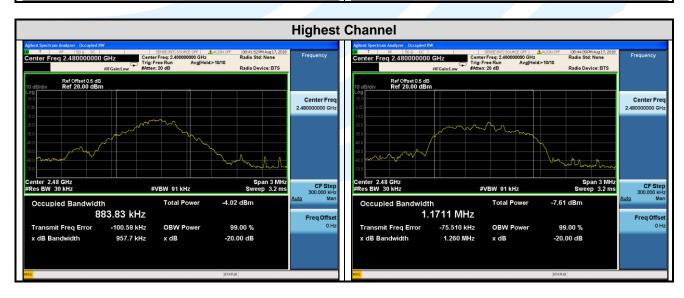
8DPSK					
Lowest	Channel	Middle Cha	annel		
Aglent Southan Audyor Singl 54 Control 100 CONTROL Southan So	Avg Type: Leg-Pur AvgType: Leg-Pur AvgHeid>100100 Text: Deg-pur Text: Deg-	Aldren Swetten Andreas Swep 55 30 To The State of the St	Action of the second		
100	Next Pk Rigt		Next Pk Right		
-10.0	Next Pk Le	10.0	Next Pk Left		
30.0	Marker Del	-20.0	Marker Delta		
40.0	MkrC	40.0	Mkr→CF		
60.0	Mkr—Ref L	60.0	Mkr→RefLvi		
Center 2.402000 GHz #Res BW 3.0 MHz #VBW 3.0 MHz	Span 5.000 MHz 1 of Sweep 1.000 ms (1001 pts)	Center 2.441000 GHz #Res BW 3.0 MHz #VBW 3.0 MHz	More Span 5.000 MHz 1 of 2 Sweep 1.000 ms (1001 pts)		

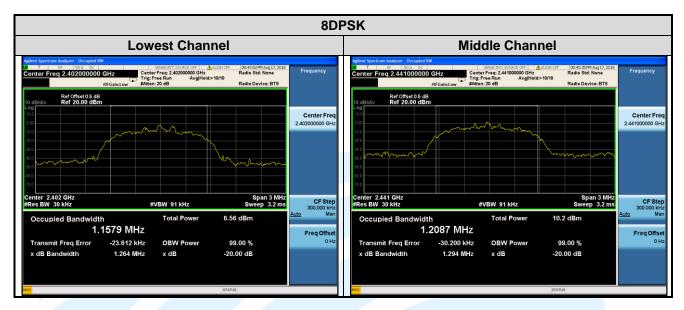
Highest Channel								
Peak Search	08:34:45PM Aug 17, 2018 TRACE 234 5 G TYPE MUMANIN DET PNNNNN	ALIGN OFF be: Log-Pwr d>100/100	Avg T	ee Run		00 GHz PNO: Fast G IFGain:Low	um Analyzer - Swept SA RE 50 ♀ DC ▲ 2.4797900000	UXU T
Next Pea	2.479 790 GHz -12.109 dBm	Mkr1					Ref Offset 0.5 dB Ref 20.00 dBm	10 dB/div
Next Pk Rig								10.0
Next Pk Le					↓ ¹			0.00 -10.0
Marker De								-20.0
Mkr→G								-40.0
Mkr→RefL								-50.0
Mo 1 ol								-70.0
1 0	Span 5.000 MHz .000 ms (1001 pts)	Sweep 1		z	/ 3.0 MHz	#VBW	480000 GHz 3.0 MHz	Center 2.4 #Res BW

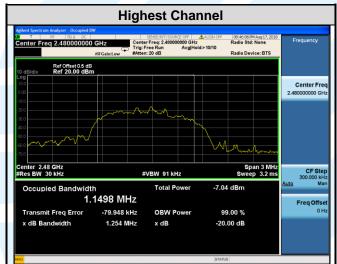
Test Data:

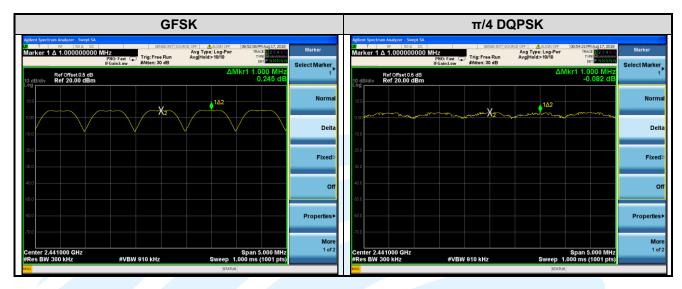

Page 19 of 51


5.420 DB BANDWIDTH


Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)							
Test Method:	NSI C63.10-2013 Section 6.9.2							
Limit:	one; for reporting purposes only.							
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:							
	 a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel. b) RBW = 1% to 5% of the OBW. c) VBW ≥ 3 x RBW d) Sweep = auto; e) Detector function = peak f) Trace = max hold g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission. 							
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.							
Test Setup:	Refer to section 4.5.3 for details.							
Instruments Used:	Refer to section 3 for details							
Test Mode:	Transmitter mode							
Test Results:	Pass							


Type of 20 dB Bandwi			/IHz)	99% Bandwidth (MHz)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	0.9445	0.9405	0.9577	0.8457	0.8571	0.8838	
π/4 DQPSK	1.227	1.273	1.260	1.164	1.187	1.171	
8DPSK	1.264	1.294	1.254	1.157	1.208	1.150	


The test plot as follows:


Page 22 of 51

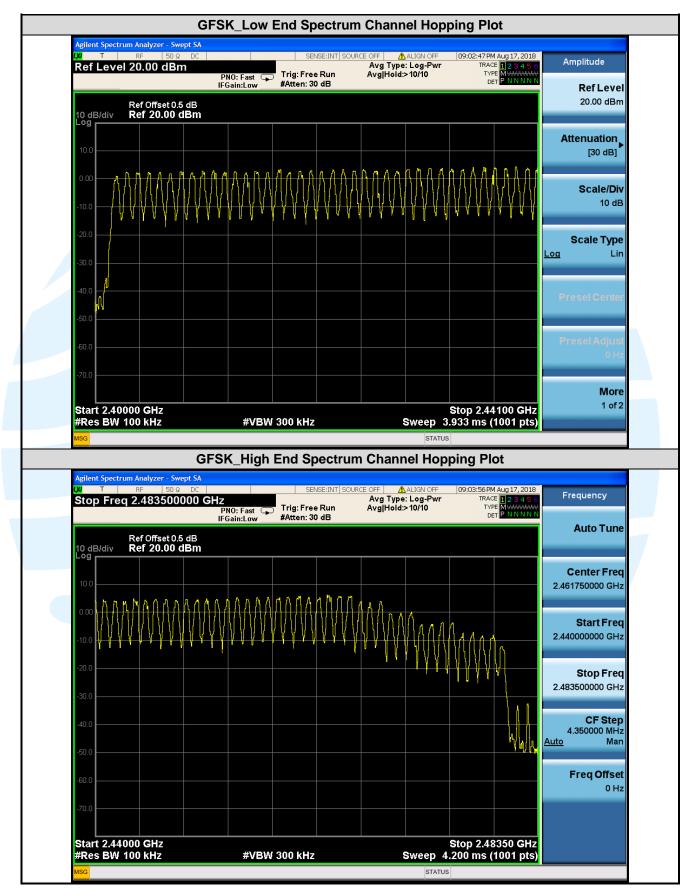
5.5CARRIER FREQUENCIES SEPARATION

Test Requirement: Test Method: Limit: Test Procedure:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 Section 7.8.2 Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:
	 a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels.
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Hopping Frequencies Transmitter mode
Test Results:	Pass
Test Data:	

Type of Modulation	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)			
Type of Modulation	Channel 39	Channel 39			
GFSK	1.000	0.6271			
π/4 DQPSK	1.000	0.8484			
8DPSK	1.000	0.8626			
Note: The minimum limit is two-third 20 dB bandwidth.					

The test plot as follows:

		8D	PSK		
Agilent Spect	rum Analyzer - Swept SA				
Marker 1	RF 50 Q DC		SOURCE OFF ALIGN OFF Avg Type: Log-Pwr Avg[Hold>10/10	08:59:38 PM Aug 17, 2018 TRACE 2 3 4 5 6 TYPE M 0000000 OET P N N N N N	Marker Select Marke
10 dB/div	Ref Offset 0.5 dB Ref 20.00 dBm		Δ	Mkr1 1.000 MHz -0.236 dB	Geneermarke
10.0		X	1Δ2		Norm
-10.0					De
-20.0					Fixe
-40.0					,
-60.0					Propertie
Center 2. #Res BW	441000 GHz	#VBW 910 kHz		Span 5.000 MHz 1.000 ms (1001 pts)	М с 1 с


Page 24 of 51

5.6 NUMBER OF HOPPING CHANNEL

FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)						
ANSI C63.10-2013 Section 7.8.3						
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.						
Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:						
a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation						
 across multiple spans, to allow the individual channels to be clearly seen. b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. 						
Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.						
Refer to section 4.5.3 for details.						
Refer to section 3 for details						
Hopping Frequencies Transmitter mode						
Pass						

Type of Modulation	Number of Hopping Channel
GFSK	79
π /4 DQPSK	79
8DPSK	79

The test plot as follows:

