

Page 1 of 44

FCC TEST REPORT

Product Name:	Wireless Sport Earbuds		
Trade Mark:	INSIGNIA		
Model No.:	NS-AHBTSPORT2		
HVIN:	NSAHBT2		
Report Number:	180207001RFC-1		
Test Standards:	FCC 47 CFR Part 15 Subpart C		
	RSS-247 Issue 2 RSS-Gen Issue 4		
FCC ID:	2ALVK-NSAHBT2		
IC:	11136A-NSAHBT2		
Test Result:	PASS		
Date of Issue:	March 6, 2018		

Prepared for:

Cosonic Intelligent Technologies Co.,Ltd. 5th Floor,1st Building,No.6 South Industry Road Songshan Lake Hitech Industrial Development Zone

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	Henry Lu	Reviewed by:	Kevin Liang
	Engineer		Team Leader
Approved by:	Jim Long Jim Long Assistant Manager	Date:	Unaich 6.720181

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No. 1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886

 E-mail: info@uttlab.com
 Http://www.uttlab.com

Version

Version No.	Date	Description
V1.0	March 6, 2018	Original

CONTENTS

1.	GENE	ERAL INFORMATION	4
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11	CLIENT INFORMATION	4 4 4 4 5 5 5 6 6 6 6 6
2. 3. 4.	TEST	SUMMARY PMENT LIST	7 8
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Environmental conditions for testing	9 9 9 10 10 10 11 11 11 12 12 13
5.	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	O TECHNICAL REQUIREMENTS SPECIFICATION	14 15 18 21 23 27 31 36 40
AP AP	PENDI PENDI	X 1 PHOTOS OF TEST SETUP X 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	43 44

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Cosonic Intelligent Technologies Co.,Ltd.		
Address of Applicant:	5th Floor,1st Building,No.6 South Industry Road Songshan Lake Hi-tech Industrial Development Zone		
Manufacturer:	Cosonic Intelligent Technologies Co.,Ltd.		
Address of Manufacturer:	dress of Manufacturer: 5th Floor,1st Building,No.6 South Industry Road Songshan Lake Hi-tech Industrial Development Zone		

1.2EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Wireless Sport Earbuds	
Model No.:	NS-AHBTSPORT2	
Trade Mark:	INSIGNIA	
DUT Stage:	Identical Prototype	
EUT Supports Function:	2.4 GHz ISM Band:	Bluetooth V4.1+EDR
Software Version:	V1.1	
Hardware Version:	V0.16	
Sample Received Date:	February 27, 2018	
Sample Tested Date:	February 27, 2018 to M	arch 1, 2018

1.2.2 Description of Accessories

Battery			
Trade Mark:	VDL		
Model No.:	551419		
Battery Type:	Lithium-ion Polymer Rechargeable Battery		
Rated Voltage:	3.7 Vdc		
Rated Capacity:	100 mAh		

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Range:	2400 MHz to 2483.5 MHz	
Bluetooth Version:	Bluetooth V4.1+EDR	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK	
Number of Channels:	79	
Channel Separation:	1 MHz	
Hopping Channel Type:	Adaptive Frequency Hopping Systems	
Antenna Type:	Ceramic Antenna	
Antenna Gain:	2.5 dBi	
Maximum Peak Power:	4.53 dBm	
Normal Test Voltage:	3.7 Vdc	

1.40THER INFORMATION

Operation Frequency Each of Channel

f = 2402 + k MHz, k = 0,...,78

Note: f

k

is the operating frequency (MHz);

is the operating channel.

Modulation Configure				
Modulation	Modulation Packet Packet Type Packet Size		Packet Size	
	1-DH1	4	27	
GFSK	1-DH3	11	183	
	1-DH5	15	339	
	2-DH1	20	54	
π/4 DQPSK	2-DH3	26	367	
	2-DH5	30	679	
	3-DH1	24	83	
8DPSK	3-DH3	27	552	
	3-DH5	31	1021	

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.3 Meter	UnionTrust
2	USB Cable	USB	0.5 Meter	UnionTrust

1.6TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Page 6 of 44

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194 Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases								
Test Item	Test Requirement	Test Method	Result					
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c) RSS-Gen Issue 4, Section 8.3	ANSI C63.10-2013	PASS					
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207 RSS-Gen Issue 4, Section 8.8	ANSI C63.10-2013	N/A ^(See Note 1, 2)					
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1) RSS-247 Issue 2, Section 5.4(b)	ANSI C63.10-2013	PASS					
20 dB Bandwidth FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(a)		ANSI C63.10-2013	PASS					
Occupied Bandwidth	RSS-Gen section 6.6	RSS-Gen section 6.6	PASS					
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(b)	ANSI C63.10-2013	PASS					
Number of Hopping Channel	Number of Hopping FCC 47 CFR Part 15 Subpart C Section		PASS					
Dwell Time	FCC 47 CFR Part 15 Subpart C Section		PASS					
Pseudorandom Frequency Hopping Sequence	FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1)(g)(h) RSS-247 Issue 2, Section 5.1	ANSI C63.10-2013	PASS					
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d) RSS-247 Issue 2, Section 5.5	ANSI C63.10-2013	PASS					
Radiated EmissionsFCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-Gen Issue 4, Section 6.13/8.9/8.10		ANSI C63.10-2013	PASS					
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-247 Issue 2, Section 5.5	ANSI C63.10-2013	PASS					
Note: 1) N/A: In this whole rep	ort not application.							

N/A: In this whole report not application.
 Bluetooth does not work in charging mode.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List									
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
2	3M Chamber & Accessory Equipment	ETS-LINDGREN	ЗM	N/A	Dec. 20, 2015	Dec. 19, 2018				
>	Receiver	R&S	ESIB26	100114	Dec. 10, 2017	Dec. 10, 2018				
>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec.17, 2017	Dec. 17, 2018				
>	Preamplifier	HP	8447F	2805A02960	Dec.10, 2017	Dec. 10, 2018				
>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Dec. 17, 2017	Dec. 17, 2018				
Y	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A				
2	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248 Jun. 21, 2017		Jun. 20, 2018				
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323				

	Conducted Emission Test Equipment List									
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 10, 2017	Dec. 10, 2018				
>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Dec. 10, 2017	Dec. 10, 2018				
2	LISN	R&S	ESH2-Z5	860014/024	Dec. 10, 2017	Dec. 10, 2018				
	Test Software	Audix	e3	Software Version: 9.160323						

	Conducted RF test Equipment List									
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
•	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 10, 2017	Dec. 10, 2018				
>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 10, 2017	Dec. 10, 2018				
•	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 10, 2017	Dec. 10, 2018				

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests							
Test Condition	Ambient							
Test Condition	Temperature (°C)	Temperature (°C) Voltage (V)						
NT/NV	+15 to +35	3.7	20 to 75					
Remark: 1) NV: Normal Voltage; NT: Normal Temperature								

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by
AC Power Line Conducted Emission	23	47	101.2	Fire huo
Conducted Peak Output Power	23	47	101.2	Fire huo
20 dB Bandwidth	23	47	101.2	Fire huo
Carrier Frequencies Separation	23	47	101.2	Fire huo
Number of Hopping Channel	23	47	101.2	Fire huo
Dwell Time	23	47	101.2	Fire huo
Conducted Out of Band Emission	23	47	101.2	Fire huo
Radiated Emissions	23	47	101.2	Fire huo
Band Edge Measurement	23	47	101.2	Fire huo

4.2TEST CHANNELS

Mode	Tx/Rx Frequency	Т	est RF Channel Lis	Lists		
wode	TX/KX Frequency	Lowest(L)	Middle(M)	Highest(H)		
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz		
π/4DQPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz		
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz		

4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description
GFSK/π/4DQPSK/	1Tx	1. Keep the EUT in continuously transmitting with Modulation test single
8DPSK		 Keep the EUT in continuously transmitting with Modulation test Hopping Frequency.

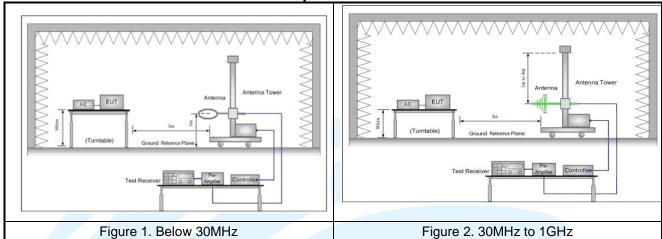
4.4 PRE-SCAN

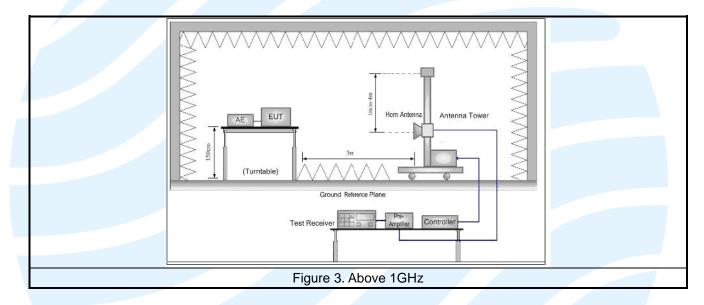
4.4.1 Pre-scan under all packets at middle channel

Conducted Average Power (dBm) for packets									
Type of Modulation	GFSK			π/4DQPSK			8DPSK		
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5
Power (dBm)	-1.65	-1.23	1.22	-1.61	-0.68	1.17	-1.55	-0.71	1.57

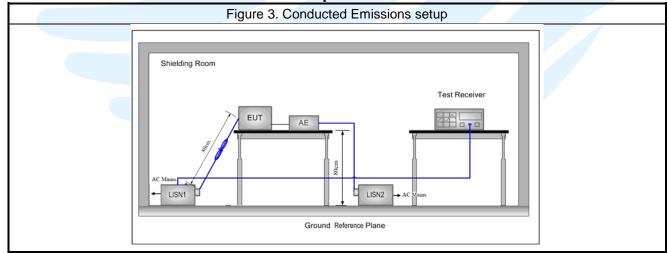
4.4.2 Worst-case data packets

Type of Modulation	Worst-case data rates		
GFSK	1-DH5		
π/4DQPSK	2-DH5		
8DPSK	3-DH5		

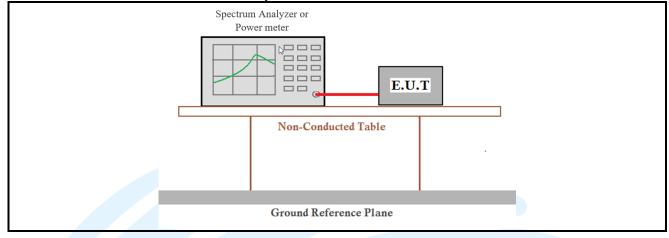

4.4.3 Tested channel detail


Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Type of Modulation	GFSK π/4DQPSK 8DPSK								
Data Packets	1- DH1	1- DH3	1- DH5	2- DH1	2- DH3	2- DH5	3- DH1	3- DH3	3- DH5
Available Channel					0 to 78				
Test Item			Test cha	nnel and	d choose	e of data	packets		
AC Power Line Conducted Emission					N/A				
Conducted Peak Output				Chanr	nel 0 & 39	9 & 78			
Power			N			<			۲
20 dB Bandwidth				Chanr	nel 0 & 39	9 & 78			
20 dB Balldwidth			K			2			2
Carrier Frequencies	Frequency Hopping Channel 0 to 78								
Separation			N			<			۲
Number of Henning Channel	Frequency Hopping Channel 0 to 78								
Number of Hopping Channel			2			2			١
Dwell Time	Channel 39								
Dweir fillte	2	>	2	•	Þ	2	2	2	2
Conducted Out of Band	Channel 0 & 39 & 78								
Emission			2			2			١
Radiated Emissions	Channel 0 & 39 & 78								
Radiated Emissions									2
Band Edge Measurements				Cha	annel 0 8	78			
(Radiated)									>
Remark:									
	1. The mark "☑" means is chosen for testing;								
2. The mark "🖵 " means is not chosen for testing.									


4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup



4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.7Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	Y axis	

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)		Average Factor (dB)
GFSK	3-DH5	2.887	3.751	0.77	76.97	1.14	0.35	-2.27

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = $20 \log_{10}$ Duty Cycle.

The test plot as follows

	GF	SK_ 3-DH5		
Agilent Spectrum Analyzer X RF Marker 3 Δ 3.750	50 Ω DC SENSE		12:00:11 AM Mar 01, 2018 TRACE 2 3 4 5 6 TYPE WWW DET PINNINN Select	rker Marker
10 dB/div Ref Offse Log	.00 dBm		∆Mkr3 3.751 ms -0.01 dB	3 [*]
-9.00 -19.0 -29.0 -39.0				Norma Delta
-49.0 -59.0 -69.0 -79.0			₩vyµ+ews	Fixed⊳
Center 2.4410000 Res BW 1.0 MHz MKR MODE TRC SCL 1 Δ2 1 t (Δ)	00 GHz #VBW 1.0 MHz × Υ 2.897 ms (Δ) 0.35 dl	FUNCTION FUNCTION WIDTH	Span 0 Hz 3.467 ms (1001 pts) FUNCTION VALUE	Ofi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.867 ms (Δ) 0.35 d 1.126 ms 2.62 dBr 3.751 ms (Δ) -0.01 df 1.126 ms 2.62 dBr	1	Pro	operties►
7 9 10 11			×	More 1 of 2
MSG		I o statu:	s	

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title				
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations				
2	FCC 47 CFR Part 15	Radio Frequency Devices				
3	RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE- LAN) Devices				
4	RSS-Gen Issue 4	General Requirements for Compliance of Radio Apparatus				
5	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices				

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. **RSS-Gen Issue 4, Section 8.3 requirement:**

According to RSS-Gen Issue 4, section 8.3, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.

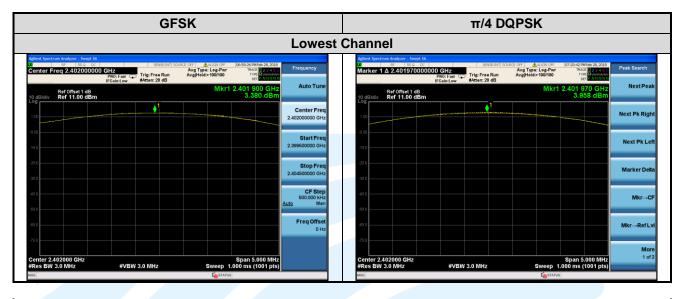
EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 2.5 dBi.

Page 15 of 44

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement:	FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1) RSS-247 Issue 2, Section 5.4(b)							
Test Method:	ANSI C63.10-2013 Section 7.8.5							
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employi least 75 non-overlapping hopping channels, and all frequency hopping systems i 5725-5850 MHz band: 1 watt. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band have hopping channel carrier frequencies that are separated by 25 kHz or two-thin the 20 dB bandwidth of the hopping channel, whichever is greater, provided the sys operate with an output power no greater than 125 mW.							
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.							
	 a) Use the following spectrum analyzer settings: 1) Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW ≥ RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. 							
	 b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. 							
	 e) A plot of the test results and setup description shall be included in the test report. 							
Test Setup:	Refer to section 4.5.3 for details.							
Instruments Used:	Refer to section 3 for details							
Test Mode:	Transmitter mode							
Test Results:	Pass							
Test Data:								


Type of	Type of Pea		dBm)	Peak Output Power (mW)		
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
GFSK	3.38	3.315	3.865	2.18	2.15	2.44
π/4 DQPSK	3.958	3.583	4.308	2.49	2.28	2.70
8DPSK	3.974	3.459	4.531	2.50	2.22	2.84

Note: The antenna gain of 2.5 dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

For maximum e.i.r.p.							
Type of		e.i.r.p (dBm)		e.i.r.p (mW)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	5.88	5.82	6.37	3.87	3.82	4.33	
π/4 DQPSK	6.46	6.08	6.81	4.42	4.06	4.80	
8DPSK	6.47	5.96	7.03	4.44	3.94	5.05	
Limit (mW)	4000						
Pass/Fail			Pa	ISS			

Note: e.i.r.p = maximum peak conducted output power + antenna gain

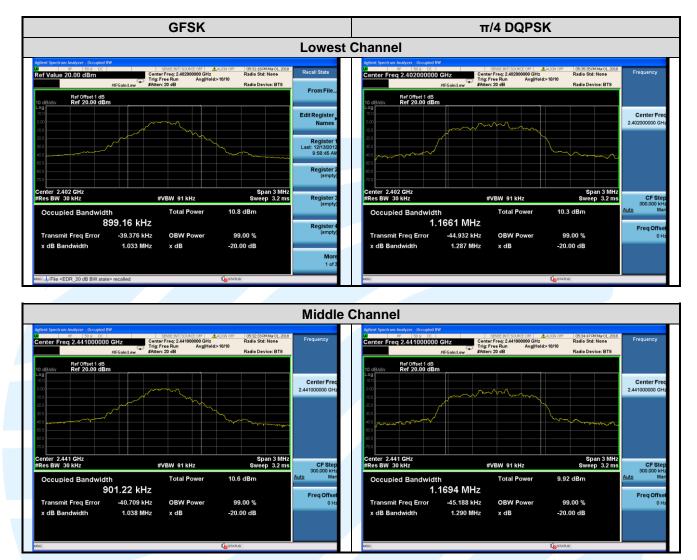
The test plot as follows:

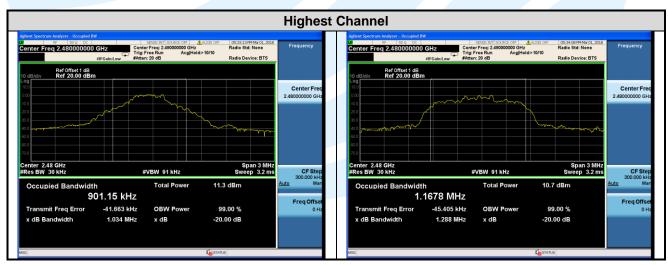
Middle Channel								
Aglient Spectrum Analyzer - Swept SA □ RF 50 Ω DC Marker 1 △ 2.441070000000 GHz PN0: Fast F6ain:100	Avg Type: Log-Pwr Trig: Free Run Avg Hold>100/100	0732-20 PMFeb 28, 2018 TRACE 12 24 155 TWPE DET 2011 111	Agilent Spectrum Analyzer - Swept SA 0 R5 50.0 DC Marker 1 Δ 2,44110000000	SENSEINT SOURCE OF O GHZ Avg Ty PNO: Fast Trig: Free Run Avg Hol FGain:Low #Atten: 20 dB	ALIGN OFF 07:12:30 PM Feb 28, 2018 e: Log-Pwr TRACE 12 34 5 6 d>100/100 TYPE 12 34 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peak Search		
Ref Offset 1 dB 10 dB/div Ref 11.00 dBm	Mkr1	2.441 070 GHz 3.135 dBm	Ref Offset 1 dB 10 dB/div Ref 11.00 dBm		Mkr1 2.441 100 GHz 3.583 dBm	NextPe		
1.00	<u></u> 1	Next Pk Right	1.00	<u>1</u>		Next Pk Rig		
-9.00		Next Pk Left	-9.00			Next Pk L		
-29.0		Marker Delta	-22.0			Marker D		
-49.0		Mkr→CF	-43.0			Mkr		
-69.0		Mkr→RefLvl	-69.0			Mkr→Ref		
-79.0 Center 2,441000 GHz		More Span 5.000 MHz 1 of 2	-79 0 Center 2.441000 GHz		Span 5.000 MHz	M 1		
	BW 3.0 MHz Sweep 1.	000 ms (1001 pts)	#Res BW 3.0 MHz	#VBW 3.0 MHz	Sweep 1.000 ms (1001 pts)			

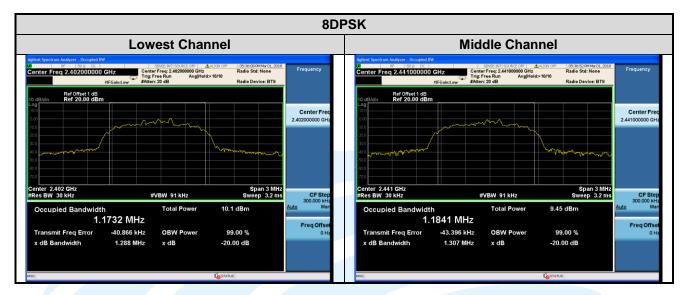
		Hig	ighest Channel		
Aglent Spectrum Analyzer - Swept SA BF 509 DC Marker 1 & 2,480095000000 GHz FR05 Fast CD T F65aint ov	SENSE:INT SOURCE OFF ALIGN OFF Avg Type: Log-Pwr rig: Free Run Avg[Hold>100/100 Atten: 20 dB	07:08:11 PMFeb 28, 2018 TRACE 12:0:4:5:6 TYPE MANNANA 0:0:12:0:4:10:00	Marker 1 A 2.480065000000 Gr	East Trig: Free Run Avg Hold>100	OFF 07/09/55 PMFeb 28, 2018 Peak Search OFF 07/09/55 PMFeb 28, 2018 Peak Search OFF 07/09 Trace 0.25 State
Ref Offset 1 dB 10 dB/div Ref 11.00 dBm	Mkr	1 2.480 095 GHz 3.865 dBm	Next Peak 10 dB/div Ref Offset 1 dB 10 dB/div Ref 11.00 dBm		Mkr1 2.480 065 GHz 4.308 dBm
100		Next P	t Pk Right		Next Pk Righ
-9.0		Next F	-13 0		Next Pk Le
-29 0		Marke	rker Delta		Marker Del
-49 0		M	Mkr→CF 430		Mkr→C
-69.0		Mkr→l	r→RefLvl		Mkr→RefL
Center 2.480000 GHz #Res BW 3.0 MHz #VBW 3.1	0 MHz Sweep	Span 5.000 MHz 1.000 ms (1001 pts)	More 1 of 2 Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 3.0 MHz Swe	Mor Span 5.000 MHz 1 of eep 1.000 ms (1001 pts)

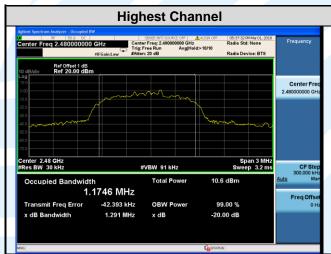
	8DPSK								
Lowest	Channel	Middle Channel							
Addent Spectrum Analyzer - Sampt Ad. 2 Brock and Control Cont	Ang Type: Log-Par The Markeb 20,001 Ang Type: Log-Par The Markeb 20,001 Ang Held- 100100 The Markeb 20,001 Mkr1 2,401 990 GHz NextPeak 3,974 dBm	Agelond Speetrum Analyzer Sample State ESIZE 2x1 [SOURCE OF ADD State ESIZE 2x1 [SOURCE OF ADD State Analyzer Marker 1 & 2,24411000000000 GHz PR0 Fast Total EState Trig: Free Run Av EState Trig: Free Run Av ESTATE Analyzer Ref Offsect 1 dB 10 dBS/dW Ref 11.00 dBm Marker 20 dB Analyzer	ALL2413F 071225707062202018 Type: Log Pwr photo: 100100 ref two: Mkr11.2441 100 GHz 3.459 GHm NextPeak						
	Next Pk Right		Next Pk Right						
.9.00	Next Pk Left	-900 	Next Pk Left						
32.0	Marker Delta	-22.0	Marker Delta						
-45.0	Mkr→CF	-49.0	Mkr→CF						
69.0	Mkr→RefLvl	68.0	Mkr→RefLvi						
Center 2.402000 GHz #Res BW 3.0 MHz #VBW 3.0 MHz	Span 5.000 MHz 1 of 2 Sweep 1.000 ms (1001 pts)	-79 0 Center 2.441000 GHz #Res BW 3.0 MHz #VBW 3.0 MHz	More Span 5.000 MHz 1 of 2 Sweep 1.000 ms (1001 pts)						
MSG	Coverp 1000 ms (1001 pts)	INSG	Costatus						

Agilent Spectrum Analyzer	- Swept SA				-
Marker 1 ∆ 2.479		ist 😱 Trig: Free Run	Avg Type: Log-Pwr Avg Hold>100/100	07:11:10 PMFeb 28, 2018 TRACE 2 3 4 5 5 TYPE MUSIC P N N N N	Peak Search
Ref Offse 10 dB/div Ref 11.	et1dB 00dBm		Mkr1 2	2.479 945 GHz 4.531 dBm	NextPeak
1.00		1			Next Pk Right
-9.00					Next Pk Left
-29.0					Marker Delta
-39.0					
-69.0					Mkr→CF
-69.0					Mkr→RefLvi
Center 2.480000 G					More 1 of 2


Page 18 of 44


5.420 DB BANDWIDTH & OCCUPIED BANDWIDTH


Test Requirement: Test Method: Limit: Test Procedure:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(a) RSS-Gen section 6.6 ANSI C63.10-2013 Section 6.9.2 None; for reporting purposes only. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:
	 a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel. b) RBW = 1% to 5% of the OBW. c) VBW ≥ 3 x RBW d) Sweep = auto; e) Detector function = peak f) Trace = max hold g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Transmitter mode
Test Results:	Pass
Test Data:	


Type of	20 d	B Bandwidth (M	/IHz)	99% Bandwidth (MHz)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	1.033	1.038	1.034	0.89916	0.90122	0.90115	
π/4 DQPSK	1.287	1.290	1.288	1.1661	1.1694	1.1678	
8DPSK	1.288	1.307	1.291	1.1732	1.1841	1.1746	

The test plot as follows:

Page 21 of 44

5.5CARRIER FREQUENCIES SEPARATION

Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(b)					
Test Method:	ANSI C63.10-2013 Section 7.8.2					
Limit: Test Procedure:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:					
	 a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. 					
	Note: The cable loss and attenuator loss were offset into measure device as a amplitude offset.					
Test Setup:	Refer to section 4.5.3 for details.					
Instruments Used:	Refer to section 3 for details					
Test Mode:	Hopping Frequencies Transmitter mode					
Test Results:	Pass					
Test Data:						

Type of Medulation	Adjacent Channel Separation (MHz) Minimum Limit (MHz)		
Type of Modulation	Channel 39	Channel 0	
GFSK	1.000	0.689	
π/4 DQPSK	1.000	0.858	
8DPSK	1.000	0.859	
Note: The minimum limit is two-t	hird 20 dB bandwidth.		

The test plot as follows:

GFSK	π/4 DQPSK			
Applied Spectrum Analyzer Sample Sample Sample Sample Marker Marker	Actived Spectrum Analyzer - Swigs 51 BREERING SOURCE (SF) ARRENOV (D766) 41 MMc5/2, 2008 Marker 1 Δ 1.0000000000 MHZ IFIGURE (SF) Trip Free Run Arg Type: Leg Pur Arg Type: Leg Pur Arg Type: Leg Pur Arg Type: Leg Pur IFIGURE (SF) Marker Marker Ref Offset 1 dB 10 dB/dkr Confiset 1 dB Arten: 20 dB AMkr1 1.000 MHZ Arten: 20 dB Select Marker			
100 Mormal	100 Mat Many and a Many and Ma			
Delta	900			
20 Fixed	210 Fixed:			
20 Properties	OD Properties			
Center 2.441000 GHz Span 5.000 MHz More 1 of 2 Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (100 105)	Center 2.441000 GHz Span 5.000 MHz More 1 of 2 #Res BW 100 kHz \$VBW 300 kHz Sweep 1.000 ms (1001 pts)			
Hes BW 100 KHZ #VBW 500 KHZ Sweep 1.000 HIS (1001 pts)	#Res BW 100 KH2 #VBW 300 KH2 Sweep 1.000 His (1001 pts)			

		8DF	PSK		
Agilent Spectrum Analyzer - Swep 00 RF 50 Ω Marker 1 Δ 1.0000000	DC	SENSE:INT SO Trig: Free Run #Atten: 20 dB	ALIGN OFF Avg Type: Log-Pwr Avg Hold>100/100	07:58:07 PMFeb 28, 2018 TRACE 12 3 4 5 6 TYPE 24 5 6 TYPE 24 5 6 DET 9 N N N N N	Marker Select Marker
Ref Offset 1 dE	s 3m		ΔN	lkr1 1.000 MHz 0.537 dB	1
	mann	m Kaling	142	manahan	Normal
-19.00					Delta
-29.0					Fixed⊳
-49.0					on
-69.0					Properties►
-79.0					More
Center 2.441000 GHz #Res BW 100 kHz	#)/B)M	300 kHz	Sween 1	Span 5.000 MHz 000 ms (1001 pts)	1 of 2