TEST REPORT

For FCC Part15B

Report No.: CHTEW22120021 Report verification:

Project No.: SHT2112010901EW

FCC ID: 2ALV5-SE-200PB

Applicant's name: **Origins Technology Limited**

603 6/F, Laws Commercial Plaza, 788 Cheung Sha Wan Road, Address....:

Hong Kong

Product Name: Kaiterra Sensedge Mini Air Quality Monitor

Trade Mark Kaiterra

Model No.: SE-200PB

Listed Model(s): SE-200B

47 CFR FCC Part 15 Subpart B Standard::

Date of receipt of test sample..... Dec.17, 2021

Date of testing.....: Dec.17, 2021- Dec.02, 2022

Date of issue..... Dec.05, 2022

Result.....: **Pass**

Compiled by

Janghui Zhu (position+printed name+signature)..: File administrators Fanghui Zhu

Supervised by

(position+printed name+signature)..: Project Engineer Kiki Kong

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Address....:

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Report No.: CHTEW22120021 Page: 2 of 15 Date of issue: 2022-12-05

Contents

<u>l.</u>	TEST STANDARDS AND REPORT VERSION	<u> ა</u>
1.1.	Test Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
<u>J.</u>	Outman	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Testing Laboratory Information	5
<u>4.</u>	TEST CONFIGURATION	6
4.1.	Descriptions of test mode	6
4.2.	Environmental conditions	6
4.3.	Statement of the measurement uncertainty	6
4.4.	Equipments Used during the Test	7
<u>5.</u>	TEST CONDITIONS AND RESULTS	8
5.1.	Conducted Emissions	8
5.2.	Radiated Emissions	10
<u>6.</u>	TEST SETUP PHOTOS	14
7	EXTERNAL AND INTERNAL PHOTOS	15

Report No.: CHTEW22120021 Page: 3 of 15 Date of issue: 2022-12-05

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

ANSI C63.4: 2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2022-12-05	Original

Report No.: CHTEW22120021 Page: 4 of 15 Date of issue: 2022-12-05

2. TEST DESCRIPTION

Section	n Test Item Section in CFR 47		Result #1	Test Engineer	
5.1	Conducted Emissions 15.107(a) PASS		PASS	Quanhai Deng	
5.2	Radiated Emissions	15.109(a)	PASS	Junman Wang	

Note:

#1: The test result does not include measurement uncertainty value

Report No.: CHTEW22120021 Page: 5 of 15 Date of issue: 2022-12-05

3. **SUMMARY**

3.1. Client Information

Applicant:	Origins Technology Limited		
Address:	603 6/F, Laws Commercial Plaza, 788 Cheung Sha Wan Road, Hong Kong		
Manufacturer:	Origins Technology Limited		
Address:	603 6/F, Laws Commercial Plaza, 788 Cheung Sha Wan Road, Hong Kong		

3.2. Product Description

Main unit information:					
Product Name:	Kaiterra Sensedge Mini Air Quality Monitor				
Trade Mark:	Kaiterra				
Model No.:	SE-200PB				
Listed Model(s):	SE-200B				
	DC 10-30V				
Dower supply:	AC10-30V				
Power supply:	AC100-240V from adapter				
	42-57V from POE				
Hardware version:	v1.2				
Software version:	v3.0.2				
Accessory unit information:					
	Model: SOY-0500200-090				
Adapter information:	IUPUT:100-240Va.c., 50/60Hz 0.5A Max				
	OUTPUT: 5.0Vd.c., 2.0A 10.0W				

3.3. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.				
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				
	Tel: 86-755-26715499				
Connect information:	E-mail: cs@szhtw.com.cn				
	http://www.szhtw.com.cn				
Qualifications	Туре	Accreditation Number			
Qualifications	FCC	762235			

Report No.: CHTEW22120021 Page: 6 of 15 Date of issue: 2022-12-05

4. TEST CONFIGURATION

4.1. Descriptions of test mode

Test mode O1	Working, AC 30V from AC power
Test mode O2	Working, DC 30V from DC power
Test mode O3	Working, AC 120V from adapter
Test mode O4	Working, AC 120V from POE

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report

Test Item	Test mode for worse case
Conducted Emissions	Test mode O3
Radiated Emissions	Test mode O4

4.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

2 amily the medean emerit the emineral containents here maint the netter range.				
Temperature:	15~35°C			
Relative Humidity:	30~60 %			
Air Pressure:	950~1050mba			

4.3. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	3.21dB
2	Radiated Emission	4.54dB for 30MHz-1GHz
	Natiated Liffission	5.10dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW22120021 Page: 7 of 15 Date of issue: 2022-12-05

4.4. Equipments Used during the Test

•	Conducted Emission						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2022/08/30	2023/08/29
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2022/08/29	2023/08/28
•	Pulse Limiter	R&S	HTWE0193	ESH3-Z2	101447	2022/08/29	2023/08/28
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2022/09/17	2023/09/16
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

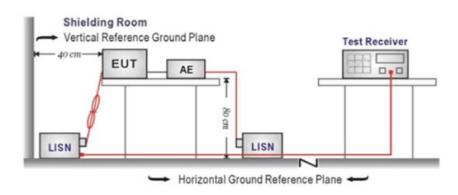
•	Radiated Emission-6th test site						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2023/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2022/08/30	2023/08/29
•	Ultra-Broadband Antenna	SCHWARZBEC K	HTWE0119	VULB9163	546	2020/04/28	2023/04/27
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	N/A	2021/11/05	2022/11/04
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-01	N/A	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-02	SUCOFLEX10 4	501184/4	2022/02/25	2023/02/24
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emission-7th test site									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2023/09/26			
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2022/08/25	2023/08/24			
•	Horn Antenna	SCHWARZBE CK	HTWE0126	9120D	1011	2020/04/01	2023/03/31			
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27			
•	RF Connection Cable	HUBER+SUH NER	HTWE0126-01	RE-7-FH	N/A	2022/03/04	2023/03/03			
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A			

Report No.: CHTEW22120021 Page: 8 of 15 Date of issue: 2022-12-05

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions


LIMIT

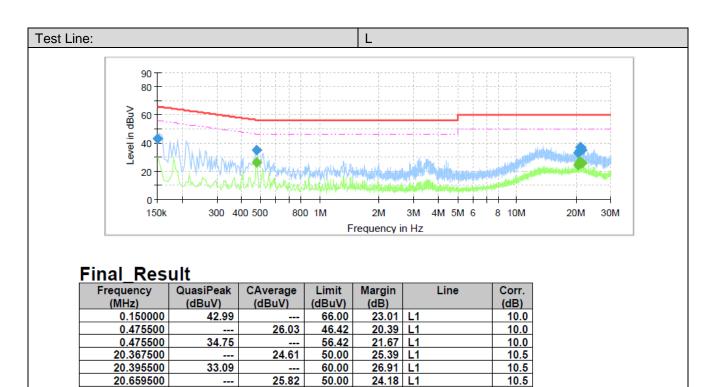
FCC CFR Title 47 Part 15 Subpart B Section 15.107:

Frequency range (MHz)	Limit (dBuV)				
r requericy rarige (wir iz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: CHTEW22120021 Page: 9 of 15 Date of issue: 2022-12-05

60.00

50.00

60.00

50.00

60.00

50.00

<u> 26.58</u>

26.55

25.50

23.38 L1

23.42 L1

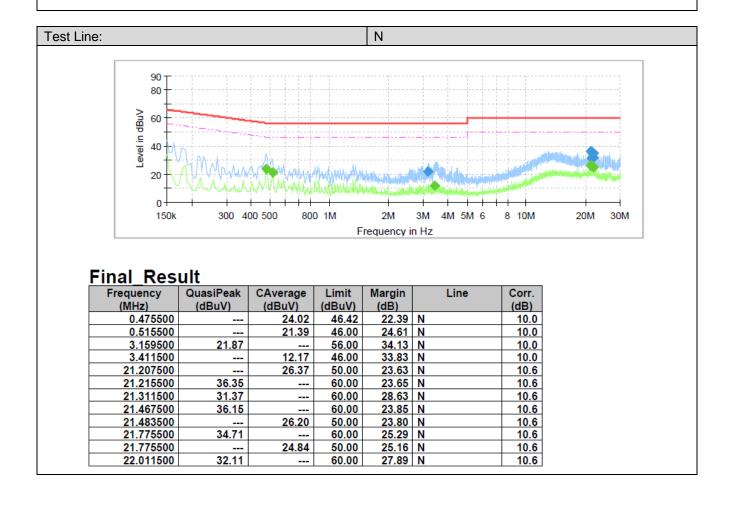
23.35 L1

23.45 L1

24.69 L1

24.50 L1

10.5


10.5

10.5

10.5

10.5

10.5

20.927500

20.935500

21.195500

21.195500

21.467500

21.475500

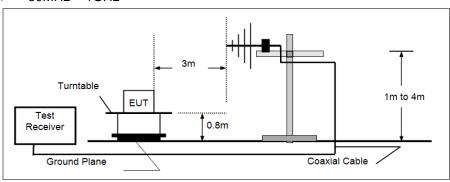
36.62

36.65

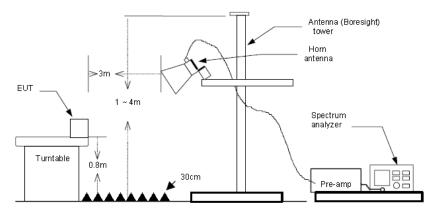
35.31

Report No.: CHTEW22120021 Page: 10 of 15 Date of issue: 2022-12-05

5.2. Radiated Emissions


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


Frequency	Limit (dBuV/m @3m)	Value				
30MHz-88MHz	40.00	Quasi-peak				
88MHz-216MHz	43.50	Quasi-peak				
216MHz-960MHz	46.00	Quasi-peak				
960MHz-1GHz	54.00	Quasi-peak				
Above 1GHz	54.00	Average				
Above 10112	74.00	Peak				

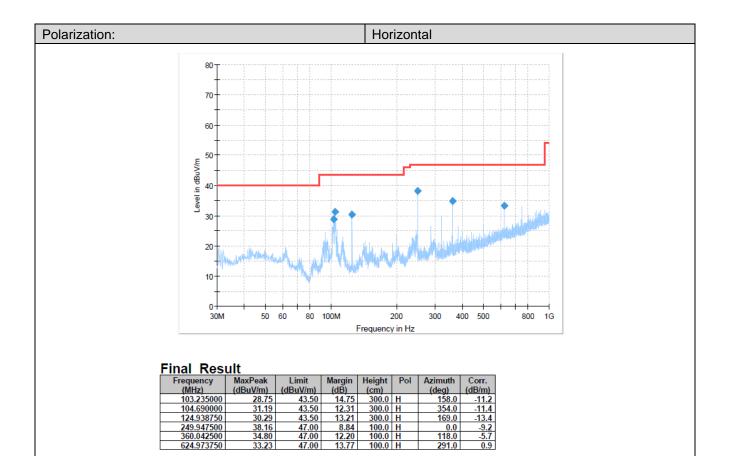
TEST CONFIGURATION

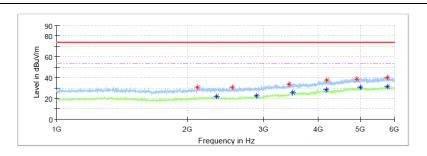
30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz,
 - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz

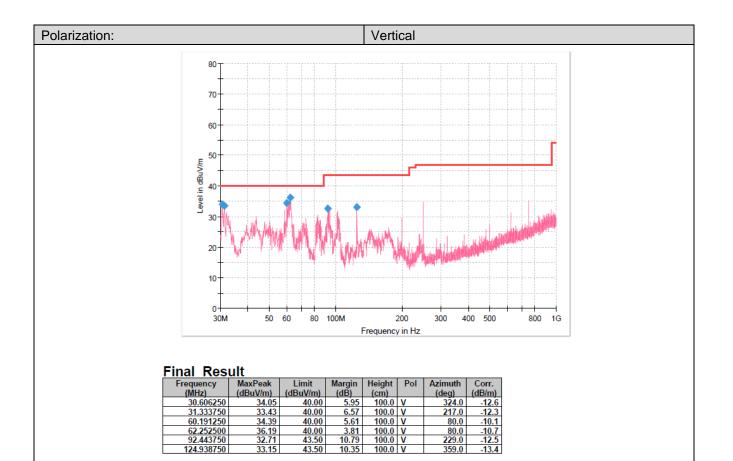

Report No.: CHTEW22120021 Page: 11 of 15 Date of issue: 2022-12-05

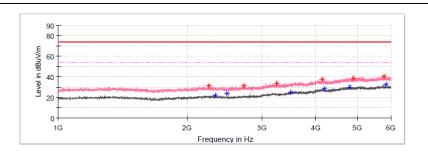

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.





Critical_Freqs

Frequency	MaxPeak	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)
2885.625000		22.61	54.00	31.39	160.0	Н	0.0	-5.7
5773.125000	40.21		74.00	33.79	160.0	Н	0.0	5.0
2535.000000	30.88	-	74.00	43.12	160.0	Н	83.0	-6.7
4173.750000		28.17	54.00	25.83	160.0	Н	110.0	-1.0
2110.625000	30.93		74.00	43.07	160.0	Н	166.0	-7.4
5771.875000		31.48	54.00	22.52	160.0	Н	166.0	5.0
4188.125000	37.43		74.00	36.57	160.0	Н	235.0	-0.9
3502.500000		25.33	54.00	28.67	160.0	Н	249.0	-3.5
3436.250000	33.56		74.00	40.44	160.0	Н	263.0	-4.0
4997.500000		30.52	54.00	23.48	160.0	Н	304.0	2.9
2333.750000		21.90	54.00	32.10	160.0	Н	332.0	-6.6
4914.375000	39.03	-	74.00	34.97	160.0	Н	358.0	2.6

Report No.: CHTEW22120021 Page: 13 of 15 Date of issue: 2022-12-05

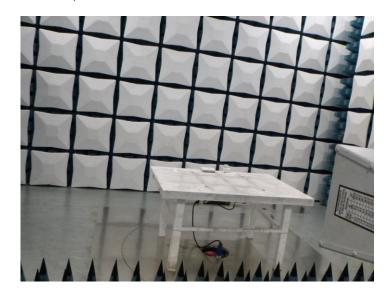
Critical_Freqs

									
Frequency	MaxPeak	Average	Limit	Margin	Height	Pol	Azimuth	Corr.	
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)	
3493.125000		24.75	54.00	29.25	160.0	V	0.0	-3.6	
2713.125000	30.95	-	74.00	43.05	160.0	٧	3.0	-5.9	
2248.125000	31.33	I	74.00	42.67	160.0	٧	15.0	-6.6	
4150.000000	37.31		74.00	36.69	160.0	V	29.0	-1.2	
4890.000000	38.68	-	74.00	35.32	160.0	V	29.0	2.6	
2480.000000		23.54	54.00	30.46	160.0	V	57.0	-6.9	
3241.875000	33.94	-	74.00	40.06	160.0	V	98.0	-4.4	
5837.500000		32.31	54.00	21.69	160.0	V	126.0	5.2	
4191.875000		28.13	54.00	25.87	160.0	V	140.0	-0.8	
4810.000000		30.31	54.00	23.69	160.0	٧	153.0	2.2	
2327.500000		21.84	54.00	32.16	160.0	٧	264.0	-6.6	
5768.750000	40.67	-	74.00	33.33	160.0	٧	278.0	5.0	

Report No.: CHTEW22120021 Page: 14 of 15 Date of issue: 2022-12-05

6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)


Radiated Emissions (30MHz-1GHz)

Report No.: CHTEW22120021 Page: 15 of 15 Date of issue: 2022-12-05

Radiated Emissions (Above 1GHz)

7. EXTERNAL AND INTERNAL PHOTOS

Refer to the test report No.: CHTEW22120019

-----End of Report-----