

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC156170 Page: 1 of 45

FCC Radio Test Report FCC ID: 2ALUT-C80037

Original Grant

Report No.	: TB-FCC156170
Applicant	: IZZO Golf, Inc.
Equipment Under	Test (EUT)
EUT Name	: SMART GLASSES
Model No.	: C80037
Serial Model No.	: A44050, A44056
Brand Name	: Callaway, IZZO SWAMI
Receipt Date	: 2017-06-20
Test Date	: 2017-06-21 to 2017-06-29
Issue Date	: 2017-06-30
Standards	: FCC Part 15: 2016, Subpart C(15.247)
Test Method	: ANSI C63.10: 2013
Conclusions	: PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer

Approved& Authorized

WAN SU foughtin.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Da5ta	
5.	RADIATED EMISSION TEST	13
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	20
	5.5 Test Data	20
6.	RESTRICTED BANDS REQUIREMENT	
	6.1 Test Standard and Limit	29
	6.2 Test Setup	29
	6.3 Test Procedure	29
	6.4 EUT Operating Condition	30
	6.5 Test Data	30
7.	BANDWIDTH TEST	36
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	37
8.	PEAK OUTPUT POWER TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	

	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	45
	10.1 Standard Requirement	
	10.2 Antenna Connected Construction	
	10.3 Result	

1. General Information about EUT

1.1 Client Information

Applicant	1	IZZO Golf, Inc.
Address	÷	1635 Commons Parkway, Macedon, NY 14502, USA
Manufacturer	110	Shenzhen GELETE Technology Co. Ltd
Address	2	9/F, 7 Building, The 2nd Industrial Zone, Longhua New District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		SMART GLASSES		
Models No.		C80037, A44050, A44056		
Model Difference	All models are identical in the same PCB layout interior structure and electrical circuits, The only difference is shape of the lens.			
A DOD		Operation Frequency:	Bluetooth 4.1(BLE): 2402MHz~2480MHz	
		Number of Channel:	Bluetooth 4.1(BLE): 40 channels see note(3)	
Product Description	21.02	RF Output Power:	0.430dBm Conducted Power	
		Antenna Gain:	2dBi PCB Antenna	
		Modulation Type:	GFSK	
		Bit Rate of Transmitter:	1Mbps(GFSK)	
Power Supply	:	DC Voltage Supply from DC Supply by the Batter		
Power Rating	:	DC 5.0 V from the USB Cable. DC 3.7V by 250mAh Li-ion Battery.		
Connecting I/O Port(S)	1	Please refer to the User's Manual		

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v04.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.
- (3) Channel List:

Channel Frequency	Channel	Frequency	Channel	Frequency
-------------------	---------	-----------	---------	-----------

Report No.: TB-FCC156170 Page: 5 of 45

	(MHz)		(MHz)		(MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

	Adapter		EUT				
615		Cable 1					
. 16							
5							
CONBL				1 Contraction		an B	
	U.S. COR		anB3		000		
			an BY		حوال		U
TX Mode			EUT		905		
			EUT		100		

1.4 Description of Support Units

Equipment Information					
Name	Model	FCC ID/VOC	Manufacturer	Used "√"	
AC/DC Adapter	A16-502000		AOHAI	\checkmark	
AC/DC Adapter Input:AC100-240V 50/60Hz 0.5A Output:5V/2A					
		Cable Information			
Number	Shielded Type	Ferrite Core	Length	Note	
Cable 1	NO	NO	0.45M		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Radiated Test				
Final Test Mode	Description			
Mode 2	TX Mode			
Mode 3	TX Mode (Channel 00/20/39)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	BlueTest 3.exe		
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.00 0B
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Padiated Emission	Level Accuracy:	14.20 dP
Radiated Emission	Above 1000MHz	±4.20 dB

Report No.: TB-FCC156170 Page: 8 of 45

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

TOBY

2. Test Summary

Standard Section FCC IC				Remark
		Test Item	Judgment	
15.203		Antenna Requirement	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A

3. Test Equipment

Conducted Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 21, 2016	Jul. 20, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 21, 2016	Jul. 20, 2017
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 21, 2016	Jul. 20, 2017
LISN	Rohde & Schwarz	ENV216	101131	Jul. 21, 2016	Jul. 20, 2017

Radiation Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 21, 2016	Jul. 20, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 21, 2016	Jul. 20, 2017
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.25, 2017	Mar. 24, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.25, 2017	Mar. 24, 2018
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.24, 2017	Mar. 23, 2018
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.24, 2017	Mar. 23, 2018
Loop Antenna	Laplace instrument	RF300	0701	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	HP	8449B	3008A00849	Mar.25, 2017	Mar. 24, 2018
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.24, 2017	Mar. 23, 2018
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

Antenna Conducted Emission

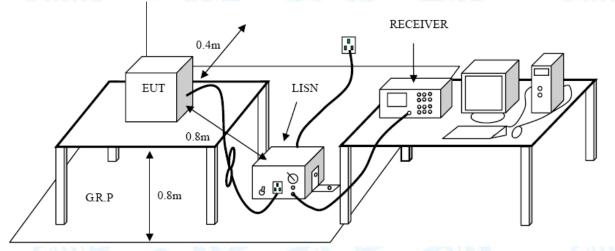
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 21, 2016	Jul. 20, 2017
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 21, 2016	Jul. 20, 2017
Power Meter	Anritsu	ML2495A	25406005	Jul. 21, 2016	Jul. 20, 2017
Power Sensor	Anritsu	ML2411B	25406005	Jul. 21, 2016	Jul. 20, 2017

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Conducted E	Emission	Test Limit
--------------------	----------	-------------------

Frequency	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

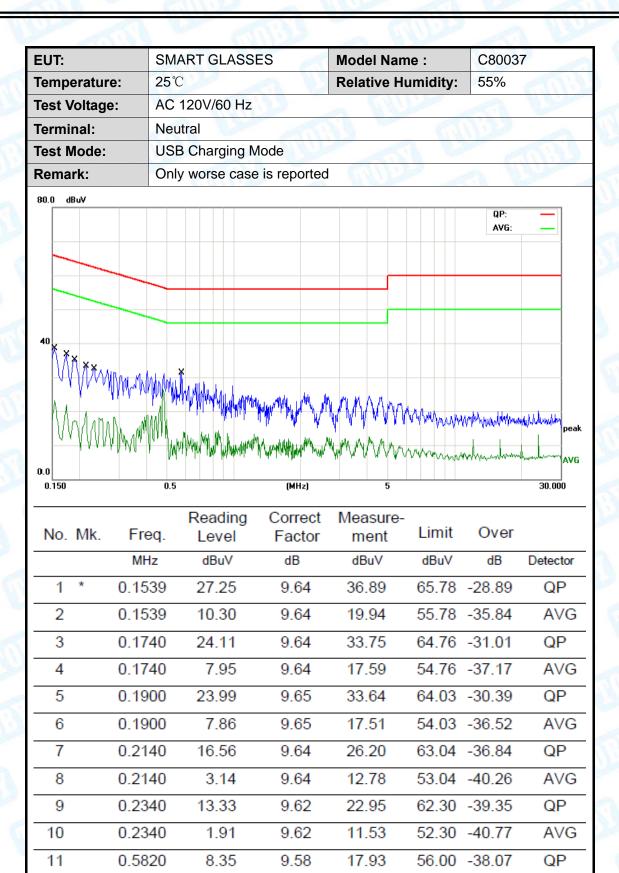
I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.


4.5 Test Da5ta

Test data please refer the following pages.

EUT:	SMAR	RT GLASSES	5	Model Nam	ie :	C8003	37
Temperature:	25 ℃	Call		Relative Hu	umidity:	55%	1 Contraction
Test Voltage:	AC 12	20V/60 Hz	100		611	133	
Terminal:	Line		TUU			e e	
Test Mode:	USB (Charging Mo	de	mile	2		ALL -
Remark:	Only v	worse case is	s reported		CILL	191	
80.0 dBuV							
						QP: AVG:	
40							
	×						
	A. I. J. W. B. A.						
1 1 1 1 1 1 1 1	IL MALLANDAM	wYWWWW.bite	la ta nkiri ka a ni Mira ak	N A A A A A A			
	- 1 MO - 1		1000 MIN 101 FUND 211 11 U	<u>" \ 10" \ (\1 \1 \1 \1 \1 \</u>	N PERFORMANCE		
MAAAAA		, and a start of the	All A III WWW WY	AAAAAA	M. W.	dol Marine Marine	www.min peal
MMM		tilliseliketiketiketiketiketiketiketiketiketiket	ningen in the second second		WWWWWWW WWWWWW	1-Manutania	
0.0	MMM	en in de la contraction de la contract La contraction de la c	ningen in ringen – sean Mikeankeliker ofte araat		WWWWWW WWWWWW	nt	www.min Avg
0.0	0.5	e teographic and an and a second s Statistical Second S		2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	mm	tr/Warnerson	
0.150		Reading	Correct	Measure-		11 With Marine Marine	AVG
0.150 No. Mk.	Freq.	Level	Correct Factor	Measure- ment	Limit	Over	AVE
0.150 No. Mk.		-	Correct	Measure-		Over dB	AVG
0.150 No. Mk.	Freq.	Level	Correct Factor	Measure- ment	Limit dBuV		30.000
0.150 No. Mk. 1 0.	Freq. MHz	Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	dB	30.000
0.150 No. Mk. 1 0. 2 0.	Freq. MHz 1580	Level dBuV 25.84	Correct Factor dB 9.58	Measure- ment dBuV 35.42	Limit dBuV 65.56 55.56	dB -30.14	30.000 Detector
0.150 No. Mk. 1 0. 2 0. 3 0.	Freq. MHz 1580 1580	Level dBuV 25.84 8.99	Correct Factor dB 9.58 9.58	Measure- ment dBuV 35.42 18.57	Limit dBuV 65.56 55.56 64.76	dB -30.14 -36.99	30.000 Detector QP AVC
0.150 No. Mk. 1 0. 2 0. 3 0. 4 0.	Freq. MHz 1580 1580 1740	Level dBuV 25.84 8.99 25.45	Correct Factor dB 9.58 9.58 9.58	Measure- ment dBuV 35.42 18.57 35.03	Limit dBuV 65.56 55.56 64.76 54.76	dB -30.14 -36.99 -29.73	30.000 Detector QP AVC
0.150 No. Mk. 1 0. 2 0. 3 0. 4 0. 5 0.	Freq. MHz 1580 1580 1740 1740 1940	Level dBuV 25.84 8.99 25.45 8.81 23.79	Correct Factor dB 9.58 9.58 9.58 9.58 9.58	Measure- ment dBuV 35.42 18.57 35.03 18.39 33.37	Limit dBuV 65.56 55.56 64.76 54.76 63.86	dB -30.14 -36.99 -29.73 -36.37 -30.49	30.000 Detector QP AVC QP AVC QP
0.150 No. Mk. 1 0. 2 0. 3 0. 3 0. 4 0. 5 0. 6 0.	Freq. MHz 1580 1580 1740 1740 1940 1940	Level dBuV 25.84 8.99 25.45 8.81 23.79 7.56	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58	Measure- ment dBuV 35.42 18.57 35.03 18.39 33.37 17.14	Limit dBuV 65.56 55.56 64.76 54.76 63.86 53.86	dB -30.14 -36.99 -29.73 -36.37 -30.49 -36.72	30.000 30.000 Detector QP AVC QP AVC QP AVC
0.150 No. Mk. 1 0. 2 0. 3 0. 3 0. 4 0. 5 0. 6 0. 7 0.	Freq. MHz 1580 1580 1740 1740 1940 2540	Level dBuV 25.84 8.99 25.45 8.81 23.79 7.56 20.28	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.59	Measure- ment dBuV 35.42 18.57 35.03 18.39 33.37 17.14 29.87	Limit dBuV 65.56 55.56 64.76 54.76 63.86 53.86 61.62	dB -30.14 -36.99 -29.73 -36.37 -30.49 -36.72 -31.75	30.000 30.000 Detector QP AVC QP AVC QP AVC
0.150 No. Mk. 1 0. 2 0. 3 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0.	Freq. MHz 1580 1580 1740 1740 1940 2540 2540	Level dBuV 25.84 8.99 25.45 8.81 23.79 7.56 20.28 6.60	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.59 9.59	Measure- ment dBuV 35.42 18.57 35.03 18.39 33.37 17.14 29.87 16.19	Limit dBuV 65.56 55.56 64.76 54.76 63.86 53.86 61.62 51.62	dB -30.14 -36.99 -29.73 -36.37 -30.49 -36.72 -31.75 -35.43	30.000 30.000 Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 0. 2 0. 3 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0.	Freq. MHz 1580 1580 1740 1740 1940 2540 2540 4700	Level dBuV 25.84 8.99 25.45 8.81 23.79 7.56 20.28 6.60 14.13	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.59 9.59	Measure- ment dBuV 35.42 18.57 35.03 18.39 33.37 17.14 29.87 16.19 23.73	Limit dBuV 65.56 55.56 64.76 54.76 63.86 53.86 61.62 51.62 56.51	dB -30.14 -36.99 -29.73 -36.37 -30.49 -36.72 -31.75 -35.43 -32.78	30.000 30.000 Detector QP AVC QP AVC QP AVC QP AVC
0.150 No. Mk. 1 0. 2 0. 3 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0.	Freq. MHz 1580 1580 1740 1740 1940 2540 2540	Level dBuV 25.84 8.99 25.45 8.81 23.79 7.56 20.28 6.60	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.59 9.59	Measure- ment dBuV 35.42 18.57 35.03 18.39 33.37 17.14 29.87 16.19	Limit dBuV 65.56 55.56 64.76 54.76 63.86 53.86 61.62 51.62 56.51	dB -30.14 -36.99 -29.73 -36.37 -30.49 -36.72 -31.75 -35.43	30.000 30.000 Detector QP AVC QP AVC QP AVC QP AVC
0.150 No. Mk. 1 0. 2 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 5 0. 6 0. 7 0. 9 0. 10	Freq. MHz 1580 1580 1740 1740 1940 2540 2540 4700	Level dBuV 25.84 8.99 25.45 8.81 23.79 7.56 20.28 6.60 14.13	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.59 9.59	Measure- ment dBuV 35.42 18.57 35.03 18.39 33.37 17.14 29.87 16.19 23.73	Limit dBuV 65.56 55.56 64.76 54.76 63.86 53.86 61.62 51.62 56.51 46.51	dB -30.14 -36.99 -29.73 -36.37 -30.49 -36.72 -31.75 -35.43 -32.78	30.000 30.000 Detector QP AVC QP AVC QP AVC QP AVC

-3.74

9.58

5.84

46.00 -40.16

0.5820

12

AVG

EUT:		SMAR	RT GLASSE	S	Model Nan	ne :	C8003	/
Femperatu	re:	25°C Relative Humidity:		55%	A BAR			
Fest Voltag	e:	AC 24	0V/60 Hz	-	3.0	(m)	152	
Ferminal:		Line	3	and a				A.
Fest Mode:		USB (Charging M	ode	(UD)	2	2	Luc
Remark:		Only v	worse case	is reported			3.3	
30.0 dBu¥								
40 \X X X	**						AVG:	
1.1.1	A MARIA	(WRI) MW	Malala La materity	MARK MARK	MAA	mman		
0.150	(NW)	0.5		(MHz)	5	V V V VI V V V V V	Manham	1
	(//w/ ^{//}		Reading	Correct	Measure-		Mariha	Vhront MAV
		əq.	Level	Correct Factor	Measure- ment	Limit	Over	30.000
0.150 No. Mk.	MH	əq. Iz	Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	Over dB	30.000
0.150 No. Mk. 1 *	MH 0.17	eq. Iz 700	Level dBuV 23.74	Correct Factor dB 9.58	Measure- ment dBuV 33.32	Limit dBuV 64.96	Over dB -31.64	30.000 Detector
0.150 No. Mk. 1 * 2	MH 0.17 0.17	eq. Iz 700 700	Level dBuV 23.74 6.32	Correct Factor dB 9.58 9.58	Measure- ment dBuV 33.32 15.90	Limit dBuV 64.96 54.96	Over dB -31.64 -39.06	Detector QP AVG
0.150 No. Mk. 1 *	MH 0.17 0.17 0.19	eq. Hz 700 700	Level dBuV 23.74 6.32 18.21	Correct Factor dB 9.58 9.58 9.58	Measure- ment dBuV 33.32 15.90 27.79	Limit dBuV 64.96 54.96 64.03	Over dB -31.64 -39.06 -36.24	Detector QP AVG QP
0.150 No. Mk. 1 * 2	MH 0.17 0.17 0.19 0.19	eq. 1z 700 700 900	Level dBuV 23.74 6.32	Correct Factor dB 9.58 9.58	Measure- ment dBuV 33.32 15.90	Limit dBuV 64.96 54.96 64.03	Over dB -31.64 -39.06	Detector QP AVG QP
0.150 No. Mk. 1 * 2 3	MH 0.17 0.17 0.19	eq. 1z 700 700 900	Level dBuV 23.74 6.32 18.21	Correct Factor dB 9.58 9.58 9.58	Measure- ment dBuV 33.32 15.90 27.79	Limit dBuV 64.96 54.96 64.03 54.03	Over dB -31.64 -39.06 -36.24	Detector QP AVG QP
0.150 No. Mk. 1 * 2 3 4	MH 0.17 0.17 0.19 0.19	eq. Hz 700 700 900 900 980	Level dBuV 23.74 6.32 18.21 2.95	Correct Factor dB 9.58 9.58 9.58 9.58 9.58	Measure- ment dBuV 33.32 15.90 27.79 12.53	Limit dBuV 64.96 54.96 64.03 54.03 62.16	Over dB -31.64 -39.06 -36.24 -41.50	Detector QP AVG QP AVG QP
0.150 No. Mk. 1 * 2 3 4 5	MH 0.17 0.19 0.19 0.19 0.23	eq. 1z 700 700 900 900 980 980	Level dBuV 23.74 6.32 18.21 2.95 20.09	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58	Measure- ment dBuV 33.32 15.90 27.79 12.53 29.67	Limit dBuV 64.96 54.96 64.03 54.03 62.16 52.16	Over dB -31.64 -39.06 -36.24 -41.50 -32.49	Detector QP AVG QP AVG QP
0.150 No. Mk. 1 * 2 3 4 5 6	MH 0.17 0.19 0.19 0.23 0.23	eq. 1z 700 700 900 900 900 980 980 980 920	Level dBuV 23.74 6.32 18.21 2.95 20.09 6.50	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.58	Measure- ment dBuV 33.32 15.90 27.79 12.53 29.67 16.08	Limit dBuV 64.96 54.96 64.03 54.03 62.16 52.16 58.68	Over dB -31.64 -39.06 -36.24 -41.50 -32.49 -36.08	Detector QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 * 2 3 4 5 6 7	MH 0.17 0.19 0.19 0.23 0.23 0.23	eq. 1z 700 700 900 900 900 900 900 900 900 900	Level dBuV 23.74 6.32 18.21 2.95 20.09 6.50 9.95	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58	Measure- ment dBuV 33.32 15.90 27.79 12.53 29.67 16.08 19.55	Limit dBuV 64.96 54.96 64.03 54.03 62.16 52.16 52.16 58.68 48.68	Over dB -31.64 -39.06 -36.24 -41.50 -32.49 -36.08 -39.13	Detector QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 * 2 3 4 5 6 7 8	MH 0.17 0.19 0.19 0.23 0.23 0.23 0.36	eq. 1z 700 700 700 700 700 700 700 70	Level dBuV 23.74 6.32 18.21 2.95 20.09 6.50 9.95 -1.78	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58	Measure- ment dBuV 33.32 15.90 27.79 12.53 29.67 16.08 19.55 7.82	Limit dBuV 64.96 54.96 64.03 54.03 62.16 52.16 58.68 48.68 60.52	Over dB -31.64 -39.06 -36.24 -41.50 -32.49 -36.08 -39.13 -40.86	Detector QP AVG QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 * 2 3 4 5 6 7 8 9	MH 0.17 0.19 0.19 0.23 0.23 0.23 0.36 0.36	eq. tz 700 700 700 700 700 700 700 70	Level dBuV 23.74 6.32 18.21 2.95 20.09 6.50 9.95 -1.78 17.14	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.60 9.60 9.59	Measure- ment dBuV 33.32 15.90 27.79 12.53 29.67 16.08 19.55 7.82 26.73	Limit dBuV 64.96 54.96 64.03 54.03 62.16 52.16 52.16 58.68 48.68 60.52 50.52	Over dB -31.64 -39.06 -36.24 -41.50 -32.49 -36.08 -39.13 -40.86 -33.79	Detector QP AVG QP AVG QP AVG QP AVG

EUT:	SI	MART GLASS	ES	Model Nam	ne :	C8003	37
Temperatur	re: 25	5℃		Relative Hu	umidity:	55%	600
Test Voltag	e: A	AC 240V/60 Hz					1 ser
Terminal:	N	Neutral					-
Test Mode:	U	SB Charging N	Mode			-	683
Remark:	0	only worse case	e is reported	Market Market	2	a	By Contraction
80.0 dBuV							
						QP: AVG:	
						MTU.	
							+
40							
au MMM 0.0	Veryyddig Weryyddig	Kanthulalapapapapapa Ministra ataoniti	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM			MMMM Munh	Milliffunderin peak
	Veryyddig Weryyddig			5		MMM MMM	0000 30.000
0.0 0.150	Veryyddy Meryyddy	0.5 Reading	(MHz)	Measure-		uluum	www.www.www.avg
ФМ ММ 0.0	Freq.				Limit	MMMM Mundham Over	www.www.www.avg
0.0 0.150		Reading	Correct	Measure-	Limit	uluum	www.www.avg
0.0 0.150	Freq.	Reading Level	Correct Factor	Measure- ment		Over dB	30.000
0.0 0.150 No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	dBuV	Over dB -37.71	30.000 Detector
0.0 0.150 No. Mk.	Freq. MHz 0.4100	Reading Level dBuV 10.36	Correct Factor dB 9.58	Measure- ment dBuV 19.94	dBuV 57.65 ·	Over dB -37.71 -36.42	30.000 Detector
0.0 0.150 No. Mk. 1 2	Freq. MHz 0.4100 0.4100	Reading Level dBuV 10.36 1.65	Correct Factor dB 9.58 9.58	Measure- ment dBuV 19.94 11.23	dBuV 57.65 - 47.65 - 56.44 -	Over dB -37.71 -36.42	Detector QP AVG

2 0.4100 1.65 9.58 11.23 47.65 -36.42 AVG 3 0.4740 10.47 9.58 20.05 56.44 -36.39 QP 4 0.4740 4.14 9.58 13.72 46.44 -32.72 AVG 5 0.5020 15.21 9.58 24.79 56.00 -31.21 QP 6 0.5020 9.79 9.58 19.37 46.00 -26.63 AVG 7 0.4860 19.77 9.58 29.35 56.24 -26.89 QP 8 0.4860 18.56 9.58 28.14 46.24 -18.10 AVG 9 0.5980 5.96 9.58 15.54 56.00 -40.46 QP 10 0.5980 -3.77 9.58 5.81 46.00 -40.19 AVG 11 0.5860 11.07 9.58 20.65 56.00 -35.35 QP 12 0.5860 2.85 <th>1</th> <th>0.410</th> <th>00 10.36</th> <th>9.58</th> <th>19.94</th> <th>57.65</th> <th>-37.71</th> <th>QP</th>	1	0.410	00 10.36	9.58	19.94	57.65	-37.71	QP
4 0.4740 4.14 9.58 13.72 46.44 -32.72 AVG 5 0.5020 15.21 9.58 24.79 56.00 -31.21 QP 6 0.5020 9.79 9.58 19.37 46.00 -26.63 AVG 7 0.4860 19.77 9.58 29.35 56.24 -26.89 QP 8 0.4860 18.56 9.58 28.14 46.24 -18.10 AVG 9 0.5980 5.96 9.58 15.54 56.00 -40.46 QP 10 0.5980 -3.77 9.58 5.81 46.00 -40.19 AVG 11 0.5860 11.07 9.58 20.65 56.00 -35.35 QP	2	0.410	00 1.65	9.58	11.23	47.65	-36.42	AVG
5 0.5020 15.21 9.58 24.79 56.00 -31.21 QP 6 0.5020 9.79 9.58 19.37 46.00 -26.63 AVG 7 0.4860 19.77 9.58 29.35 56.24 -26.89 QP 8 0.4860 18.56 9.58 28.14 46.24 -18.10 AVG 9 0.5980 5.96 9.58 15.54 56.00 -40.46 QP 10 0.5980 -3.77 9.58 5.81 46.00 -40.19 AVG 11 0.5860 11.07 9.58 20.65 56.00 -35.35 QP	3	0.474	40 10.47	9.58	20.05	56.44	-36.39	QP
6 0.5020 9.79 9.58 19.37 46.00 -26.63 AVG 7 0.4860 19.77 9.58 29.35 56.24 -26.89 QP 8 * 0.4860 18.56 9.58 28.14 46.24 -18.10 AVG 9 0.5980 5.96 9.58 15.54 56.00 -40.46 QP 10 0.5980 -3.77 9.58 5.81 46.00 -40.19 AVG 11 0.5860 11.07 9.58 20.65 56.00 -35.35 QP	4	0.474	4.14	9.58	13.72	46.44	-32.72	AVG
7 0.4860 19.77 9.58 29.35 56.24 -26.89 QP 8 * 0.4860 18.56 9.58 28.14 46.24 -18.10 AVG 9 0.5980 5.96 9.58 15.54 56.00 -40.46 QP 10 0.5980 -3.77 9.58 5.81 46.00 -40.19 AVG 11 0.5860 11.07 9.58 20.65 56.00 -35.35 QP	5	0.502	20 15.21	9.58	24.79	56.00	-31.21	QP
8 0.4860 18.56 9.58 28.14 46.24 -18.10 AVG 9 0.5980 5.96 9.58 15.54 56.00 -40.46 QP 10 0.5980 -3.77 9.58 5.81 46.00 -40.19 AVG 11 0.5860 11.07 9.58 20.65 56.00 -35.35 QP	6	0.502	20 9.79	9.58	19.37	46.00	-26.63	AVG
9 0.5980 5.96 9.58 15.54 56.00 -40.46 QP 10 0.5980 -3.77 9.58 5.81 46.00 -40.19 AVG 11 0.5860 11.07 9.58 20.65 56.00 -35.35 QP	7	0.486	60 19.77	9.58	29.35	56.24	-26.89	QP
100.5980-3.779.585.8146.00-40.19AVG110.586011.079.5820.6556.00-35.35QP	8	* 0.486	60 18.56	9.58	28.14	46.24	-18.10	AVG
11 0.5860 11.07 9.58 20.65 56.00 -35.35 QP	9	0.598	30 5.96	9.58	15.54	56.00	-40.46	QP
	10	0.598	30 -3.77	9.58	5.81	46.00	-40.19	AVG
12 0.5860 2.85 9.58 12.43 46.00 -33.57 AVG	11	0.586	60 11.07	9.58	20.65	56.00	-35.35	QP
	12	0.586	60 2.85	9.58	12.43	46.00	-33.57	AVG

5. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.247(d)
 - 5.1.2 Test Limit

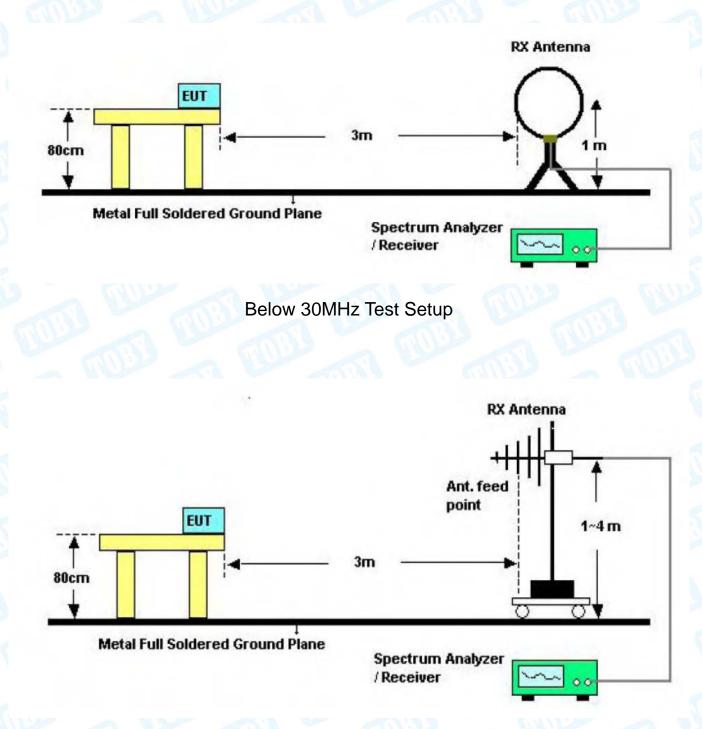
Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

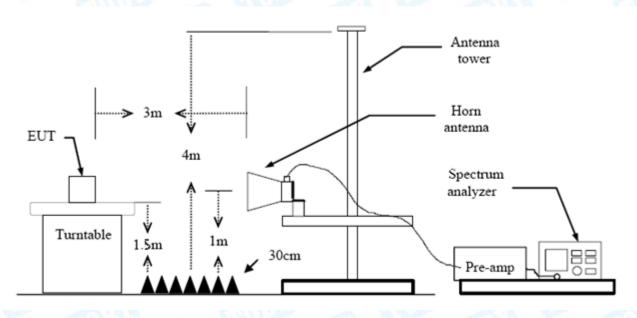
Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)			
(MHz)	Peak (dBuV/m)	Average (dBuV/m)		
Above 1000	74	54		

Note:


(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m)


Report No.: TB-FCC156170 Page: 18 of 45

5.2 Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Report No.: TB-FCC156170 Page: 20 of 45

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

EUT:	SMART GLA	SSES	Model:		C	800	37	
emperature:	25 ℃		Relative H	umidity:	5	5%		
est Voltage:	DC 3V	S GUL		10		Å	2	
Ant. Pol.	Horizontal	5	6119	2	3	11	1	
est Mode:	BLE TX 2402	Mode		202				5
Remark:	Only worse c	ase is reported		A Con	-	-	21	
80.0 dBuV/m								
30	buty have a long have been by		1235		FCC 158	Marg	diation in -6 dB	
-20	50 60 70 80	(MHz)	3	00 400	500	600 7	700 11	D00. (

		Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	244.2321	46.90	-17.69	29.21	46.00	-16.79	QP
2	252.0627	47.58	-17.35	30.23	46.00	-15.77	QP
3	260.1444	48.71	-17.17	31.54	46.00	-14.46	QP
4	263.8190	49.00	-17.08	31.92	46.00	-14.08	QP
5 *	* 272.2776	49.35	-16.88	32.47	46.00	-13.53	QP
6	280.0237	47.91	-16.71	31.20	46.00	-14.80	QP

*:Maximum data x:Over limit !:over margin

Test Voltage: DC 3V Ant. Pol. Vertical Test Mode: BLE TX 2402 Mode Remark: Only worse case is reported 000 dbw/m 000 dbw/m dbw/m 000 dbw/m dbw/m db	EUT:	SMART GLASS	ES M	odel:	C	80037	
Ant. Pol. Vertical Test Mode: BLE TX 2402 Mode Remark: Only worse case is reported 000 dbw/m 000 dbw/m dbw/m 000 dbw/m dbw/m dbw/m 000 dbw/m dbw/m dbw/m dbw/m 000 dbw/m dbw/m dbw/m dbw/m 000 dbw/m dbw/m dbw/m dbw/m 1000 dbw/m dbw/m	Temperature:	25 ℃	R	elative Humio	dity: 5	5%	
Test Mode: BLE TX 2402 Mode Remark: Only worse case is reported 80.0 dBuV/m 0 0<	Test Voltage:	DC 3V		11	(In)	33	
Remark: Only worse case is reported B0.0 dBuV/m 0 FCC 198 3M Radiation 0 0	Ant. Pol.	Vertical				-	al.
B0.0 dBuV/m 60.0 dBuV/m FCC 158 3M Radiation Magin 6.00 Magin 6.00 30 400 5 600 MHz dBuV MHz dBuV MHz dBuV 4 19.7068 4 105.2718 36.36 -21.39 1 159.7844 37.30 -20.04 1 159.7844 37.30 -20.04 1 159.7844 37.30 -20.04 17.26 43.50 46.00 -21.85	Test Mode:	BLE TX 2402 M	ode	MID			
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector 1 49.7068 41.01 -23.94 17.07 40.00 -20.69 QP 3 105.2718 36.36 -21.39 14.97 43.50 -28.53 QP 4 159.7844 37.30 -20.04 17.26 43.50 -26.24 QP	Remark:	Only worse case	e is reported		CIII)		. 6
Mercine 6 dB Mercine 6 dB 1	80.0 dBuV/m						
30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000 No. Mk. Freq. Level Correct Level Measure- Factor Limit Over Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 49.7068 41.01 -23.94 17.07 40.00 -22.93 QP 2 80.0806 42.24 -22.93 19.31 40.00 -20.69 QP 3 105.2718 36.36 -21.39 14.97 43.50 -28.53 QP 4 159.7844 37.30 -20.04 17.26 43.50 -26.24 QP 5 244.2321 41.84 -17.69 24.15 46.00 -21.85 QP	man har and		Martin Martin	5 ×	Å.	Margin -6 o	
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 49.7068 41.01 -23.94 17.07 40.00 -22.93 QP 2 80.0806 42.24 -22.93 19.31 40.00 -20.69 QP 3 105.2718 36.36 -21.39 14.97 43.50 -28.53 QP 4 159.7844 37.30 -20.04 17.26 43.50 -26.24 QP 5 244.2321 41.84 -17.69 24.15 46.00 -21.85 QP		0 60 70 80	(MHz)	300	400 500	600 700	1000.000
1 49.7068 41.01 -23.94 17.07 40.00 -22.93 QP 2 80.0806 42.24 -22.93 19.31 40.00 -20.69 QP 3 105.2718 36.36 -21.39 14.97 43.50 -28.53 QP 4 159.7844 37.30 -20.04 17.26 43.50 -26.24 QP 5 244.2321 41.84 -17.69 24.15 46.00 -21.85 QP	No. Mk. F				Limit	Over	
2 80.0806 42.24 -22.93 19.31 40.00 -20.69 QP 3 105.2718 36.36 -21.39 14.97 43.50 -28.53 QP 4 159.7844 37.30 -20.04 17.26 43.50 -26.24 QP 5 244.2321 41.84 -17.69 24.15 46.00 -21.85 QP	N	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
3 105.2718 36.36 -21.39 14.97 43.50 -28.53 QP 4 159.7844 37.30 -20.04 17.26 43.50 -26.24 QP 5 244.2321 41.84 -17.69 24.15 46.00 -21.85 QP	1 49.	7068 41.01	-23.94	17.07	40.00	-22.93	QP
4159.784437.30-20.0417.2643.50-26.24QP5244.232141.84-17.6924.1546.00-21.85QP	2 80.	0806 42.24	-22.93	19.31	40.00	-20.69	QP
5 244.2321 41.84 -17.69 24.15 46.00 -21.85 QP	3 105	.2718 36.36	-21.39	14.97	43.50	-28.53	QP
	4 159	.7844 37.30	-20.04	17.26	43.50	-26.24	QP
6 * 420.5803 47.74 -12.09 35.65 46.00 -10.35 QP	5 244	.2321 41.84	-17.69	24.15	46.00	-21.85	QP
	6 * 420	.5803 47.74	-12.09	35.65	46.00	-10.35	QP

*:Maximum data x:Over limit !:over margin

Above 1GHz

EU.	Г:	SMART GLASSES	Model:	C80037					
Ten	nperature:	25 ℃	Relative Humidity	55%					
Tes	t Voltage:	DC 3V	and a f	U.S.					
Ant	. Pol.	Horizontal							
Tes	t Mode:	BLE Mode TX 2402 M	BLE Mode TX 2402 MHz						
Rer	mark:	No report for the emiss prescribed limit.	sion which more than 10 d	B below the					
90.0) dBuV/m								
			(RF) FI	C PART 15C (PEAK)					
	2 X		(RF)	CC PART 15C (AVG)					
	1 X								
40									

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.901	34.94	13.44	48.38	54.00	-5.62	AVG
2		4804.210	43.33	13.44	56.77	74.00	-17.23	peak

EUT	:		SMAR	T GLASS	SES	Mode	el:		C80037	
Гem	peratur	e:	25 ℃	60		Relat	ive Hum	idity:	55%	
Test	Voltage):	DC 3V	12	-	100		61	130	
Ant.	Pol.		Vertica	l		0.0	-			2
Fest	Mode:		BLE M	ode TX 2	2402 MH	z	1000	2		
Rem	ark:			ort for th bed limit		on which	more tha	an 10 dB	below the	a
100.0	dBuV/m									
								(RF) FCC	PART 15C (PEA	9
ŀ										
		1 X						(RF) FC	C PART 15C (AV	G)
50		2								
		x								
0.0	00.000 3550		5100.00 f	3650.00 1	1200.00 13	750.00 163	00.00 188	50.00 214	00.00	26500.00

No.	. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.802	43.00	13.44	56.44	74.00	-17.56	peak
2	*	4803.104	29.47	13.44	42.91	54.00	-11.09	AVG

UT:		SMART G	LASSES	Model:		C80037	
emperatu	ire:	25 ℃		Relative Hu	midity:	55%	
est Volta	ge:	DC 3V			Gal		~
nt. Pol.		Horizonta					
est Mode	:	BLE Mode	e TX 2442 MH	z		3 194	
Remark:		No report prescribed		on which more tha	n 10 dB	below the	
100.0 dBuV/m	1						_
					(RF) FCC	PART 15C (PEAK)	-
	1						
50	×				(RF) FC	PART 15C (AVG)	-
50	2 X						
0.0							

No	b. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.856	42.96	13.92	56.88	74.00	-17.12	peak
2	*	4884.896	29.47	13.92	43.39	54.00	-10.61	AVG

EUT	:		SMAR	T GLASSE	S	Model:		C80037
ſem	perature		25 ℃	Sall		Relative	Humidity:	55%
Test	Voltage:		DC 3V		-	211	100	133
\nt	Pol.		Vertica	al	111			
Test	Mode:		BLE N	lode TX 24	42 MHz	011		2 199
Ren	nark:			oort for the ibed limit.	emission	which more	than 10 dB	below the
100.0) dBu∀/m							
							(RF) FCC	PART 15C (PEAK)
		1 X					(BF) FC	C PART 15C (AVG)
50		2						
		x						
0.0								

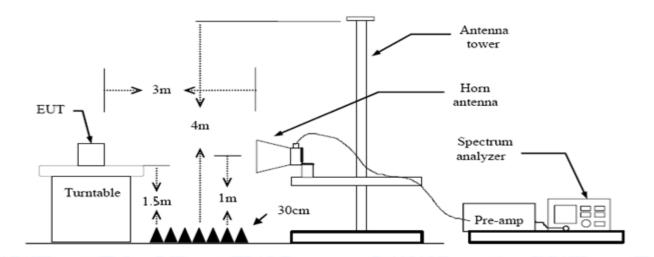
N	lo. Mk	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.652	44.05	13.92	57.97	74.00	-16.03	peak
2	*	4885.000	29.43	13.92	43.35	54.00	-10.65	AVG

EUT:		SMART C	BLASSES	Model:	C80037
Tempera	ature:	25 ℃	Carlos -	Relative Humidity:	55%
Test Vol	tage:	DC 3V		193	133
Ant. Pol	l.	Horizonta			
Test Mo	de:	BLE Mod	e TX 2480 MH	z mil	a luc
Remark	:	No report prescribe		on which more than 10 dB	below the
100.0 dBu	iV/m				
				(RF) FCC	PART 15C (PEAK)
	1				
	×			(RF) FC	C PART 15C (AVG)
50	2 X				
	^				

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.300	43.84	14.36	58.20	74.00	-15.80	peak
2	*	4959.736	29.52	14.36	43.88	54.00	-10.12	AVG

EUT:		SMART	GLASSES	Model:		C80037			
Tempera	ture:	25 ℃	Calls -	Relative Hum	idity:	55%			
Fest Volt	tage:	DC 3V	Les 1		Im	132			
Ant. Pol	•	Vertical			C.	A DE			
Fest Mo	de:	BLE M	ode TX 2480 MH	(2480 MHz					
Remark:			ort for the emission of the	on which more than	hich more than 10 dB below the				
100.0 dBu	V/m								
					(RF) FCC	PART 15C (PEAK)			
	1								
	×				(RF) FC	C PART 15C (AVG)			
50	2 X								
	^								
0.0									

Ν	lo. Mk	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.036	43.81	14.36	58.17	74.00	-15.83	peak
2	*	4959.104	29.57	14.36	43.93	54.00	-10.07	AVG



6. Restricted Bands Requirement

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.247(d) FCC Part 15.205
 - 6.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)					
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)				
2310 ~2390	74	54				
2483.5 ~2500	74	54				

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

(1) Radiation Test

ulau		51	1 X					10.00			22.23			6		
EUT:			SM	ART	GLAS	SES	2	Μ	odel:			C	280037	7		9
Temp	peratu	ire:	25°	С				R	elativ	e Hum	idity:	5	55%			
Test	Voltag	ge:	DC	3V	2		(1)			-			-	1	3	
Ant.	Pol.		Hor	izon	ital					100	20					
Test	Mode	•	BLE	E Mc	ode TX	2402	MHz	1			1	19				6
Rema	ark:		N/A							-		20	1	6		
100.0	dBuV/m															
														3		
													}	ř f		
											(BF) FCC PA	RT 15C F	PEAK)		
_																
50											(H	F) FCL F	PART 15C			
												4 ×				
												2		1		
Ē												×				
_																
_																
0.0																
2312	2.000 23	22.00	2332	2.00	2342.00	2352	2.00 2	362.00	2372	2.00 23	82.00	2392.00	D	24	12.00	MHz
					Read	ing	Corr	ect	Mea	asure-						
No.	. Mk.	F	Freq.		Lev		Fac	tor	m	ent	Lin	nit	Ove	r		
		1	MHz		dBu	V	dB/r	n	dB	uV/m	dBu	ıV/m	dB		Dete	ctor
1	*	240	2.10)0	84.1	13	0.8	2	84	4.95	Funda	mental	Frequen	су	A١	/G
2		239	0.00)0	29.9	96	0.7	7	30	0.73	54	.00	-23.	27	A١	/G
3	Х	240	2.30)0	88.9)1	0.8	2	89	9.73	Fundar	mental	Frequen	су	pe	ak
4		239	0.00)0	41.5	58	0.7	7	42	2.35	74	.00	-31.	65	pe	ak

			_			_						
EUT:	•		SMA	RT GLAS	SSES	N	lodel:			C8003	37	11
Tem	peratu	re:	25° ℃	6	0.197	R	elativ	e Hu	midity:	55%		
Test	Voltag	ge:	DC 3	V								
Ant.	Pol.		Vertic	al		MU					and the	
Test	Mode	:	BLE I	Mode T>	(2402 M	1Hz	5	1011	100	~	AND A	
Rem	ark:		N/A	V				-				
100.0	dBuV/m											
Γ												
											4 ×	
									(BF)	FCC PART 15C	1.	
											3	
											Ă	
50									(RF) FCC PART 15		
										1 X		
										2		
										×	M	M
-												
-												
0.0												
231	12.000 23	22.00	2332.00	2342.00	2352.00	2362.00	2372	2.00	2382.00	2392.00	2412.0	U MH
No	. Mk.	Fr	eq.	Readi Leve	-	orrect actor		sure ent	- Limi	t Ove	er	
			Hz	dBuV		B/m		uV/m	dBuV			tecto
1		2390		40.9	u	.77		.73	74.0			eak
2		2390		28.7		.77		0.48	54.0			VG
3		2402		63.3		.82		.14		ental Freque		VG
		2.02		00.01	- 0							

82.02

0.82

82.84

2402.300

4

Х

peak

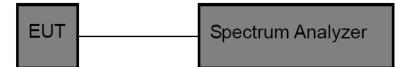
Fundamental Frequency

EUT:				SMART GLASSES					Model:				C800	37	8
ſem	perat	ture):	25 ℃	6	37.6	3		Relativ	/e H	umidi	ity:	55%		2
ſest	Volta	age	:	DC 3	V		-				-	110	198		
۹nt.	Pol.			Horiz	ontal	~	all a	1		<	4	6	0	2	
ſest	Mod	e:		BLE	Mode T	X 248	80 MHz		m						
Rem	ark:			N/A			-		6			20	51		1
100.0	dBuV	/m													
Γ			3 X]
-			x												1
											(B	F) FCC PA	ART 15C (PE	AK)	
			X												
			\bigwedge										PART 15C (A	VCI	
50			+									nr j r c c	FANT TSC P	, vuj	
			2 X												
		J													
							-			\sim				·	
		_													
0.0	67.000	2477	00 3	2487.00	2497.00	2507.	00 2517	00	2527.00	2	537.00	2547.0	0	2567.00	
		2411.		.407.00	2437.00	2501.	00 2511	.00	2321.00	2.	337.00	2347.0		2307.00	
		м.	-		Read		Corre		Meas		Lir	nit	Over		
	No.	IVIK		req.	Lev		Facto	or	mer						
				ИНz	dBu		dB/m		dBu∖		dB	uV/m	dB	Dete	
1			248	0.000	69.	03	1.15		70.1	18	Funda	mental	Frequenc	y A\	/G
2			248	3.500	41.	38	1.17		42.	55	54	1.00	-11.4	5 A\	/G
3	1	k	247	9.800	89.	48	1.15		90.6	63	Funda	mental	Freauenc	v pe	ak

EUT:			SI	SMART GLASSES 25℃				M	odel:				C80037	-	
Tempera	atur	e:	25	°C	0	-		R	elativ	e Hu	midity	' :	55%		
Test Vol			D	C 3V	,				22			10	Car		
Ant. Po			Ve	ertica	al				-	-		10		-	
Test Mo					lode T	X 248	BO MH	z	<		18		~ 5		1
Remark	:		N/	A	VS			1			0	611			5
100.0 dB	uV/m														
		1													
		x													
											0	RF) FCC	PART 15C (PE	AK)	
		X										-			
			з												
50		$\left \right $	×									(RF) FC	C PART 15C (A	VG)	
50		/ _ \	4												
	_/														
			~								<u> </u>				
0.0															
2467.000	0 2477	.00	2487	.00	2497.00	250	7.00	2517.00	2523	7.00	2537.00	2547	.00	2567.00	MHz
					Read	ding	Cor	rect	Mea	sure	-				
No.	Mk.	F	req		Lev	-	Fac	ctor	m	ent	Lir	nit	Over		
		Ν	ИНz		dBu	١V	dB/	m	dB	uV/m	dB	uV/m	dB	Detect	ог
1 '	*	247	9.8	00	89.4	48	1.1	5	90).63	Fundan	nental	Frequency	pea	k
2	Х	248	0.0	00	69.	03	1.1	5	70).28	Fundan	nental	Frequency	AVC	3
3		248	3.5	00	56.	07	1.1	7	57	.24	74	1.00	-16.76	pea	k
4		248	3.5	00	41.	38	1.1	7	42	2.55	54	1.00	-11.45	AVC	3

(2) Conducted Test

	SMART C	GLASSES	Model:	C80037
erature:	25 ℃		Relative Humidity	/: 55%
oltage:	DC 3V			
lode:	BLE Mod	e TX 2402MHz	z / BLE Mode TX 2480	MHz
·k:	The EUT	is programed i	in continuously transm	itting mode
🔆 Agilent	15:57:20 Jun	25, 2017		Marker
Ref 10 dBm	a Atton	20 dB	Mkr1 2.40200 GH -1.25 dBm	
Peak		20 dB		Select Marker
Log 10				
dB/ Offst Ma	arker			Norma
1 2.4	402000000	GHz		
DI -1	.25 dBm	4 	man promised in the	Delta
-21.2 dBm				Delta Pair
				(Tracking Ref) Ref <u>Delta</u>
Center 2.35 #Res BW 1		#VBW 300 kHz	Span 100 MH Sweep 10.36 ms (401 pts)	z Span Pair
Marker 1	Trace Type (1) Freq	X Axis	Amplitude	Span <u>Center</u>
2	(1) Freq	2.40000 GI	Hz -39.17 dBm	0"
		2.40000 GI 2.39000 GI	Hz -39.17 dBm Hz -57.69 dBm	Off
2 3	(1) Freq (1) Freq	2.40000 GI 2.39000 GI	Hz -39.17 dBm Hz -57.69 dBm	Off More
2 3	(1) Freq (1) Freq	2.40000 GI 2.39000 GI	Hz -39.17 dBm Hz -57.69 dBm	
2 3	(1) Freq (1) Freq	2.40000 GI 2.39000 GI	Hz -39.17 dBm Hz -57.69 dBm	More
2 3	(1) Freq (1) Freq	2.40000 Gi 2.39000 Gi 2.35300 Gi	Hz -39.17 dBm Hz -57.69 dBm	More 1 of 2
2 3 4	(1) Freq (1) Freq (1) Freq (1) Freq	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.35300 Gi	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm	More 1 of 2 Marker
2 3 4 ₩ Agilent Ref 10 dBm Peak	(1) Freq (1) Freq (1) Freq (1) Freq	2.40000 Gi 2.39000 Gi 2.35300 Gi	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm	More 1 of 2 Marker Select Marker
2 3 4 ₩ Agilent Ref 10 dBm	(1) Freq (1) Freq (1) Freq 15:58:51 Jun ;	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.35300 Gi	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm	More 1 of 2 Marker Select Marker
2 3 4 Agilent Ref 10 dBm Peak Log 10 dB/	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.35300 Gi	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm	More 1 of 2 Marker Select Marker
Agilent Ref 10 dBm Peak Log 10 dB/ Offst 1	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.35300 Gi 25, 2017 20 dB	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u>
2 3 4 Agilent Ref 10 dBm Peak Log 10 dB/ Offst 1 2 4 Agilent	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.3540 Gi 2.35400 Gi 2.354000 Gi 2.35400 Gi 2.35400 Gi 2.35400 Gi 2.35400 Gi 2.35	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u>
2 3 4 Ref 10 dBm Peak Log 10 dB/ Offst 1 4 B U -19.9	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten ↓ artker 480000000	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm	More 1 of 2 Marker Select Marker 1 2 3 4 Norma Delta
2 3 4 X Agilent Ref 10 dBm Peak Log 10 dB/ Offst 1 2,4 DI 0	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten ↓ artker 480000000	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.3540 Gi 2.35400 Gi 2.354000 Gi 2.35400 Gi 2.35400 Gi 2.35400 Gi 2.35400 Gi 2.35	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Delta Pair (Tracking Ref)
2 3 4 Ref 10 dBm Peak Log 10 dB/ Offst 1 4 B U -19.9	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten ↓ Atten ↓ Atten ↓ Atten ↓ Atten ↓ Atten ↓ Atten ↓ Atten	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.3540 Gi 2.35400 Gi 2.354000 Gi 2.35400 Gi 2.35400 Gi 2.35400 Gi 2.35400 Gi 2.35	Hz -39.17 dBm Hz -57.69 dBm Hz -56.68 dBm Mkr1 2.48000 GH 0.117 dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Delta Pair (Tracking Ref) Ref <u>Delta</u>
2 3 4	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten ↓	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.35400 Gi 2.354000 Gi 2.35400 Gi 2.354000 Gi 2.35400 Gi 2.354000 Gi 2.354000 Gi 2.354000 Gi 2.354000 Gi 2.354000 Gi 2.3540000 Gi 2.354000000000000000000000000000000000000	Hz39.17 dBm Hz57.69 dBm Hz56.68 dBm Mkr1 2.48000 GH 0.117 dBm 0.117 dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Delta Pair (Tracking Ref) Ref <u>Delta</u>
2 3 4	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten 15:58:51 Jun : n Atten 15:58:51 Jun : 15:58:51 Jun : 22 GHz 00 kHz Trace Type (1) Freq	2.40000 Gi 2.39000 Gi 2.35300 Gi 25, 2017 20 dB GHz 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hz39.17 dBm Hz57.69 dBm Hz56.68 dBm Mkr1 2.48000 GH 0.117 dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Delta Pair (Tracking Ref) Ref Delta Span Pair
2 3 4 Ref 10 dBm Peak Log 10 dB/ Offst 1 dB DI -19.9 dBm Center 2.52 #Res BW 1 Marker 1	(1) Freq (1) Freq (1) Freq 15:58:51 Jun : n Atten ↓	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.48030 Gi 2.48030 Gi 2.48030 Gi 2.48030 Gi 2.48030 Gi 2.48030 Gi 2.50000 Gi	Hz39.17 dBm Hz57.69 dBm Hz56.68 dBm Mkr1 2.48000 GH 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 12 -0.117 dBm 12 -0.126 dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Delta Pair (Tracking Ref) Ref Delta Span Pair
2 3 4	(1) Freq (1) Freq (1) Freq 15:58:51 Jun 3 n Atten Atten Atten Atten 22 GHz 00 kHz Trace Type (1) Freq (1) Freq (1) Freq (1) Freq	2.40000 Gi 2.39000 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.35300 Gi 2.48030 Gi 2.48030 Gi 2.48030 Gi 2.48030 Gi 2.48030 Gi 2.48030 Gi 2.50000 Gi	Hz39.17 dBm Hz57.69 dBm Hz56.68 dBm Mkr1 2.48000 GH 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 0.117 dBm 12 -0.117 dBm 12 -0.126 dBm	More 1 of 2 Marker Select Marker 1 2 3 4 Norma Delta Delta Pair (Tracking Ref) Ref <u>Delta</u> Span Pair Span <u>Center</u>



7. Bandwidth Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 7.1.2 Test Limit

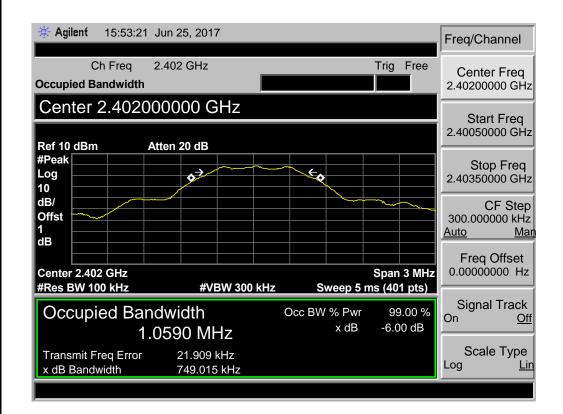
FCC	FCC Part 15 Subpart C(15.247)/RSS-247								
Test Item	Limit	Frequency Range(MHz)							
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5							

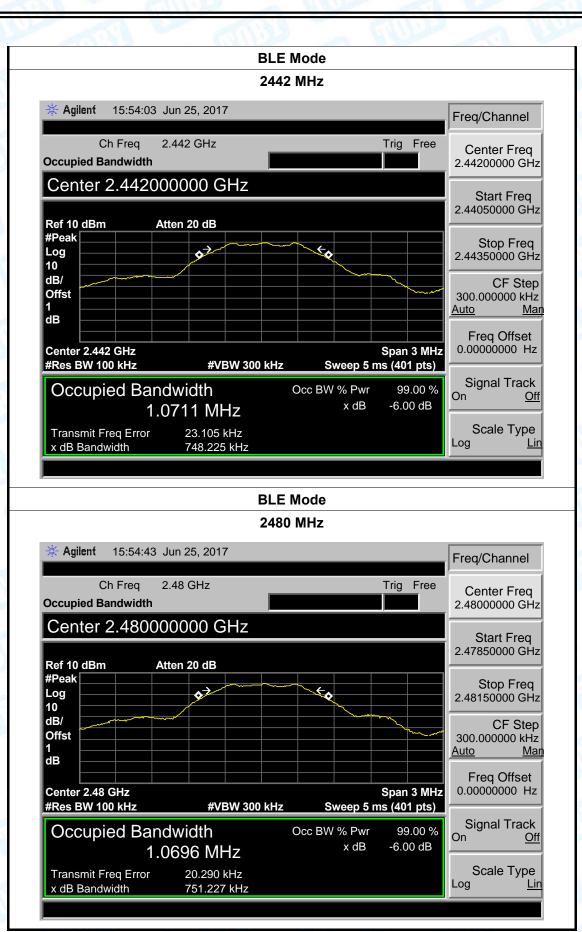
7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

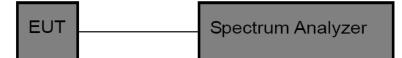
7.4 EUT Operating Condition


The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.


7.5 Test Data

EUT:	SMA	RT GLASSES	Model:	C80037				
Temperature:	25 ℃		Relative Humidity:	55%				
Test Voltage:	DC 3	3V	MUL					
Test Mode:	BLE	TX Mode						
Channel freque	ency	6dB Bandwidth	99% Bandwidth	Limit				
(MHz)		(kHz)	(kHz)	(kHz)				
2402		749.015	1059.0					
2442		748.225	1071.1	>=500				
2480	751.227		1069.6					
	BLE Mode							

2402 MHz



8. Peak Output Power Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (b)(3)
 - 8.1.2 Test Limit

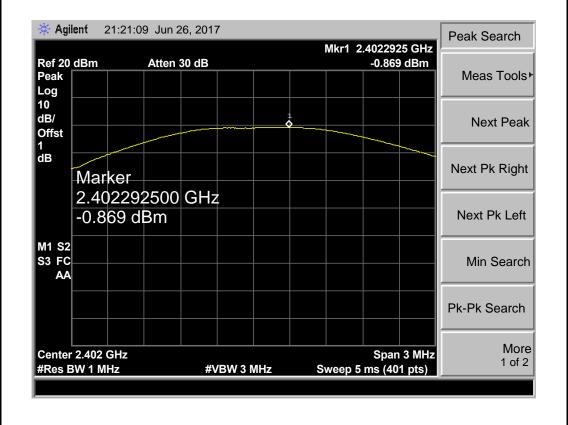
FCC Par	FCC Part 15 Subpart C(15.247)/RSS-247							
Test Item	Limit	Frequency Range(MHz)						
Peak Output Power	1 Watt or 30 dBm	2400~2483.5						

8.2 Test Setup

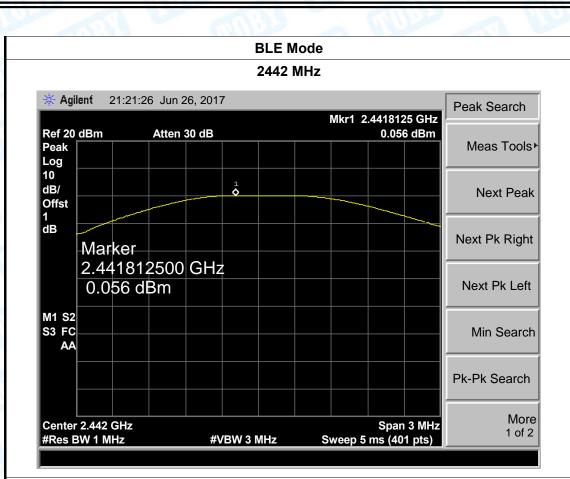
8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

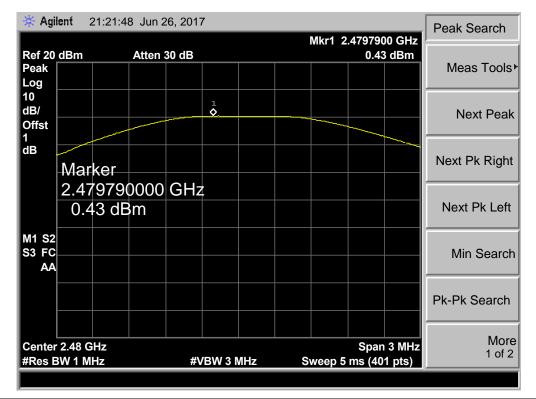

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.



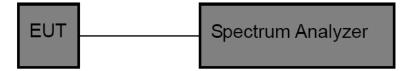
8.5 Test Data

EUT:	SMART GLASSES		Model:	C80	C80037	
Temperature:	25 ℃		Relative Humidi	ty: 55%		
Test Voltage:	DC 3V		mue		Bee	
Test Mode:	BLE TX Mode					
Channel frequen	cy (MHz)	Test Res	ult (dBm)	Limit	(dBm)	
2402		-0.869				
2442		0.056		30		
2480		0.430				
		BLE	Mode			
		2402	MHz			



BLE Mode

2480 MHz



9. Power Spectral Density Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (e)
 - 9.1.2 Test Limit

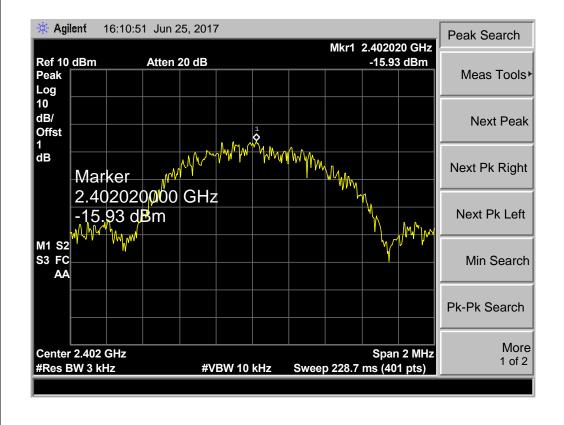
FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

9.2 Test Setup

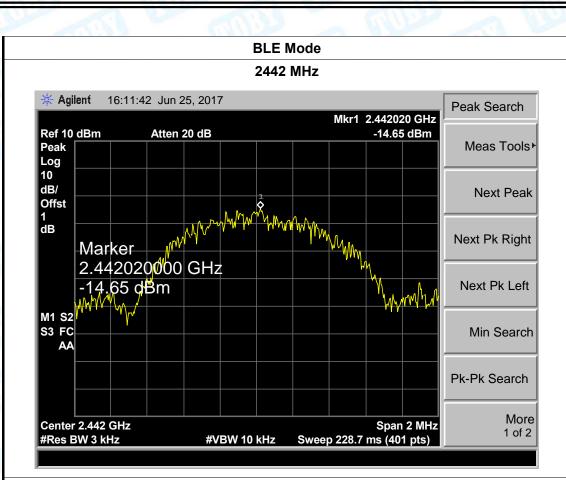
9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

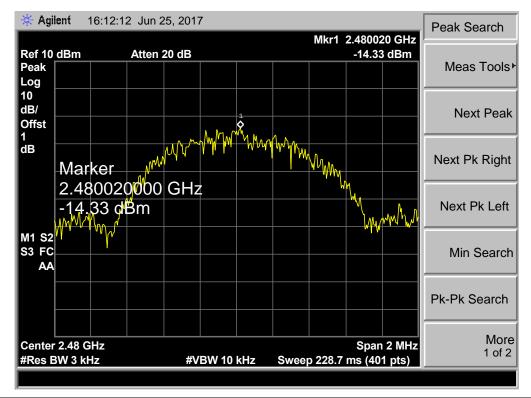

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.



9.5 Test Data

EUT:	SMART GLASSES		Model:	Model:		C80037	
Temperature:	25 ℃		Relative Humidity:		55%		
Test Voltage:	DC 3V		2		- 1	20197	
Test Mode:	BLE TX M	ode	~ 6W		0		
Channel Frequency (MHz)		Power Density (dBm)		Lim	Limit		
				(dBm)		Result	
2402		-1	15.93				
2442 2480		-14.65		8	8		
		-14.33		-			
		BLE	E Mode	I			
		240	2 MHz				



BLE Mode

2480 MHz

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 2dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

	Antenna Type
	Permanent attached antenna
3	Unique connector antenna
	Professional installation antenna

----END OF REPORT-----