

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM180900856602 Page: 1 of 46

TEST REPORT

Application No.:	SZEM1809008566CR
Applicant:	Guangdong Shiji Technology Co.,Ltd
Address of Applicant:	NO.8, Road 5, Dachewei Area,Yongxin Industrial Zone Lianshang Town, Chenghai District Shantou China
Equipment Under Test (EUT):
EUT Name:	RC Quadcopter
Model No.:	Please refer to section 2 🔺
*	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.
FCC ID:	2ALUJZ5GPS1080PA
Standard(s) :	47 CFR Part 15, Subpart C 15.249
Date of Receipt:	2018-09-26
Date of Test:	2018-09-28 to 2018-10-24
Date of Issue:	2018-10-24
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180900856602 Page: 2 of 46

Revision Record					
Version	Chapter	Date	Modifier	Remark	
01		2018-10-24		Original	

Authorized for issue by:		
	Bive chen	
	Bill Chen /Project Engineer	
	Evic Fu	
	Eric Fu /Reviewer	

Report No.: SZEM180900856602 Page: 3 of 46

2 Test Summary

Radio Spectrum Technical Requirement					
Item	Standard	Method	Requirement	Result	
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass	

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass		
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass		
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass		
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass		

Declaration of EUT Family Grouping:

Model No.: Z5GPS1080P, S20W720P-D(GPS), S20W1080P(GPS), S20W1080P-5G(GPS), S30W720P-D(GPS), S30W1080P(GPS), S30W1080P-5G(GPS), S70W720P-D(GPS), S70W1080P(GPS), S70W1080P-5G(GPS), X300S1, X300S1W, X300S1W720P, X300S1W720P-D, X300S2, X300S2W, X300S2W720P, X300S2W720P-D, X300VR, S20VR, S30VR, S70VR, Z5GPS720P, Z5GPS1080P, Z5GPS1080P-5G, Z7GPS720P, Z7GPS1080P, Z7GPS1080P-5G, Z7 PRO, F11GPS1080P-5G, F11 PRO, X300-1, X300-1S, X300-1C, X300-1CW, X300-2, X300-2S, X300-2C, X300-2CW, T20C, T20CW, T20CW-F, T20VR, T30C, T30CW, T30CW-F, T30VR, T70C, T70CW, T70CW-F, T70VR, X200-1, X200-2, SJ200, SJ230, SJ250, SJ2001, SJ2012, SJ280, SJ997, SJ998, Z5-C01, Z5-C02, Z7-C01, Z7-C02, F11-C01, F11-C02, W1003, VR001, C1001, XT280708, XT280710, W311RA, W311RAW407VR, S70-D01, S20-D01, S30-D01, Z5-D01, Z7-D01, F11-D01

Only the model Z5GPS1080P was tested, since the electrical circuit design, layout, components used, internal wiring and functions were identical for the above models, with only difference on colour, appearance and packaging.

Report No.: SZEM180900856602 Page: 4 of 46

3 Contents

			Page
1	COVER PAGE		1
0			0
2	2 1E51 50MMART		3
3	CONTENTS		4
4	GENERAL INFORM	1ATION	5
	4.1 DETAILS OF E.L	J.T	5
		F SUPPORT UNITS	
	4.3 MEASUREMENT	UNCERTAINTY	6
		٨	
		M STANDARDS	
	4.7 ABNORMALITIES	S FROM STANDARD CONDITIONS	7
5	5 EQUIPMENT LIST.		8
6	6 RADIO SPECTRUN	I TECHNICAL REQUIREMENT	11
	6.1 ANTENNA REOL	JIREMENT	
		ement:	
7		MATTER TEST RESULTS	12
'			
		ТН	
		ration	
		Diagram ent Procedure and Data	
	7.2 FIELD STRENGT	TH OF THE FUNDAMENTAL SIGNAL (15.249(A))	12
		ration	
		Diagram	
		ent Procedure and Data	
	7.3 RESTRICTED BA	AND AROUND FUNDAMENTAL FREQUENCY	26
		ration	
		Diagram	
		ent Procedure and Data	
		SIONS	
		ration	
		Diagram ent Procedure and Data	
8	B PHOTOGRAPHS		46
	8.1 TEST SETUP		46
	8.2 EUT CONSTRUC	CTIONAL DETAILS (EUT PHOTOS)	46

Report No.: SZEM180900856602 Page: 5 of 46

4 General Information

4.1 Details of E.U.T.

Power supply:	Rechargeable battery DC3.7V ,300mAh	
	charge by DC5V for TX	
Operation Frequency:	2402MHz to 2478MHz	
Modulation Type:	GFSK	
Number of Channels:	16	
Antenna Type:	Integral	
Antenna Gain:	2dBi	

Operation Frequency each of channel

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	5	2424	9	2444	13	2464
2	2409	6	2429	10	2449	14	2469
3	2414	7	2434	11	2454	15	2474
4	2419	8	2440	12	2459	16	2478

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH1)	2402MHz
The Middle channel(CH8)	2440MHz
The Highest channel(CH16)	2478MHz

4.2 Description of Support Units

The EUT has been tested as an independent unit.

Report No.: SZEM180900856602 Page: 6 of 46

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power	± 0.75dB
5	RF power density	± 2.84dB
6	Conducted Spurious emissions	± 0.75dB
7	PE Dedicted newer	± 4.5dB (below 1GHz)
/	RF Radiated power	± 4.8dB (above 1GHz)
8	Dedicted Sourieus emission test	± 4.5dB (Below 1GHz)
0	Radiated Spurious emission test	± 4.8dB (Above 1GHz)
9	Temperature test	± 1 ℃
10	Humidity test	± 3%
11	Supply voltages	± 1.5%
12	Time	± 3%

Report No.: SZEM180900856602 Page: 7 of 46

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0006.

IC#: 4620C.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180900856602 Page: 8 of 46

5 Equipment List

20dB Bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2018-09-25	2019-09-24	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2018-09-27	2019-09-26	
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM031-02	2018-07-12	2019-07-11	
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A	
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2018-09-27	2019-09-26	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2018-09-25	2019-09-24	

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	2018-07-12	2019-07-11
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2018-09-25	2019-09-24
Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEM004-11	2018-09-27	2019-09-26
Pre-amplifier (18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2018-09-25	2019-09-24
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

Report No.: SZEM180900856602 Page: 9 of 46

Restricted Band Around Fundamental Frequency							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12		
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM026-01	2018-07-12	2019-07-11		
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01		
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26		
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12		
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16		
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2018-09-25	2019-09-24		
Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEM004-11	2018-09-27	2019-09-26		
Pre-amplifier (18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01		
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01		
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2018-09-25	2019-09-24		
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21		
Band filter	N/A	N/A	SEM023-01	N/A	N/A		

Radiated Emissions						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12	
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM026-01	2018-07-12	2019-07-11	
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01	
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26	
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12	
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16	
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2018-09-25	2019-09-24	

Report No.: SZEM180900856602 Page: 10 of 46

Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEM004-11	2018-09-27	2019-09-26	
Pre-amplifier (18-26GHz)	Rohde & Schwarz	rz CH14-H052 SEM005-17		2018-04-02	2019-04-01	
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01	
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2018-09-25	2019-09-24	
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21	
Band filter	N/A	N/A	SEM023-01	N/A	N/A	

RE in Chamber					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04
MXE EMI Receiver (20Hz-8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2018-09-25	2019-09-24
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM025-01	2018-07-12	2019-07-11

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2018-09-27	2019-09-26
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2018-09-27	2019-09-26
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2018-09-27	2019-09-26
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2018-04-08	2019-04-07

Report No.: SZEM180900856602 Page: 11 of 46

6 Radio Spectrum Technical Requirement

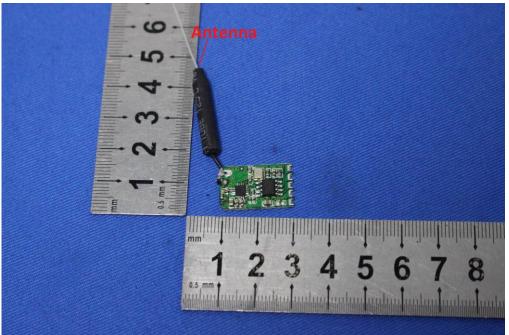
6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 Limit:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently

attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

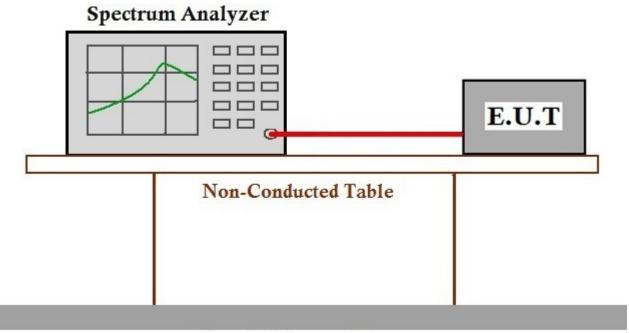
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Report No.: SZEM180900856602 Page: 12 of 46

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

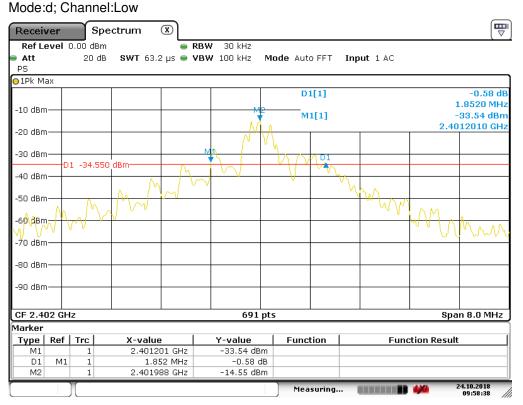

Test Requirement	47 CFR Part 15, Subpart C 15.215
Test Method:	ANSI C63.10 (2013) Section 6.9
Limit:	N/A

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:24.6 °CHumidity:50.8 % RHAtmospheric Pressure:1010mbarTest moded:TX mode_Keep the EUT in transmitting with modulation mode.

7.1.2 Test Setup Diagram

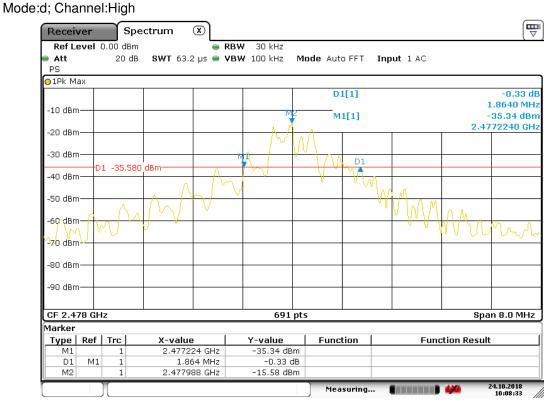

Ground Reference Plane

7.1.3 Measurement Procedure and Data

Test channel	20dB bandwidth (MHz)	Results
Lowest	1.852	Pass
Middle	1.910	Pass
Highest	1.864	Pass

Report No.: SZEM180900856602 Page: 13 of 46

Date:24.0CT.2018 09:58:37


Report No.: SZEM180900856602 Page: 14 of 46

D :-			ectrum	×							Ē
Receiv				_							
RefL Att PS	evel	0.00 dBn 20 dB		_	(BW 30 kH) /BW 100 kH)		de Auto I	FFT In	put 1 AC		
)1Pk M	ах										
-10 dBm)					мр	D1[-			0.68 dB 1.9100 MH: 33.22 dBn
In					M	1.	ղ ուլ	11			91900 GH:
-20 dBm					MI	M		51			
-30 dBn -40 dBn	D	1 -33.51	0 dBm	۵۵			77	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
-40 dBn		Δ	M		\sim		4	0000	Manar		MAL
∖ <u>/ı</u> -60 dBif	md	MΜ							~ (V V	WY Y	<u> </u>
-70 dBn	n										
-80 dBr											
-90 dBn											
CF 2.4	4 GHz	:			6	91 pts				Spa	n 8.0 MHz
1arker											
Type M1	Ref	1 Trc	X-value 2,4391		<u>Y-value</u> -33.22	·	Functio	on	Func	tion Result	
D1	M1	1		1 MHz		8 dB					
M2		1	2.43997		-13.51						

Date:24.0CT.2018 10:05:50

Report No.: SZEM180900856602 Page: 15 of 46

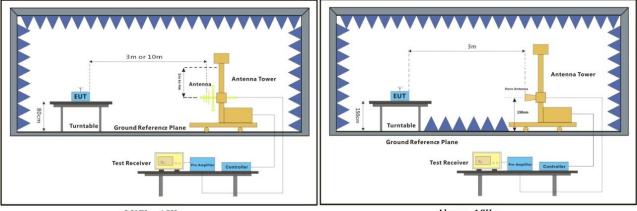
Date: 24.0 CT.2018 10:08:33

Report No.: SZEM180900856602 Page: 16 of 46

7.2 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement47 CFR Part 15, Subpart C 15.249(a)Test Method:ANSI C63.10 (2013) Section 6.5&6.6Measurement Distance:3mLimit:

Frequency	Limit (dBuV/m @3m)	Remark
	94.0	Average Value
2400MHz-2483.5MHz	114.0	Peak Value


Report No.: SZEM180900856602 Page: 17 of 46

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:24.6 °CHumidity:51.5 % RHAtmospheric Pressure:1010mbarTest moded:TX mode_Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.2.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

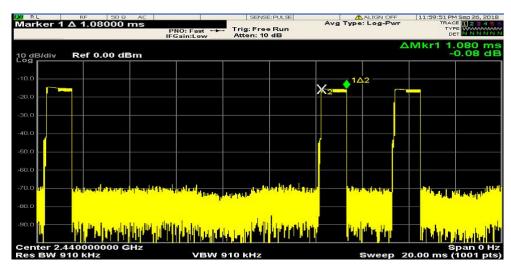
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

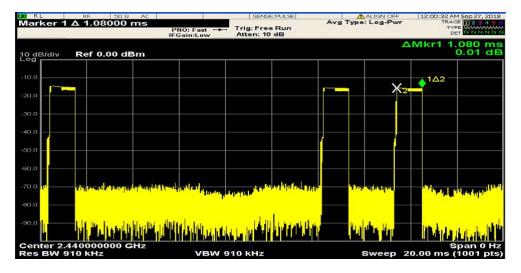
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

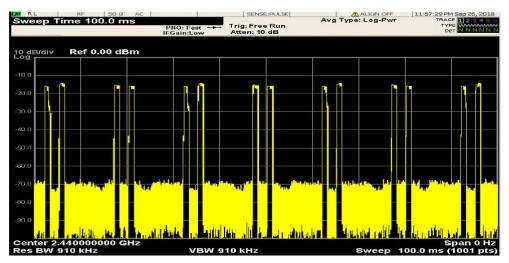
j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

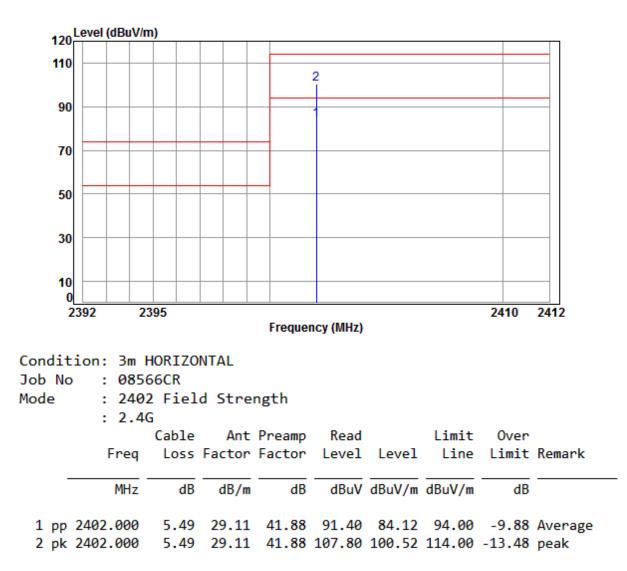
Report No.: SZEM180900856602 Page: 18 of 46


Average value:

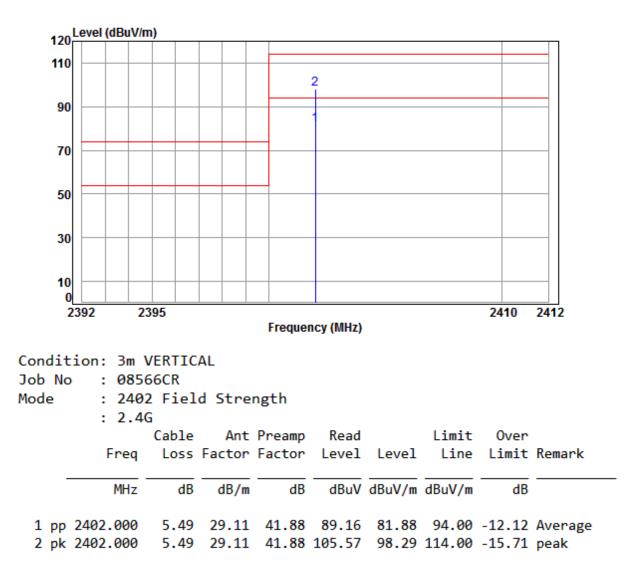

	Average value=Peak value + PDCF
Calculate Formula:	PDCF=20 log(Duty cycle)
	Duty cycle= T on time / T period
Test data:	Ton time =15.12ms
	T period =100ms
	PDCF value= -16.41dB


Duty cycle test plots:

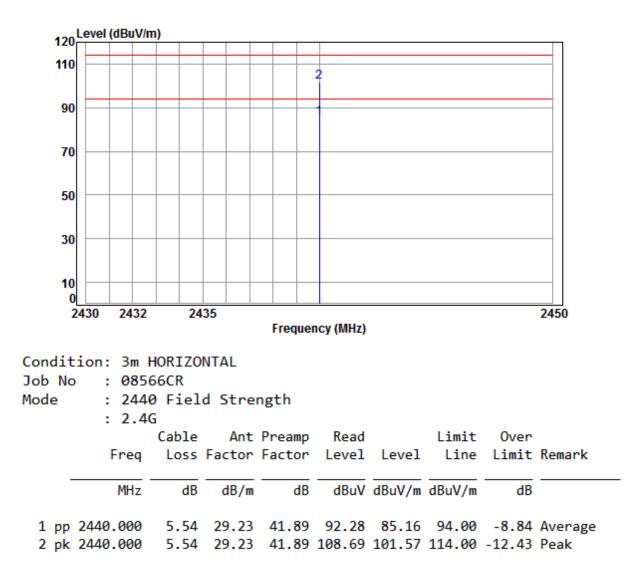
Report No.: SZEM180900856602 Page: 19 of 46



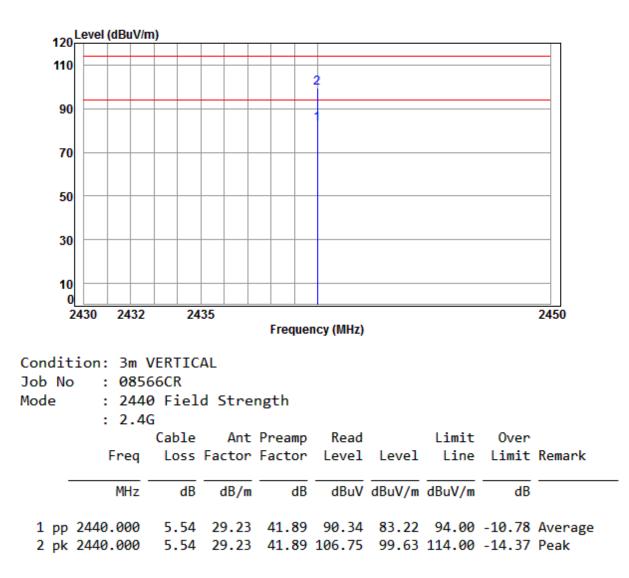
Report No.: SZEM180900856602 Page: 20 of 46


Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

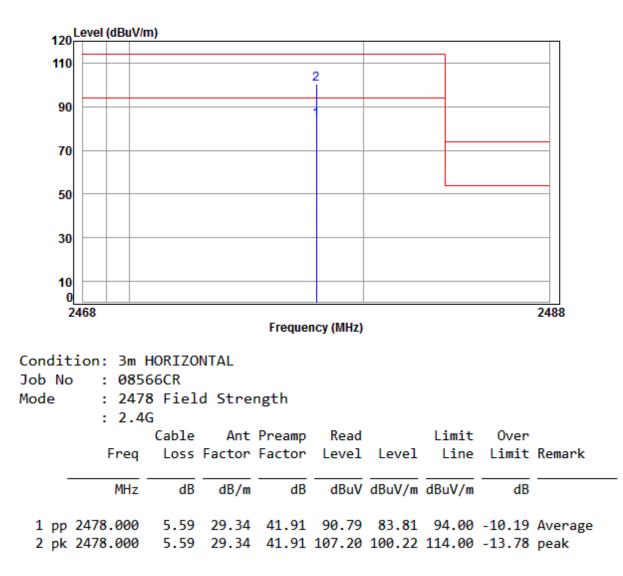
Report No.: SZEM180900856602 Page: 21 of 46


Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

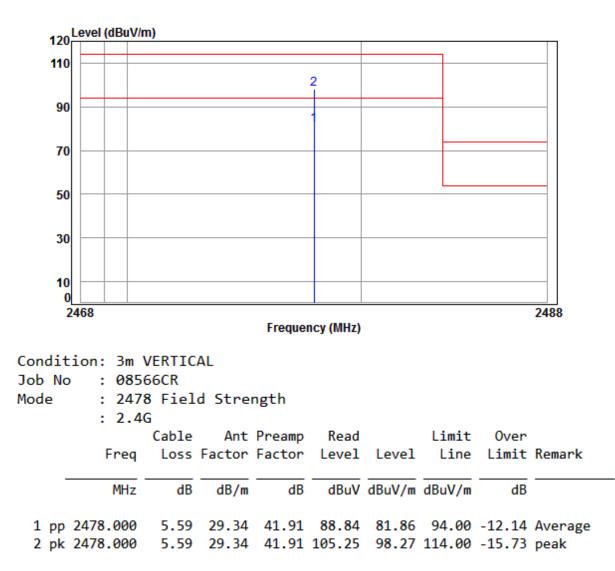
Report No.: SZEM180900856602 Page: 22 of 46


Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle

Report No.: SZEM180900856602 Page: 23 of 46


Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

Report No.: SZEM180900856602 Page: 24 of 46


Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Report No.: SZEM180900856602 Page: 25 of 46

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:High

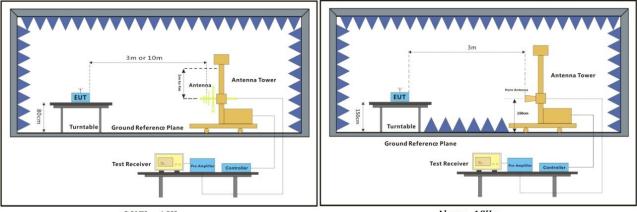
Report No.: SZEM180900856602 Page: 26 of 46

7.3 Restricted Band Around Fundamental Frequency

Test Requirement47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209Test Method:ANSI C63.10 (2013) Section 6.4&6.5&6.6Measurement Distance:3mLimit:

Frequency	Limit (dBuV/m @3m)	Remark		
30MHz-88MHz	40.0	Quasi-peak Value		
88MHz-216MHz	43.5	Quasi-peak Value		
216MHz-960MHz	46.0	Quasi-peak Value		
960MHz-1GHz	54.0	Quasi-peak Value		
Above 1GHz	54.0	Average Value		
Above 1GHz	74.0	Peak Value		

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.


Report No.: SZEM180900856602 Page: 27 of 46

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:22.3 °CHumidity:49.1 % RHAtmospheric Pressure:1010mbarTest moded:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

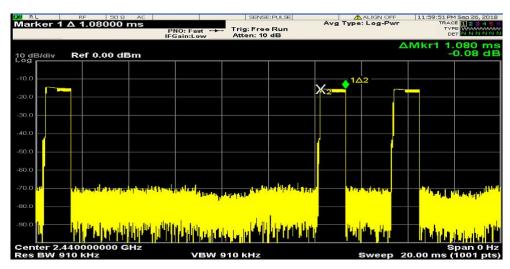
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

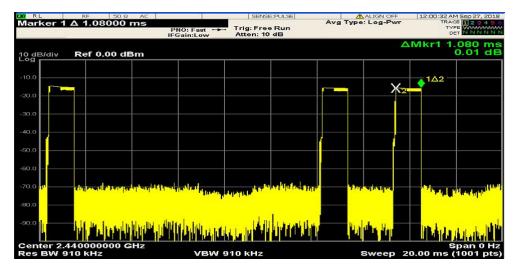
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

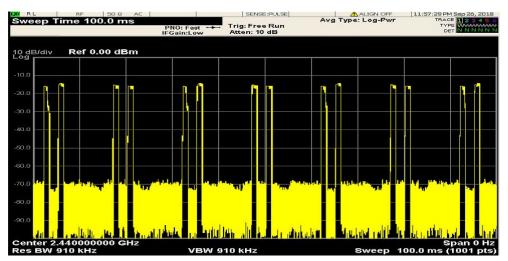
j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

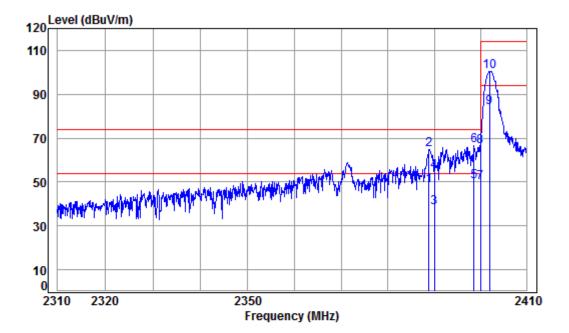
Report No.: SZEM180900856602 Page: 28 of 46


Average value:


	Average value=Peak value + PDCF
Calculate Formula:	PDCF=20 log(Duty cycle)
	Duty cycle= T on time / T period
	Ton time =15.12ms
Test data:	T period =100ms
	PDCF value= -16.41dB


Duty cycle test plots:

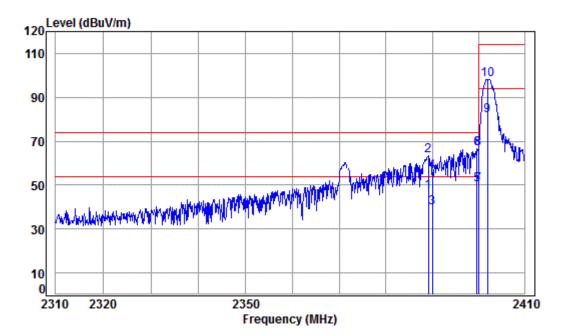
Report No.: SZEM180900856602 Page: 29 of 46



Report No.: SZEM180900856602 Page: 30 of 46

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Condition: 3m HORIZONTAL


Job No	:	08566CR
Mode	:	2402 Band edge
		2 46

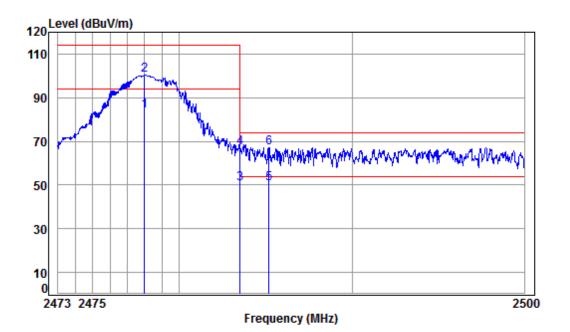
	: 2.4	a							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2388.850	5.47	29.07	41.87	55.53	48.20	54.00	-5.80	Average
	2388.850	5.47	29.07	41.87	71.94	64.61	74.00	-9.39	peak
	2390.000	5.47	29.08	41.87	45.60	38.28	54.00	-15.72	Average
	2390.000	5.47	29.08	41.87	62.00	54.68	74.00	-19.32	peak
рр	2398.588	5.49	29.10	41.88	57.30	50.01	54.00	-3.99	Average
pk	2398.588	5.49	29.10	41.88	73.72	66.43	74.00	-7.57	peak
	2400.000	5.49	29.11	41.88	57.20	49.92	54.00	-4.08	Average
	2400.000	5.49	29.11	41.88	73.61	66.33	74.00	-7.67	peak
	2402.000	5.49	29.11	41.88	91.40	84.12	94.00	-9.88	Average
	2402.000	5.49	29.11	41.88	107.80	100.52	114.00	-13.48	peak
	•••	Freq MHz 2388.850 2388.850 2390.000 2390.000 2398.588 pk 2398.588 2400.000 2400.000 2402.000	Freq Loss MHz dB 2388.850 5.47 2388.850 5.47 2390.000 5.47 2390.000 5.47 2390.000 5.47 2390.000 5.47 2390.000 5.47 2390.000 5.47 2390.000 5.47 2398.588 5.49 pk 2398.588 5.49 2400.000 5.49 2400.000 5.49 2402.000 5.49	Cable Ant Freq Loss Factor MHz dB dB/m 2388.850 5.47 29.07 2388.850 5.47 29.07 2390.000 5.47 29.08 2390.000 5.47 29.08 2398.588 5.49 29.10 pk 2398.588 5.49 29.10 2400.000 5.49 29.11 2402.000 2402.000 5.49 29.11	CableAntPreamp LossFreqLossFactorMHzdBdB/mdB2388.8505.4729.0741.872388.8505.4729.0741.872390.0005.4729.0841.872390.0005.4729.0841.872398.5885.4929.1041.88pk2398.5885.4929.1041.882400.0005.4929.1141.882402.0005.4929.1141.882402.0005.4929.1141.88	CableAntPreampReadFreqLossFactorFactorLevelMHzdBdB/mdBdBuV2388.8505.4729.0741.8755.532388.8505.4729.0741.8771.942390.0005.4729.0841.8745.602390.0005.4729.0841.8762.00pp2398.5885.4929.1041.8857.30pk2398.5885.4929.1141.8873.722400.0005.4929.1141.8857.202400.0005.4929.1141.8873.612402.0005.4929.1141.8891.40	Cable Ant Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 2388.850 5.47 29.07 41.87 55.53 48.20 2388.850 5.47 29.07 41.87 71.94 64.61 2390.000 5.47 29.08 41.87 45.60 38.28 2390.000 5.47 29.08 41.87 62.00 54.68 pp 2398.588 5.49 29.10 41.88 57.30 50.01 pk 2398.588 5.49 29.10 41.88 73.72 66.43 2400.000 5.49 29.11 41.88 57.20 49.92 2400.000 5.49 29.11 41.88 91.40 84.12	CableAntPreampReadLimitFreqLossFactorFactorLevelLevelLineMHzdBdB/mdBdBuVdBuV/mdBuV/m2388.8505.4729.0741.8755.5348.2054.002388.8505.4729.0741.8771.9464.6174.002390.0005.4729.0841.8745.6038.2854.002390.0005.4729.0841.8762.0054.6874.002398.5885.4929.1041.8857.3050.0154.00pk2398.5885.4929.1041.8873.7266.4374.002400.0005.4929.1141.8873.6166.3374.002402.0005.4929.1141.8891.4084.1294.00	CableAntPreampReadLimitOverFreqLossFactorFactorLevelLevelLineLimitMHzdBdB/mdBdBuVdBuV/mdBuV/mdBuV/mdB2388.8505.4729.0741.8755.5348.2054.00-5.802388.8505.4729.0741.8771.9464.6174.00-9.392390.0005.4729.0841.8745.6038.2854.00-15.722390.0005.4729.0841.8762.0054.6874.00-19.32pp2398.5885.4929.1041.8857.3050.0154.00-3.99pk2398.5885.4929.1041.8873.7266.4374.00-7.572400.0005.4929.1141.8873.6166.3374.00-7.672402.0005.4929.1141.8891.4084.1294.00-9.88

Report No.: SZEM180900856602 Page: 31 of 46

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Condition: 3m VERTICAL

Job	No	:	08566CR
JOD	NO		00000CK

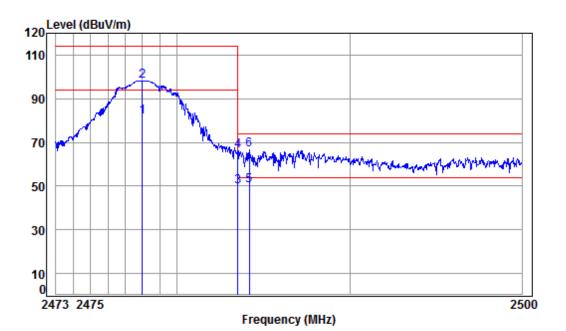

Mode	:	2402	Band	edge	
	:	2.4G			

			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2389.153	5.47	29.07	41.87	54.18	46.85	54.00	-7.15	Average
2		2389.153	5.47	29.07	41.87	70.58	63.25	74.00	-10.75	peak
3		2390.000	5.47	29.08	41.87	47.07	39.75	54.00	-14.25	Average
4		2390.000	5.47	29.08	41.87	63.48	56.16	74.00	-17.84	peak
5		2399.707	5.49	29.11	41.88	57.48	50.20	54.00	-3.80	Average
6		2399.707	5.49	29.11	41.88	73.89	66.61	74.00	-7.39	peak
7	рр	2400.000	5.49	29.11	41.88	57.54	50.26	54.00	-3.74	Average
8	pk	2400.000	5.49	29.11	41.88	73.95	66.67	74.00	-7.33	peak
9		2402.000	5.49	29.11	41.88	89.16	81.88	94.00	-12.12	Average
10		2402.000	5.49	29.11	41.88	105.57	98.29	114.00	-15.71	peak

Report No.: SZEM180900856602 Page: 32 of 46

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Condition: 3m HORIZONTAL


Job No	:	08566CR	
Mode	:	2478 Band	edge

louic		o bana							
	: 2.4	G							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2478.000	5.59	29.34	41.91	90.79	83.81	94.00	-10.19	Average
2	2478.000	5.59	29.34	41.91	107.20	100.22	114.00	-13.78	peak
3	2483.500	5.60	29.35	41.91	57.44	50.48	54.00	-3.52	Average
4	2483.500	5.60	29.35	41.91	73.85	66.89	74.00	-7.11	peak
5 pp	2485.195	5.60	29.36	41.91	57.79	50.84	54.00	-3.16	Average
6 pk	2485.195	5.60	29.36	41.91	74.20	67.25	74.00	-6.75	peak

Report No.: SZEM180900856602 Page: 33 of 46

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Condition: 3m VERTICAL

Job No : 08566CR	No : 0856	6CR
------------------	-----------	-----

Mode	: 247	8 Band	edge						
	: 2.4	G							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2478.000	5.59	29.34	41.91	88.84	81.86	94.00	-12.14	Average
2	2478.000	5.59	29.34	41.91	105.25	98.27	114.00	-15.73	peak
3	2483.500	5.60	29.35	41.91	56.62	49.66	54.00	-4.34	Average
4	2483.500	5.60	29.35	41.91	73.03	66.07	74.00	-7.93	peak
5 pp	2484.169	5.60	29.35	41.91	57.08	50.12	54.00	-3.88	Average
6 pk	2484.169	5.60	29.35	41.91	73.49	66.53	74.00	-7.47	peak

Report No.: SZEM180900856602 Page: 34 of 46

7.4 Radiated Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Measurement Distance:	3m
Limit:	

Frequency(MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3

Report No.: SZEM180900856602 Page: 35 of 46

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:24.6 °CHumidity:51.4 % RHAtmospheric Pressure:1010mbarTest moded:TX mode_Keep the EUT in transmitting with modulation mode.

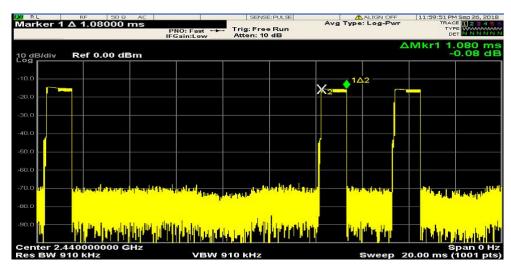
7.4.2 Test Setup Diagram

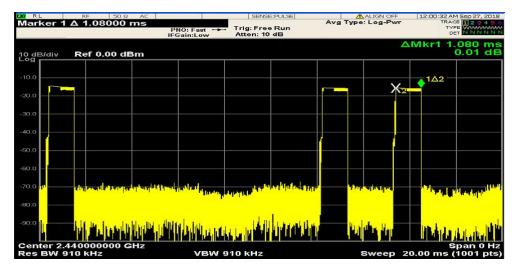
Above 1GHz

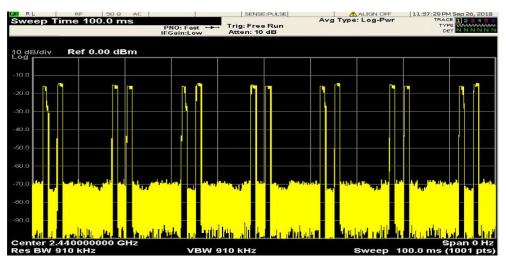
7.4.3 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

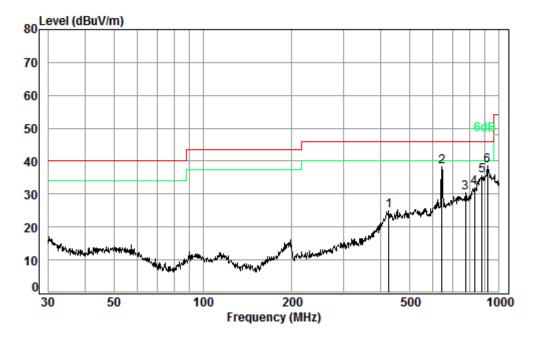
Report No.: SZEM180900856602 Page: 36 of 46


Average value:


	Average value=Peak value + PDCF
Calculate Formula:	PDCF=20 log(Duty cycle)
	Duty cycle= T on time / T period
	Ton time =15.12ms
Test data:	T period =100ms
	PDCF value= -16.41dB

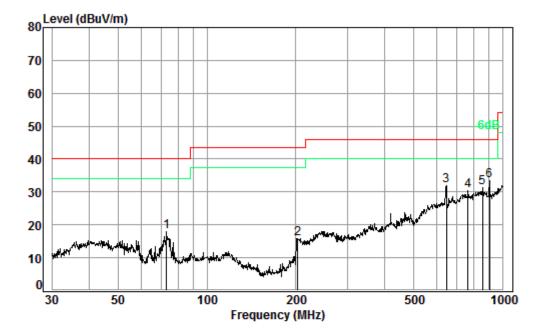

Duty cycle test plots:

Report No.: SZEM180900856602 Page: 37 of 46



Report No.: SZEM180900856602 Page: 38 of 46

30MHz~1GHz Mode:d; Polarization: Horizontal

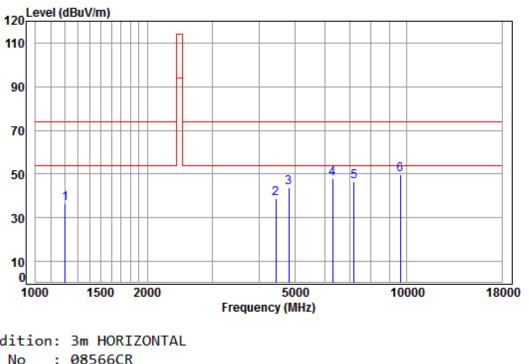

Condition: 3m HORIZONTAL Job No. : 08566CR

Job No		66CR						
Mode	: d							
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
_								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	425.03	2.31	23.00	27.77	27.53	25.07	46.00	-20.93
2	642.86	2.79	27.18	27.63	35.86	38.20	46.00	-7.80
3	771.45	3.12	28.34	27.46	26.41	30.41	46.00	-15.59
4	827.49	3.32	28.87	27.32	26.97	31.84	46.00	-14.16
5	878.32	3.52	29.53	27.15	29.67	35.57	46.00	-10.43
6 pp	916.07	3.62	29.88	27.03	32.13	38.60	46.00	-7.40

Report No.: SZEM180900856602 39 of 46 Page:

Mode: d; Polarization: Vertical

Condition: 3m VERTICAL


Job No.	: 085	66CR						
Mode	: d							
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	73.10	0.89	12.54	27.52	32.00	17.91	40.00	-22.09
2	202.81	1.42	16.60	27.53	25.39	15.88	43.50	-27.62
3	645.12	2.80	27.21	27.63	29.45	31.83	46.00	-14.17
4	763.38	3.10	28.29	27.47	26.55	30.47	46.00	-15.53
5	854.02	3.42	29.22	27.23	25.90	31.31	46.00	-14.69
6 pp	903.31	3.60	29.82	27.07	27.26	33.61	46.00	-12.39

Report No.: SZEM180900856602 Page: 40 of 46

Above 1GHz

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Cond	dition:	Зm	HORIZONTAL
-		~~~	

Job No	
Mode	
noue	

:	2402	ΤХ	RSE
-			
	2102		


: 2.4G

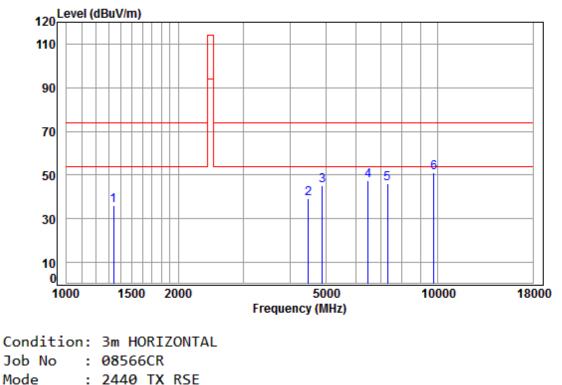
			-							
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1203.199	4.43	24.49	41.19	48.68	36.41	74.00	-37.59	peak
2		4430.628	7.48	33.60	42.41	40.25	38.92	74.00	-35.08	peak
3		4804.000	7.89	34.16	42.47	44.31	43.89	74.00	-30.11	peak
4		6303.890	11.17	34.95	41.37	43.29	48.04	74.00	-25.96	peak
5										
6	рр	9608.000	10.75	37.52	37.74	38.98	49.51	74.00	-24.49	peak
										-

Report No.: SZEM180900856602 Page: 41 of 46

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Condition:	3m VERTICAL
Job No :	08566CR

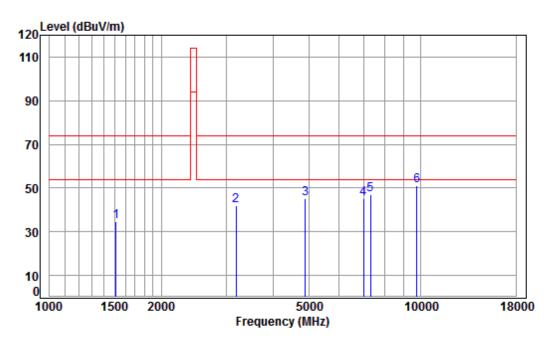
JOD NO	•	00200	JUN	
Mode	:	2402	ТΧ	RSE


: 2.4G

			-							
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1697.129	5.23	26.66	41.53	45.03	35.39	74.00	-38.61	peak
2		3308.894	6.29	31.87	42.18	45.49	41.47	74.00	-32.53	peak
3		4804.000	7.89	34.16	42.47	44.05	43.63	74.00	-30.37	peak
4	Ļ	6974.982	10.20	36.43	40.87	41.44	47.20	74.00	-26.80	peak
5		7206.000	10.08	36.42	40.71	40.22	46.01	74.00	-27.99	peak
6	pp	9608.000	10.75	37.52	37.74	38.54	49.07	74.00	-24.93	peak

Report No.: SZEM180900856602 Page: 42 of 46

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle


	_		
	2	.40	2
	~	. 40	

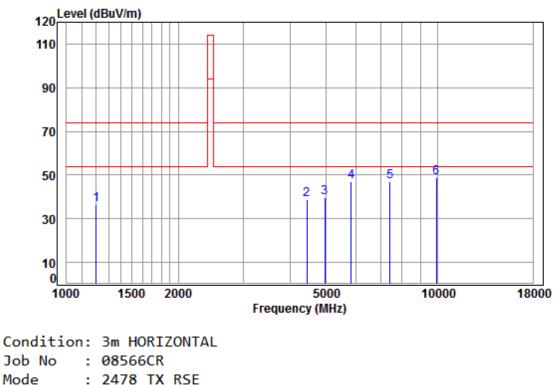
Freq			Preamp Factor					Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1339.006 4482.150 4880.000 6488.754	7.54 7.97 11.52	33.60 34.29 35.09	42.41 42.48 41.22	40.43 45.56 42.00	39.16 45.34 47.39	74.00 74.00 74.00	-34.84 -28.66 -26.61	peak peak peak
7320.000 9760.000								•

Report No.: SZEM180900856602 Page: 43 of 46

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

Condition:	3m VERTICAL
Job No :	08566CR

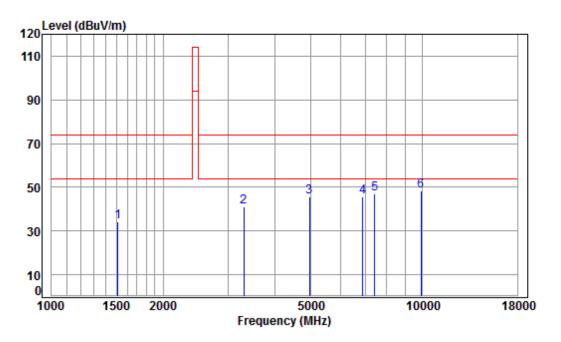
JOD	NO		C
Mode	2	:	2


: 2440 TX RSE : 2.4G

		-							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1511.833	5.46	25.85	41.41	44.79	34.69	74.00	-39.31	peak
2	3177.672	6.16	31.64	42.15	46.16	41.81	74.00	-32.19	peak
3	4880.000	7.97	34.29	42.48	45.41	45.19	74.00	-28.81	peak
4	6995.172	10.14	36.49	40.86	39.62	45.39	74.00	-28.61	peak
5	7320.000	10.05	36.37	40.63	41.18	46.97	74.00	-27.03	peak
6 p	p 9760.000	10.82	37.55	37.53	40.35	51.19	74.00	-22.81	peak

Report No.: SZEM180900856602 Page: 44 of 46

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:High


-	•	2170			
	:	2.4G			
		(abl	e	

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1203.199	4.43	24.49	41.19	48.77	36.50	74.00	-37.50	peak
2	4443.453	7.50	33.60	42.41	40.24	38.93	74.00	-35.07	peak
3	4956.000	8.05	34.42	42.49	39.94	39.92	74.00	-34.08	peak
4	5830.640	10.00	34.60	41.75	44.07	46.92	74.00	-27.08	peak
5	7434.000	10.02	36.33	40.56	41.09	46.88	74.00	-27.12	peak
6	pp 9912.000	10.90	37.58	37.32	37.63	48.79	74.00	-25.21	peak
									-

Report No.: SZEM180900856602 Page: 45 of 46

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Condition:	3m VERTICAL
Job No :	08566CR

000 110		00500	~~~~	
Mode	:	2478	ТΧ	RSE

: 2.4G

			-							
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1511.833	5.46	25.85	41.41	44.52	34.42	74.00	-39.58	peak
2		3299.344	6.28	31.86	42.17	44.88	40.85	74.00	-33.15	peak
3		4956.000	8.05	34.42	42.49	45.56	45.54	74.00	-28.46	peak
4		6894.806	10.42	36.21	40.93	40.04	45.74	74.00	-28.26	peak
5		7434.000	10.02	36.33	40.56	41.14	46.93	74.00	-27.07	peak
6	pp	9912.000	10.90	37.58	37.32	37.43	48.59	74.00	-25.41	peak

Report No.: SZEM180900856602 Page: 46 of 46

8 Photographs

8.1 Test Setup Refer to Setup Photos

8.2 EUT Constructional Details (EUT Photos) Refer to EUT external and internal photos

- End of the Report -