

WH Technology Corp. Date of Issue: Sep. 12, 2018

Report No.: WH-FCC-R18091011

FCC 47 CFR PART 15 SUBPART C 15.247 **TEST REPORT**

FOR

Trekstor Primebook C13B

Model: CFPN5SW02464, CFCN4SW02464

Issued to **TREKSTOR GmbH** Berliner Ring 7, 64625 Bensheim, Germany

Issued by

WH Technology Corp.

EMC Test Site	Xizhi Office and Lab	Datong Rd. Xizhi Dist. New Taipei City Taiwan
	Tel.: +88	6-2-7729-7707 Fax: +886-2- 8648-1311

Note: This test refers exclusively to the test presented test model and sample. This report shall not be reproduced except in full, without the written approval of WH Technology Corp. This document may be altered or revised by WH Technology Corp. Personnel only, and shall be noted in the revision section of the document.

WH Technology Corp. Date of Issue: Sep. 12, 2018 Report No.: WH-FCC-R1809

Contents

PHC	TOS C	DF EUT 1. General Information	3
2.	Repo	rt of Measurements and Examinations	5
	2.1	List of Measurements and Examinations	.5
3.	Test (Configuration of Equipment under Test	6
	3.1	Description of the tested samples	.6
	3.2	Carrier Frequency of Channels	.7
	3.3	Test Mode and Test Software	.8
	3.4	TEST Methodology & General Test Procedures	.9
	3.5	Measurement Uncertainty	10
	3.6	Description of the Support Equipments	10
4.	Test a	and measurement equipment	11
	4.1	calibration	11
	4.2	equipment	11
5.	Anter	nna Requirements	14
	5.1	Standard Applicable	14
	5.2	Antenna Construction and Directional Gain	14
6.	Test o	of Conducted Emission	15
	6.1	Test Limit	15
	6.2	Test Procedures	15
	6.3	Typical Test Setup	16
	6.4	Test Result and Data	17
7.	Test o	of Radiated Emission	19
	7.1	Test Limit	19
	7.2	Test Procedures	19
	7.3	Typical Test Setup	20
	7.4	Test Result and Data (9kHz ~ 30MHz)	22
	7.5	Test Result and Data (30MHz ~ 1GHz, worst emissions found)	
	7.6	Test Result and Data (Above 1GHz)	
8.	6dB E	Bandwidth Measurement Data	30
	8.1	Test Limit	30
	8.2	Test Procedures	30
	8.3	Test Setup Layout	30
	8.4	Test Result and Data	31
9.	Maxir	num Peak and Average Output Power	
	9.1	Test Limit	33
	9.2	Test Procedures	33
	9.3	Test Setup Layout	33

	9.4	Test Result and Data	34
10.	Powe	er Spectral Density	35
	10.1	Test Limit	35
	10.2	Test Procedures	35
	10.3	Test Setup Layout	35
	10.4	Test Result and Data	36
11.		Edges Measurement	
	11.1	Test Limit	38
	11.2	Test Procedure	38
	11.3	Test Setup Layout	38
	11.4	Test Result and Data	39
	11.5	Restrict Band Emission Measurement Data	41
12.	Restr	icted Bands of Operation	43
	12.1	Labeling Requirement	43

APPENDIX 1 PHOTOS OF TEST CONFIGURATION PHOTOS OF EUT

1. General Information

Applicant	:	TREKSTOR GmbH
Address	:	Berliner Ring 7, 64625 Bensheim, Germany
Manufacturer	:	Heyuan Vastking Electronic Co.,Ltd
Address	:	No.13, Hepu Avenue, Yuancheng District, Heyuan City, Guangdong Province, China.
EUT	:	Trekstor Primebook C13B
Model Name	:	CFPN5SW02464, CFCN4SW02464
Model Differences	:	Only model name different.

Is here with confirmed to comply with the requirements set out in the FCC Rules and Regulations Part 15 Subpart C and the measurement procedures were according to ANSI C63.4-2014. The said equipment in the configuration described in this report shows the maximum emission levels emanating

FCC part 15 subpart C

Receipt Date : 08/30/2018

Final Test Date : 09/11/2018

Tested By:

Sept. 12, 2018 Date

Bing Chang/ Engineer

Sept. 12, 2018

Date

Reviewed by:

Bell Wei / Manager Designation Number: TW2954

2. Report of Measurements and Examinations

2.1 List of Measurements and Examinations

FCC Rule	Description of Test	Result
15.203	. Antenna Requirement	Pass
15.207	. Conducted Emission	Pass
15.209 15.247(d)	. Radiated Emission	Pass
15.247(a)(2)	. 6dB Bandwidth	Pass
15.247(b)	. Maximum Peak Output Power	Pass
15.247(d)	. 100kHz Bandwidth of Frequency Band Edges	Pass
15.247(e)	. Power Spectral Density	Pass

3. Test Configuration of Equipment under Test

3.1 Description of the tested samples

EUT Name	:	: Trekstor Primebook C13B		
Model Number	:	CFPN5SW02464, CFCN4SW02464		
FCCID	:	2ALTX-CFPN5SW02464		
Receipt Date	:	08/30/2018		
Power From	:	☑Inside ☑Outside ☑Adaptor ☑Battery □AC Power Source □DC Power Source □Support Unit PC or NB		
Adapter	:	JHD-AP024U-120200BA-A INPUT: AC100-240V~ 50/60Hz 0.45A, Output: DC12V 2000mA		
Battery	:	7.4V		
Operate Frequency	:	Refer to the channel list as described below (2.402 ~2.480 GHz)		
Modulation Technique	:	GFSK		
Number of Channels	:	40		
Channel spacing	:	□N/A ⊠ <u>2 M</u> Hz		
Operating Mode	:	□Simplex ☑ Half Duplex		
Antenna Type	:	FPCB Antenna		
Antenna gain		1.0 dBi		

3.2 Carrier Frequency of Channels

BLE

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

WH Technology Corp. Date of Issue: Sep. 12, 2018 Deport No : WH ECC D1900

3.3 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.4.
- b. The complete test system included Notebook and EUT for RF test.
- c. Test Software: Radio Test.exe
- d. New Battery was used for all testing and the worst radiated emission case from X,Y and Z axis evaluation was selected for testing.
- e. The following test modes were performed for test:
 - BLE: CH00: 2402MHz, CH19: 2440MHz, CH39: 2480MHz

3.4 TEST Methodology & General Test Procedures

All testing as described bellowed were performed in accordance with ANSI C63.4:2014 and ANSI C63.10:2013.

Conducted Emissions

The EUT is placed on a wood table, which is at 0.8 m above ground plane acceding to clause 15.207 and requirements of ANSI C63.4:2014. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz are using CISPR Quasi-Peak / Average detectors.

Radiated Emissions

The EUT is a placed on a turn table, which is 0.8 m above ground plane. The turntable was rotated through 360 degrees to determine the position of maximum emission level. The EUT is placed at 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

- 1) Putting the EUT on the platform and turning on the EUT (on/off button on the bottom of the EUT).
- 2) Setting test channel described as "Channel setting and operating condition", and testing channel by channel.
- For the maximum output power measurement, we followed the method of measurement KDB558074 D01.
- 4) For the spurious emission test based on ANSI(2014), at the frequency where below 1GHz used quasi-peak detector mode; where above 1GHz used the peak and average detector mode. IF the peak value may be under average limit, the average mode will not be performed.

3.5 Measurement Uncertainty

Measurement Item	Uncertainty
Peak Output Power(conducted)	±1.345dB
Power Spectral Density	±1.347dB
Radiated emission(1G-25GHz)	±5.00dB
Radiated emission(30M-1GHz)	±3.89dB
Conducted emission	±1.81dB

3.6 Description of the Support Equipments

Setup Diagram

See test photographs attached in appendix 1 for the actual connections between EUT and support equipment.

Support Equipment

Peripherals Devices:

	OUTSIDE SUPPORT EQUIPMENT						
No.	Equipment	Model	Serial No.	FCC ID/	Trade	Data Cable	Power Cord
INU.	Equipment	WOUEI	Senai No.	BSMI ID	name		
1.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	INSIDE SUPPORT EQUIPMENT						
No.	Equipment	Model	Serial No.	FCC ID/	Trade	Data Cable	Power Cord
INU.	Equipment	WOUEI	Senai No.	BSMI ID	name		
1.	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: All the above equipment /cable were placed in worse case position to maximize emission signals during emission test

Grounding: Grounding was in accordance with the manufacturer's requirement and conditions for the intended use.

4. Test and measurement equipment

4.1 calibration

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2 equipment

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. Other required standards. Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.

Test Site	Instrument	Manufacturer	Model No.	S/N	Next Cal. Date
	Spectrum (9K3GHz)	R&S	FSP3	833387/010	2018/09/20
	EMI Receiver	R&S	ESHS10	830223/008	2019/05/22
Conduction	LISN	Rolf Heine Hochfrequenztechni k	NNB-2/16z	98062	2019/05/25
	ISN	Schwarzbeck	8-Wire ISN CAT5	CAT5-8158-0094	2018/09/21
	RF Cable	N/A	N/A	EMI-3	2018/10/19
	Bilog antenna(30M -1G)	ETC	MCTD2786B	BLB16M04004/J B-5-004	2019/05/03
	Double Ridged Guide Horn antenna(1G- 18G)	ETC	MCTD 1209	DRH15N0 2009	2018/11/23
	Horn antenna (18G-26G)	com-power	AH-826	81000	2019/08/14
Radiation	LOOP Antenna (Below 30M)	com-power	AL-130	17117	2018/10/04
	Pre amplifier (30M-1G)	EMC INSTRUMENT	EMC9135	980334	2019/05/04
	Microwave Preamplifier (1G-18G)	EMC INSTRUMENT	EMC051845	980108&AT -18001	2018/10/23
	Pre amplifier (18G~26G)	MITEQ	JS4-18002600-3 0-5A	808329	2019/08/09
	EMI Test	R&S	ESVS30	826006/002	2018/11/28

TABLELIST OF TEST AND MEASUREMENT EQUIPMENT

Receiver		(20M-1000MHz)		
		N male on end		
RF Cable	EMCI	of	00	
(open site)	EWICI	both sides	30m	2018/10/19
		(EMI4)		
RF CABLE	HARBOUT	LL142MI(4M+4M)	NA	2019/03/08
(1~26.5G)	INDUSTRIES			2013/03/00
RF CABLE	HARBOUR	LL142MI(7M)	NA	2019/08/10
(1~26.5G)	INDUSTRIES	2211210(110)		2010/00/10
Spectrum	R&S	FSP7	830180/006	2019/03/25
(9K7GHz)			000100,000	2010/00/20
Spectrum	AGILENT	8564EC	4046A0032	2019/03/01
(9K40GHz)				
 Power Meter	R&S	NRVS	100696	2019/08/09
 Power	R&S	URV5-Z4	0395.1619.05	2019/08/09
 Sensor	nao	0100-24	0000.1010.00	

*CALIBRATION INTERVAL OF INSTRUMENTS LISTED ABOVE IS ONE YEAR

5. Antenna Requirements

5.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.2 Antenna Construction and Directional Gain

BLE:

Antenna Type: FPCB Antenna Antenna Gain: 1.0 dBi

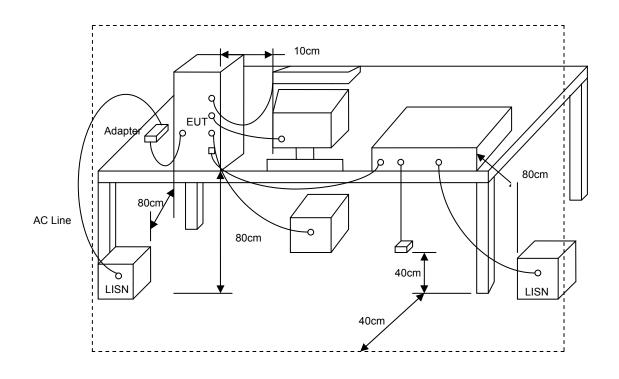
WH Technology Corp. Date of Issue: Sep. 12, 2018

6. Test of Conducted Emission

6.1 Test Limit

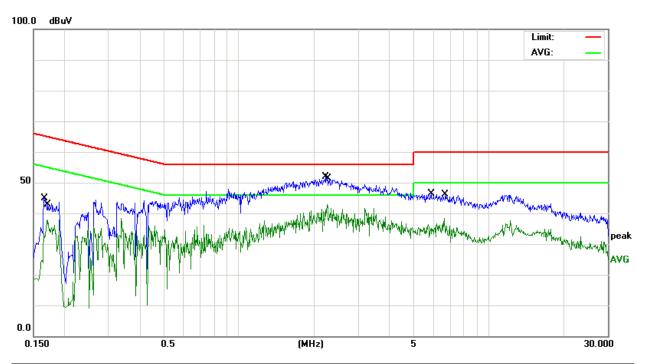
Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 110 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2014 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

Frequency (MHz)	Quasi Peak (dB µ V)	Average (dB μ V)
0.15 – 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

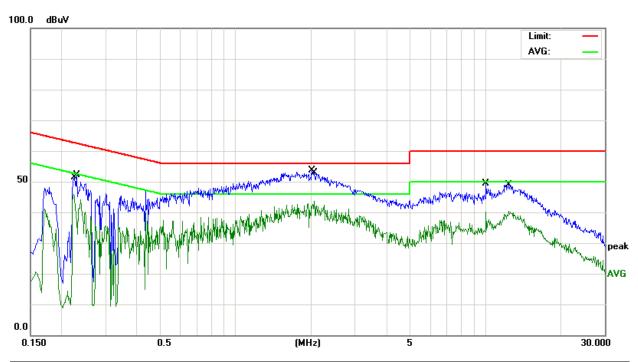

*Decreases with the logarithm of the frequency.

6.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- Both sides of AC line were checked for maximum conducted interference. f.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.


6.3 Typical Test Setup

6.4 Test Result and Data


Power	:	AC 120V/60Hz	Pol/Phase :	LINE
Test Mode 1	:	TX CH0 2402MHz	Temperature :	28 °C
Memo	:		Humidity :	43 %

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector
1	0.1650	42.41	2.59	45.00	65.20	-20.20	QP
2	0.1711	35.45	2.49	37.94	54.90	-16.96	AVG
3	2.2219	50.96	0.84	51.80	56.00	-4.20	QP
4 *	2.2580	42.04	0.85	42.89	46.00	-3.11	AVG
5	5.8818	36.39	10.06	46.45	60.00	-13.55	QP
6	6.6619	28.21	10.08	38.29	50.00	-11.71	AVG

Power		AC 120V/60Hz	Pol/Phase :	NEUTRAL
Test Mode 1	•••	TX CH0 2402MHz	Temperature :	28 °C
Memo	•••		Humidity :	43 %

No. N	/k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector
1		0.2230	44.05	1.94	45.99	52.70	-6.71	AVG
2		0.2303	50.13	1.92	52.05	62.44	-10.39	QP
3 *	r	2.0178	52.13	0.84	52.97	56.00	-3.03	QP
4		2.0579	40.31	0.84	41.15	46.00	-4.85	AVG
5		10.0335	39.18	10.17	49.35	60.00	-10.65	QP
6		12.3939	30.11	10.24	40.35	50.00	-9.65	AVG

7. Test of Radiated Emission

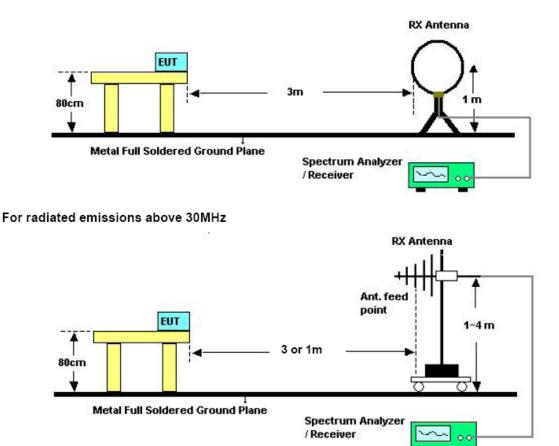
7.1 Test Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter measurement is based on the maximum conducted output power, the attenuation required under this paragraph shall be 30dB instead of 20dB. In addition, radiated emissions which fall in section 15.205(a) the restricted bands must also comply with the radiated emission limit specified in section 15.209(a).

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than

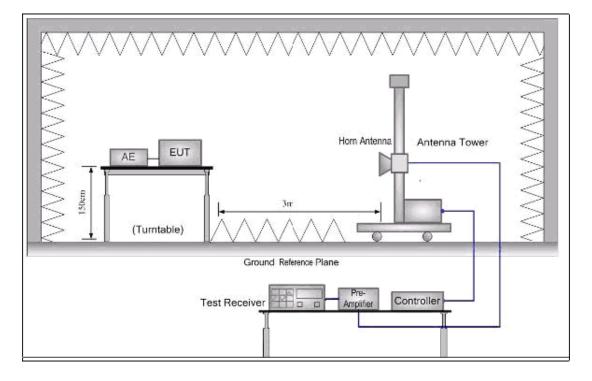


average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

i. "Cone of radiation" has been considered to be 3dB bandwidth of the measurement antenna.

7.3 Typical Test Setup

For radiated emissions below 30MHz

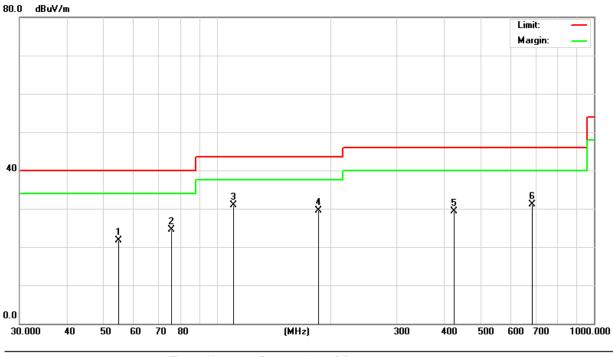


Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

For radiated emissions frequency above 1GHz

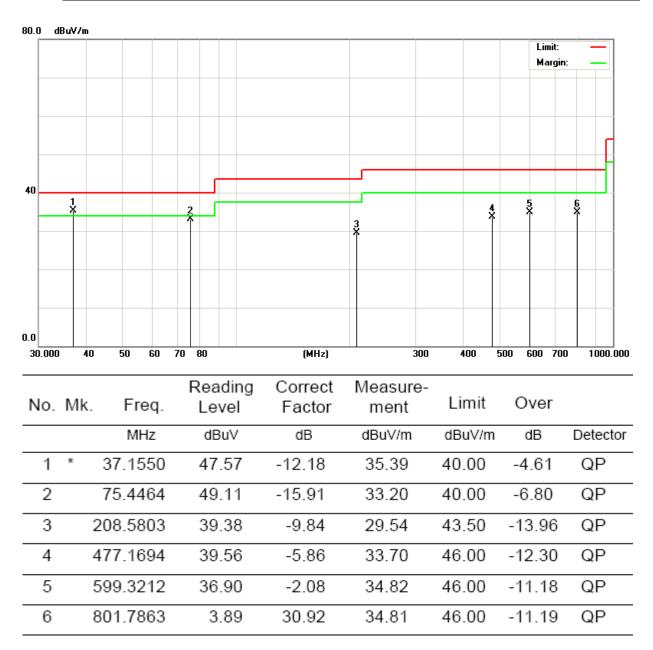
Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.



7.4 Test Result and Data (9kHz ~ 30MHz)

The 9kHz - 30MHz spurious emission is under limit 20dB more.

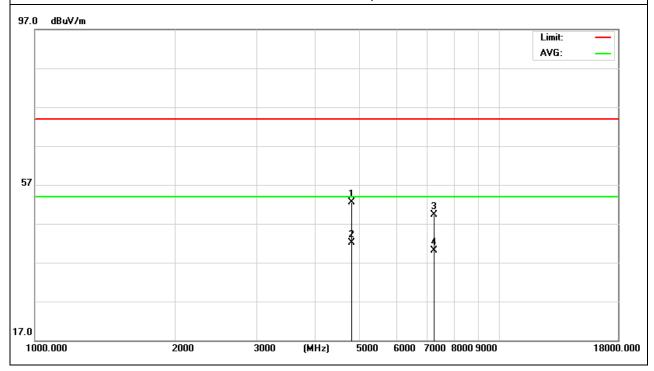
7.5 Test Result and Data (30MHz ~ 1GHz, worst emissions found)


Power	:	AC 120V/60Hz	Pol/Phase :	HORIZONTAL
Test Mode 1	•	TX CH0 2402MHz	Temperature :	32 °C
Memo	•••		Humidity :	59%

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1		54.8348	33.83	-12.11	21.72	40.00	-18.28	QP
2		75.4464	40.31	-15.81	24.50	40.00	-15.50	QP
3	*	110.5687	42.83	-11.89	30.94	43.50	-12.56	QP
4		185.7882	41.48	-11.99	29.49	43.50	-14.01	QP
5		425.0280	35.72	-6.44	29.28	46.00	-16.72	QP
6		684.7454	32.67	-1.54	31.13	46.00	-14.87	QP

Power	:	AC 120V/60Hz	Pol/Phase :	VERTICAL
Test Mode 1		TX CH0 2402MHz	Temperature :	32 °C
Memo	:		Humidity :	59%

7.6 Test Result and Data (Between 1~25 GHz)

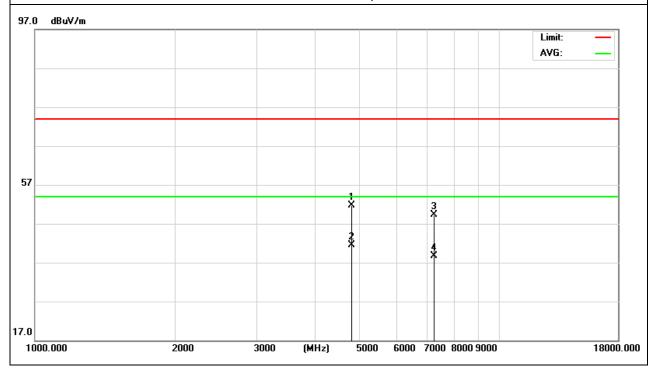

Antenna A:

Power :	DC 7.4V from battery	Pol/Phase :	HORIZONTAL
Test Mode 1 :	TX , CH0	Temperature :	30 °C
Memo :		Humidity :	59 %

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4804.000	47.41	5.06	52.47	74.00	-21.53	47.41	
4804.000	37.06	5.06	42.12	54.00	-11.88	37.06	
7206.000	42.30	7.03	49.33	74.00	-24.67	42.30	
7206.000	32.99	7.03	40.02	54.00	-13.98	32.99	

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

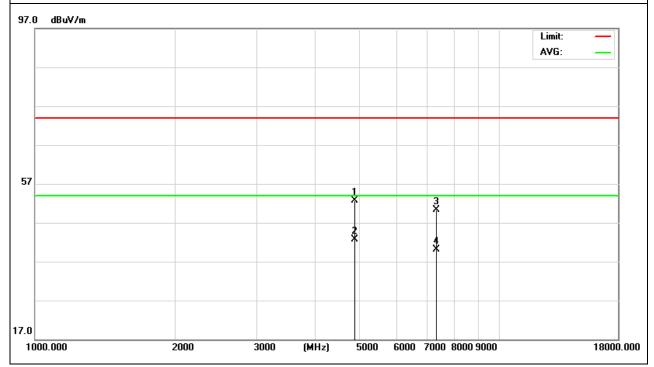


Power :	DC 7.4V from battery	Pol/Phase :	VERTICAL
Test Mode 1 :	TX , CH0	Temperature :	30 °C
Memo :		Humidity :	59 %

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4804.000	46.66	5.06	51.72	74.00	-22.28	peak	
4804.000	36.54	5.06	41.60	54.00	-12.40	AVG	
7206.000	42.36	7.03	49.39	74.00	-24.61	peak	
7206.000	31.63	7.03	38.66	54.00	-15.34	AVG	

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

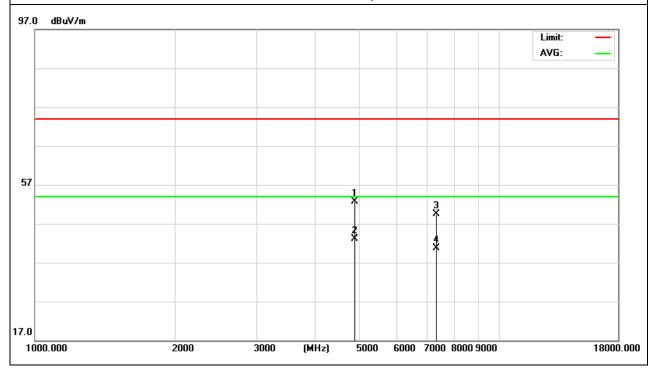
Note:


The disturbance above 18GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Power :	DC 7.4V from battery	Pol/Phase :	HORIZONTAL
Test Mode 1 :	TX , CH19	Temperature :	30 °C
Memo :		Humidity :	59 %

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880.000	47.51	5.14	52.65	74.00	-21.35	peak
4880.000	37.59	5.14	42.73	54.00	-11.27	AVG
7320.000	42.71	7.52	50.23	74.00	-23.77	peak
7320.000	32.55	7.52	40.07	54.00	-13.93	AVG

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

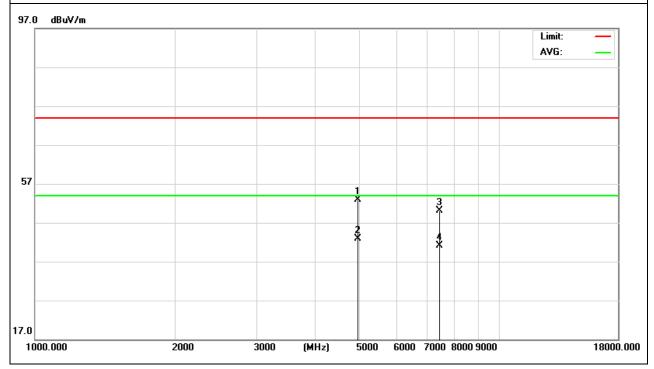


Power :	DC 7.4V from battery	Pol/Phase :	VERTICAL
Test Mode 1 :	TX , CH19	Temperature :	30 °C
Memo :		Humidity :	59 %

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880.000	47.63	5.14	52.77	74.00	-21.23	peak
4880.000	38.03	5.14	43.17	54.00	-10.83	AVG
7320.000	42.06	7.52	49.58	74.00	-24.42	peak
7320.000	33.19	7.52	40.71	54.00	-13.29	AVG

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

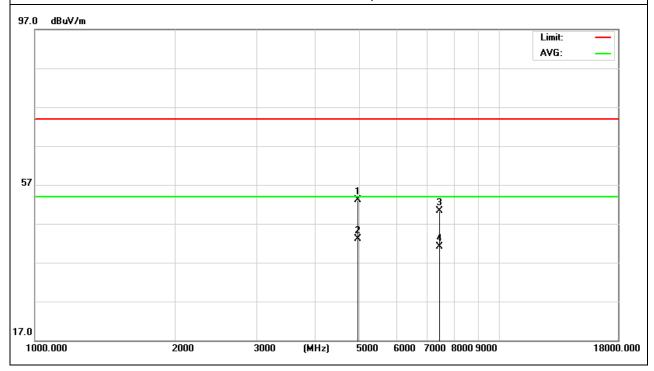
Note:


The disturbance above 18GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Power :	DC 7.4V from battery	Pol/Phase :	HORIZONTAL
Test Mode 1 :	TX , CH39	Temperature :	30 °C
Memo :		Humidity :	59 %

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.000	47.62	5.22	52.84	74.00	-21.16	peak
4960.000	37.62	5.22	42.84	54.00	-11.16	AVG
7440.000	42.11	8.06	50.17	74.00	-23.83	peak
7440.000	33.01	8.06	41.07	54.00	-12.93	AVG

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.



Power :	DC 7.4V from battery	Pol/Phase :	VERTICAL
Test Mode 1 :	TX , CH39	Temperature :	30 °C
Memo :		Humidity :	59 %

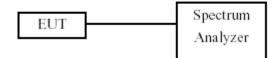
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.000	47.93	5.22	53.15	74.00	-20.85	peak
4960.000	37.90	5.22	43.12	54.00	-10.88	AVG
7440.000	42.16	8.06	50.22	74.00	-23.78	peak
7440.000	33.06	8.06	41.12	54.00	-12.88	AVG

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Note:

The disturbance above 18GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

8. 6dB Bandwidth Measurement Data


8.1 Test Limit

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

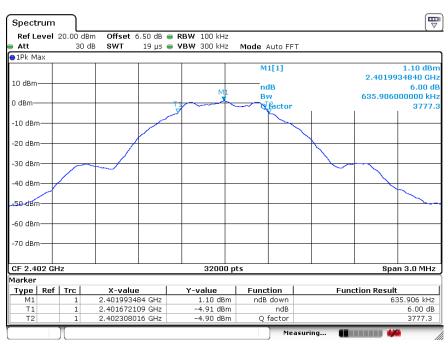
8.2 Test Procedures

- a. The transmitter output was connected to the spectrum analyzer.
- b. Set RBW of spectrum analyzer to $1\sim5\%$ of the emission bandwidth and VBW $\ge 3x$ RBW.
- c. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.
- d. The 6dB Bandwidth was measured and recorded.

8.3 Test Setup Layout

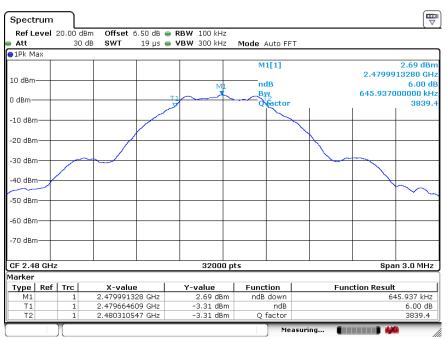
8.4 Test Result and Data

Test Date: Sept. 7, 2018 Atmospheric pressure: 1000 pha Temperature: 28℃


Humidity: 55%

Modulation Standard	Channel	Frequency (MHz)	6dB Bandwidth (MHz)
	0	2402	0.636
GFSK	19	2440	0.644
	39	2480	0.646

Modulation Standard: GFSK Channel: 0


Spectrun	r l					
Ref Leve						
Att 🗧	30	dB SWT 19 µs (9 VBW 300 kHz	Mode Auto FF	Т	
⊖1Pk Max						
				M1[1]		1.10 dBm
10 dBm						2.4019934840 GHz
			M1	ndB		6.00 dB
0 dBm				Bw		635.906000000 kHz 3777.3
					I.	3777.3
-10 dBm						
-20 dBm		- A				
-30 dBm					\rightarrow	
-40 dBm	/					
-50 d8m						
-60 dBm						
70 40						
-70 dBm						
CF 2.402 C	Hz		32000 pt	s		Span 3.0 MHz
Marker						
Type Re	f Trc	X-value	Y-value	Function	Fur	nction Result
M1	1	2.401993484 GHz	1.10 dBm	ndB down		635.906 kHz
T1	1	2.401672109 GHz	-4.91 dBm	ndB		6.00 dB
T2	1	2.402308016 GHz	-4.90 dBm	Q factor		3777.3
	П			Me	asuring 🔳	

Modulation Standard: GFSK Channel: 19

Modulation Standard: GFSK Channel: 39

9. Maximum Peak Output Power

9.1 Test Limit

The Maximum Peak Output Power Measurement is 30dBm.

9.2 Test Procedures

- a. Peak power is measured using the wideband power meter.
- b. Power is integrated over a bandwidth greater than or equal to the 99% bandwidth.
- c. The Peak Output Power was measured and recorded.

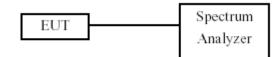
9.3 Test Setup Layout

9.4 Test Result and Data

Test Date: Sept. 7, 2018 Atmospheric pressure: 1000 pha Temperature: 28°C Humidity: 55%

Modulation Standard	Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Output (mW)
	0	2402	1.21	1.32
GFSK	19	2440	1.98	1.58
	39	2480	2.78	1.90

10. Power Spectral Density


10.1 Test Limit

The Maximum of Power Spectral Density Measurement is 8dBm

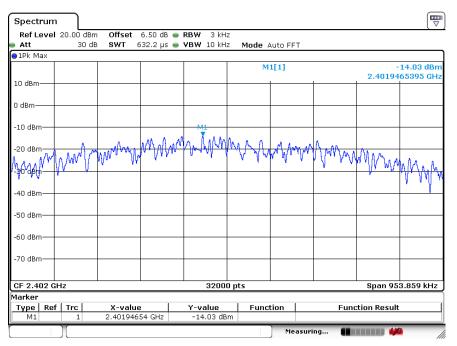
10.2 Test Procedures

- a. The transmitter output was connected to spectrum analyzer.
- b. The spectrum analyzer's resolution bandwidth were set at 3KHz RBW and 30KHz VBW as that of the fundamental frequency. Set the sweep time=auto couple.
- c. The power spectral density was measured and recorded.

10.3 Test Setup Layout

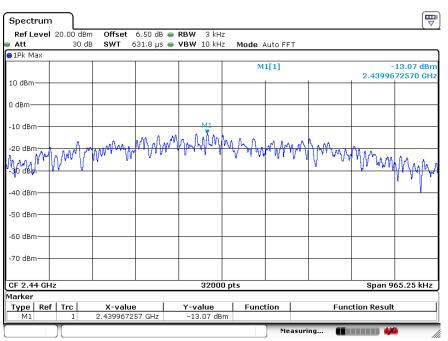
10.4 Test Result and Data

Test Date: Sept. 7, 2018

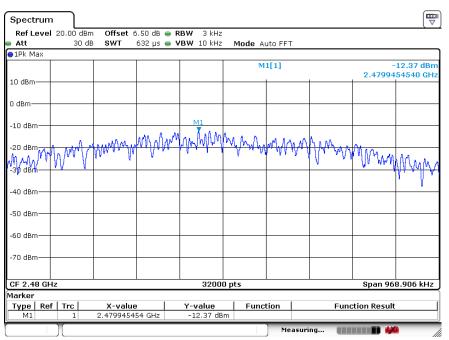

Atmospheric pressure: 1000 pha

Temperature: 28°C

Humidity: 55%


Modulation Standard	Channel	Frequency (MHz)	Measured Power Density (dBm)
	0	2402	-14.03
GFSK	19	2440	-13.07
	39	2480	-12.37

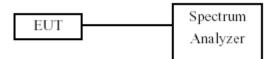
Modulation Standard: GFSK Channel: 0



Modulation Standard: GFSK Channel: 19

Modulation Standard: GFSK Channel: 39

11. Band Edges Measurement


11.1 Test Limit

Below –20dB of the highest emission level of operating band (In 100 kHz Resolution Bandwidth)

11.2 Test Procedure

- a. The transmitter output was connected to the spectrum analyzer via a low lose cable.
- b. Set RBW of spectrum analyzer to 100 KHz and VBW of spectrum analyzer to 300 KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- c. Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20dB relative to the maximum measured in-band peak PSD level.
- d. The band edges was measured and recorded.

11.3 Test Setup Layout

Date of Issue: Sep. 12, 2018 Report No.: WH-FCC-R18091011

11.4 Test Result and Data

Test Date:Sept. 7, 2018 Atmospheric pressure: 1000 pha Temperature: 28°C Humidity: 55%

Modulation	Channel	Frequency (MHz)	Delta Peak to band emission	>Limit	
Standard		(IVITZ)	(dBc)	(dBc)	
GFSK	0	2402	55.44	20	
	39	2480	56.80	20	

Spectrum RefLevel 20.00 dBm Att 30 dB Offset 6.50 dB ● RBW 100 kHz SWT 113.7 µs ● VBW 300 kHz Mode Auto FFT ⊖1Pk Max 1.10 dBm 2.40199220 GHz -54.34 dBm 2.4000000 GHz M1[1] 10 dBm-M2[1] 0 dBm--10 dBm D1 -18.900 -20 dBm--30 dBm -40 dBm -50 dBm hereby -60 dBm -70 dBm· 32000 pts Stop 2.41 GHz Start 2.31 GHz Marker Type Ref Trc M1 1 M2 1 Y-value Function 1.10 dBm -54.34 dBm X-value 2.4019922 GHz 2.4 GHz Function Result Measuring... ••••••••••

Modulation Standard: GFSK Channel: 39

Spectrum									
Ref Level 3	20.00	dBm Offset	6.50 dB	👄 RBW 100 kHz					
Att	30	dB SWT	113.7 μs	👄 VBW 300 kHz	Mode	Auto FF	т		
●1Pk Max									
					M:	1[1]			2.45 dBm
10 dBm									000470 GHz
M1					M:	2[1]			-54.35 dBn
D dBm —							1	2.48	350000 GH:
J UBIII									
-10 dBm									
-10 uBin									
20 dBm	1 -17.5	550 dBm							
-20 aBm									
-30 dBm 🕂									
10 10-1									
-40 dBm									
-50 dBm //	V. Takel	فاستر بالمعديما أغيه	الماسيدان ماعسيديدة	Line Lindhouse Lindhows	بالمريجين الرياد	madat	and a bar below to see I	where where	my alder deserves
			and the second stands of	And the second second second second	and dealers a shine	a su	Construction of the local distribution of th	and a second	and the state of t
-60 dBm									
-70 dBm									
Start 2.47 G	Hz			32000 p	its			Sto	p 2.57 GHz
1arker									
Type Ref	Trc	X-valı	ue	Y-value	Funct	tion	Fu	Function Result	
M1	1	2.4800	047 GHz	2.45 dBm					
M2	1	2.4	835 GHz	-54.35 dBm					
						Mea	suring		

Modulation Standard: GFSK Channel: 0

Power	:	DC 7.4V from battery	Pol/Phase :	H/V
Test Mode 1	:	GFSK	Temperature :	26 °C
Test Date	:	Sept. 7, 2018	Humidity :	55 %

11.5 Restrict Band Emission Measurement Data

Channel 0 Fundamental Frequency: 2402 MHz										
Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result (dBuV/m)	Remark	Lim (dBu\ Peak		Margin (dB)	Table Deg.	Ant High (m)
2390	Н	43.21	-5.81	37.40	Peak	74	54	-36.60	360	1.5
	Н				Ave	74	54			
2383.5	V	42.28	-5.81	36.47	Peak	74	54	-37.53	181	1.5
	V				Ave	74	54			
Channel 39 Fundamental Frequency: 2480 MHz										
Frequency	Ant-Pol H/V	Meter Reading	Corrected Factor	Result (dBuV/m)	Remark	Limit (dBuV/m)		Margin (dB)	Table	Ant High
(MHz)	11/ V	(dBuV)	(dB)	(ubuv/iii)		Peak	Ave	(UD)	Deg.	(m)
2390	Н	41.37	-4.92	36.45	Peak	74	54	-37.55	360	1.5
	Н				Ave	74	54			
2383.5	V	40.70	-4.92	35.78	Peak	74	54	-38.22	182	1.5
	V				Ave	74	54			

Note:

- 1. Emission level = Reading level + Correction factor
- 2. Correction factor : Antenna factor, Cable loss, Pre-Amp, etc.
- All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
- 4. Measurements above 1000 MHz, Peak detector setting:1 MHz RBW with 1 MHz VBW (Peak Detector).
- 5. Measurements above 1000 MHz, Average detector setting:

1 MHz RBW with 10Hz VBW (Peak Detector).

6. Peak detector measurement data will represent the worst case results.

7. Where limits are specified for both average and peak detector functions, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.

12. Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.09000 – 0.11000	16.42000 – 16.42300	399.9 - 410.0	4.500 – 5.150
0.49500 - 0.505**	16.69475 – 16.69525	608.0 - 614.0	5.350 - 5.460
2.17350 – 2.19050	16.80425 – 16.80475	960.0 – 1240.0	7.250 – 7.750
4.12500 - 4.12800	25.50000 - 25.67000	1300.0 – 1427.0	8.025 - 8.500
4.17725 – 4.17775	37.50000 - 38.25000	1435.0 – 1626.5	9.000 - 9.200
4.20725 – 4.20775	73.00000 - 74.60000	1645.5 – 1646.5	9.300 - 9.500
6.21500 - 6.21800	74.80000 – 75.20000	1660.0 – 1710.0	10.600 – 12.700
6.26775 – 6.26825	108.00000 - 121.94000	1718.8 – 1722.2	13.250 – 13.400
6.31175 – 6.31225	123.00000 - 138.00000	2200.0 - 2300.0	14.470 – 14.500
8.29100 - 8.29400	149.90000 - 150.05000	2310.0 – 2390.0	15.350 – 16.200
8.36200 - 8.36600	156.52475 – 156.52525	2483.5 – 2500.0	17.700 – 21.400
8.37625 - 8.38675	156.70000 - 156.90000	2655.0 – 2900.0	22.010 – 23.120
8.41425 – 8.41475	162.01250 - 167.17000	3260.0 - 3267.0	23.600 - 24.000
12.29000 - 12.29300	167.72000 - 173.20000	3332.0 - 3339.0	31.200 – 31.800
12.51975 – 12.52025	240.00000 - 285.00000	3345.8 – 3358.0	36.430 - 36.500
12.57675 – 12.57725	322.00000 - 335.40000	3600.0 - 4400.0	Above 38.6
13.36000 – 13.41000			

**: Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

12.1 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.