

FCC ID: 2ALSZ-CL31007PCE Report No.: T190304E01-RP Page: 1 / 53 Rev.: 00

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
Product name	Photocontroller
Brand Name	CIMCON
Model No.	iSLC3100-7P-C-E
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

Komil Ison

Kevin Tsai Deputy Manager

Tested by:

Dally. Hong

Dally Hong Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com

Page: 2 / 53 Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Revised By
00	April 23, 2019	Initial Issue	Allison Chen

Page: 3 / 53 Rev.: 00

Table of contents

	GENERAL INFORMATION	
1.1	EUT INFORMATION	. 4
1.2	EUT CHANNEL INFORMATION	. 5
1.3	ANTENNA INFORMATION	. 5
1.4	MEASUREMENT UNCERTAINTY	. 6
1.5	FACILITIES AND TEST LOCATION	. 6
1.6	INSTRUMENT CALIBRATION	. 7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	. 8
1.8	TEST METHODOLOGY AND APPLIED STANDARDS	. 8
2.	TEST SUMMERY	. 9
3.	DESCRIPTION OF TEST MODES	10
3.1	THE WORST MODE OF OPERATING CONDITION	10
	THE WORST MODE OF MEASUREMENT	
4.	EUT DUTY CYCLE	12
5.	TEST RESULT	13
5.1	AC POWER LINE CONDUCTED EMISSION	13
5.2	20dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)	16
5.3	OUTPUT POWER MEASUREMENT	20
5.4	FREQUENCY SEPARATION	22
5.5	NUMBER OF HOPPING	25
5.6	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	27
5.7	TIME OF OCCUPANCY (DWELL TIME)	30
	RADIATION BANDEDGE AND SPURIOUS EMISSION	
API	PENDIX-A TEST PHOTOA	-1

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	CIMCON Lighting, Inc. 35 Crosby Drive,Bedford, MA 01730, USA						
Manufacturer	CIMCON Lighting, Inc. 35 Crosby Drive,Bedford, MA 01730, USA						
Equipment	Photocontro	oller					
Model No.	iSLC3100-7	7P-C-E					
Model Discrepancy	N/A						
Trade Name	CIMCON						
Received Date	March 4, 20)19					
Date of Test	March 13 ~	April 16, 201	9				
Output Power(W)	Zigbee: 0.6	982					
Power Operation	120Vac, 60	Hz					
		1					
	Channel	Frequency	Channel	Frequency	Channel	Frequency	
	0	902.4	22	911.2	44	920	
	1	902.8	23	911.6	45	920.4	
	2	903.2	24	912	46	920.8	
	3	903.6	25	912.4	47	921.2	
	4	904	26	912.8	48	921.6	
	5	904.4	27	913.2	49	922	
	6	904.8	28	913.6	50	922.4	
	7	905.2	29	914	51	922.8	
	8	905.6	30	914.4	52	923.2	
Channel List	9	906	31	914.8	53	923.6	
Channel List	10	906.4	32	915.2	54	924	
	11	906.8	33	915.6	55	924.4	
	12	907.2	34	916	56	924.8	
	13	907.6	35	916.4	57	925.2	
	14	908	36	916.8	58	925.6	
	15	908.4	37	917.2	59	926	
	16	908.8	38	917.6	60	926.4	
	17	909.2	39	918	61	926.8	
	18	909.6	40	918.4	62	927.2	
	19	910	41	918.8	63	927.6	
	20	910.4	42	919.2			
	21	910.8	43	919.6			

Page: 5 / 53 Rev.: 00

1.2 EUT CHANNEL INFORMATION

Frequency Range	Zigbee: 902.4 ~ 927.6MHz
Modulation Type	Zigbee: FHSS
Number of channel	64 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 test channels

Number of frequencies to be tested					
Frequency range in which device operates	Number of frequencies	Location in frequency range of operation			
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Type	 □ PIFA ➢ PCB □ Dipole □ Coils
Antenna Gain	-1.34 dBi
Antenna connector	N/A

Page: 6 / 53 Rev.: 00

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Dally Hong	-
Radiation	Dally Hong	-
RF Conducted	Dally Hong	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Page: 7 / 53 Rev.: 00

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Power Meter	Anritsu	ML2495A	1149001	02/12/2019	02/11/2020	
Power Seneor	Anritsu	MA2491A	030982	02/12/2019	02/11/2020	
Signal Analyzer	R&S	FSV 40	101073	09/27/2018	09/26/2019	

Wugu 966 Chamber A						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Band Reject Filters	MICRO TRONICS	BRM 50702	120	02/26/2019	02/25/2020	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/13/2018	07/12/2019	
Cable	HUBER SUHNER	SUCOFLE X 104PEA	25157	02/26/2019	02/25/2020	
Cable	HUBER SUHNER	SUCOFLE X 104PEA	20995	02/26/2019	02/25/2020	
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/30/2019	01/29/2020	
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	08/20/2018	08/19/2019	
Loop Ant	COM-POWER	AL-130	121051	03/22/2019	03/21/2020	
Pre-Amplifier	EMEC	EM330	060609	02/26/2019	02/25/2020	
Pre-Amplifier	HP	8449B	3008A00965	02/26/2019	02/25/2020	
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/31/2018	05/30/2019	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Software	e3 6.11-20180413					

Conducted Emission Room # B					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
CABLE	EMCI	CFD300-NL	CERF	06/29/2018	06/28/2019
EMI Test Receiver	R&S	ESCI	100064	07/24/2018	07/23/2019
LISN	SCHWARZBECK	NSLK 8127	8127-541	01/31/2019	01/30/2020
LISN	SCHAFFNER	NNB 41	03/10013	02/13/2019	02/12/2020
Software	EZ-EMC(CCS-3A1-CE)				

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 8 / 53 Rev.: 00

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment					
No.	Equipment	Brand	Model	Series No.	FCC ID	
	N/A					

		:	Support Equipmen	t	
No.	Equipment	Brand	Model	Series No.	FCC ID
1	NB(L)	Toshiba	PORTEGE R30-A	N/A	PD97260H

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247.

2. TEST SUMMERY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	5.1	AC Conducted Emission	Pass
15.247(a)(1)	5.2	20 dB Bandwidth	Pass
-	5.2	Occupied Bandwidth (99%)	-
15.247(b)(2)	5.3	Output Power Measurement	Pass
15.247(a)(1)	5.4	Frequency Separation	Pass
15.247(a)(1)(i)	5.5	Number of Hopping	Pass
15.247(d)	5.6	Conducted Band Edge	Pass
15.247(d)	5.6	Conducted Emission	Pass
15.247(a)(1)(i)	5.7	Time of Occupancy	Pass
15.247(d)	5.8	Radiation Band Edge	Pass
15.247(d)	5.8	Radiation Spurious Emission	Pass

Page: 9 / 53 Rev.: 00

Γ

Report No.: T190304E01-RP

Page: 10 / 53 Rev.: 00

٦

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	902.4 MHz ~ 927.6 MHz
Test Channel Frequencies	1.Lowest Channel : 902.4MHz 2.Middle Channel : 915.2MHz 3.Highest Channel : 927.6MHz

Т

Page: 11 / 53 Rev.: 00

3.2 THE WORST MODE OF MEASUREMENT

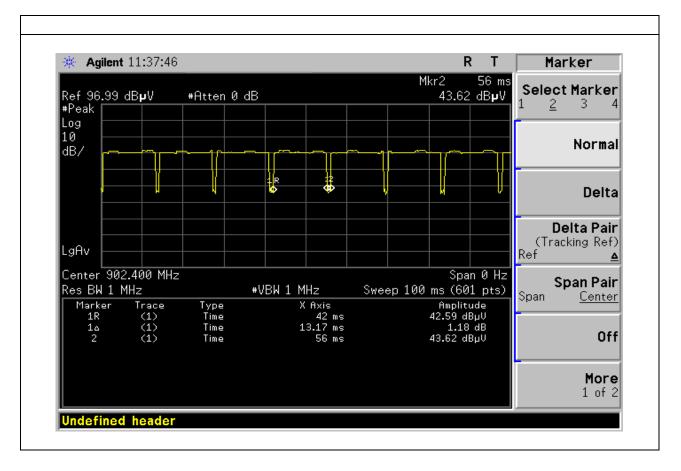
AC Power Line Conducted Emission			
Test Condition AC Power line conducted emission for line and neutral			
Power supply Mode 120Vac / 60Hz			
Worst Mode	Mode 1 Mode 2 Mode 3 Mode 4		

Radiated Emission Measurement Above 1G				
Test ConditionBand edge, Emission for Unwanted and Fundamental				
Power supply Mode	120Vac / 60Hz			
Worst Mode	🖂 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			
Worst Polarity	Horizontal 🛛 Vertical			

Radiated Emission Measurement Below 1G				
Test Condition	Radiated Emission Below 1G			
Power supply Mode	120Vac / 60Hz			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Remark:

1. The worst mode was record in this test report.


2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Vertical) were recorded in this report

3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

4. EUT DUTY CYCLE

	Duty	Cycle	
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)
Zigbee	28.8300	42.8300	67.31%

Page: 13 / 53 Rev.: 00

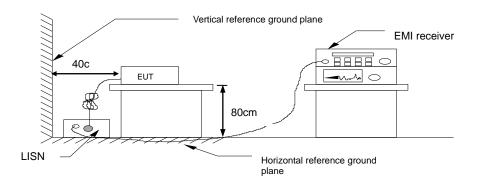
5. TEST RESULT

5.1 AC POWER LINE CONDUCTED EMISSION

5.1.1 Test Limit

According to §15.207(a),

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

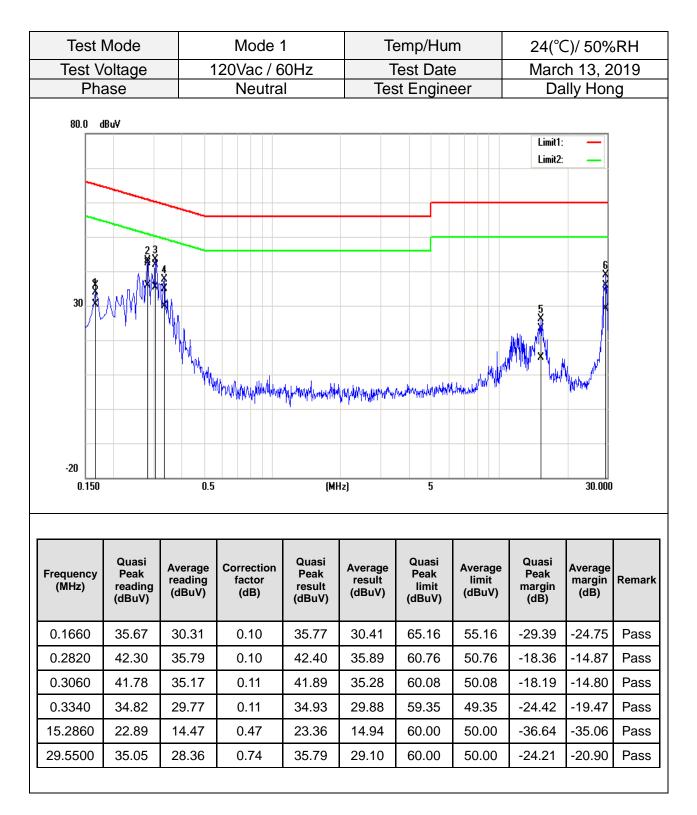
5.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

5.1.3 Test Setup

5.1.4 Test Result PASS



Test Data

Test Mode Mod		Mode ²	1	Te	emp/Hur	n	24(°0	C)/ 50%	RH	
Test Voltage 120Vac / 6		60Hz		est Date			h 13, 2			
Phase Line			Test Engineer		eer	Dally Hon		g		
80.0 di								Limit1: Limit2:		
	Ý	14					ЦАЛИ		M.M.	
-20		0.5	Vi Magunamodallaha	dipologi poloki dipoloki dipologi poloki (MI		144444444 5	Kulanda (M. 19		30.000	
	Quasi Peak reading (dBuV)		Correction factor (dB)				Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remarl
0.150 Frequency	Peak reading	0.5 Average reading	Correction	(Mł Quasi Peak result	lz) Average result	5 Quasi Peak limit	Average	Peak margin	Average margin	
0.150 Frequency (MHz)	Peak reading (dBuV)	0.5 Average reading (dBuV)	Correction factor (dB)	(Mł Quasi Peak result (dBuV)	łz) Average result (dBuV)	5 Quasi Peak limit (dBuV)	Average limit (dBuV)	Peak margin (dB)	Average margin (dB)	Remark Pass Pass
0.150 Frequency (MHz) 0.1945	Peak reading (dBuV) 34.58	0.5 Average reading (dBuV) 27.99	Correction factor (dB) 0.15	(Mi Quasi Peak result (dBuV) 34.73	Average result (dBuV) 28.14	5 Quasi Peak limit (dBuV) 63.84	Average limit (dBuV) 53.84	Peak margin (dB) -29.11	Average margin (dB) -25.70	Pass
0.150 Frequency (MHz) 0.1945 0.2420	Peak reading (dBuV) 34.58 35.36	0.5 Average reading (dBuV) 27.99 29.62	Correction factor (dB) 0.15 0.15	(Mi Quasi Peak result (dBuV) 34.73 35.51	Average result (dBuV) 28.14 29.77	5 Quasi Peak limit (dBuV) 63.84 62.03	Average limit (dBuV) 53.84 52.03	Peak margin (dB) -29.11 -26.52	Average margin (dB) -25.70 -22.26	Pass Pass Pass
0.150 Frequency (MHz) 0.1945 0.2420 0.2940	Peak reading (dBuV) 34.58 35.36 43.48	0.5 Average reading (dBuV) 27.99 29.62 34.63	Correction factor (dB) 0.15 0.15 0.15	(Mł Peak result (dBuV) 34.73 35.51 43.63	Average result (dBuV) 28.14 29.77 34.78	5 Quasi Peak limit (dBuV) 63.84 62.03 60.41	Average limit (dBuV) 53.84 52.03 50.41	Peak margin (dB) -29.11 -26.52 -16.78	Average margin (dB) -25.70 -22.26 -15.63	Pass Pass

Page: 15 / 53 Rev.: 00

Page: 16 / 53 Rev.: 00

5.2 20dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

5.2.1 Test Limit

According to §15.247(a) (1),

20 dB Bandwidth :

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Occupied Bandwidth(99%) : For reporting purposes only.

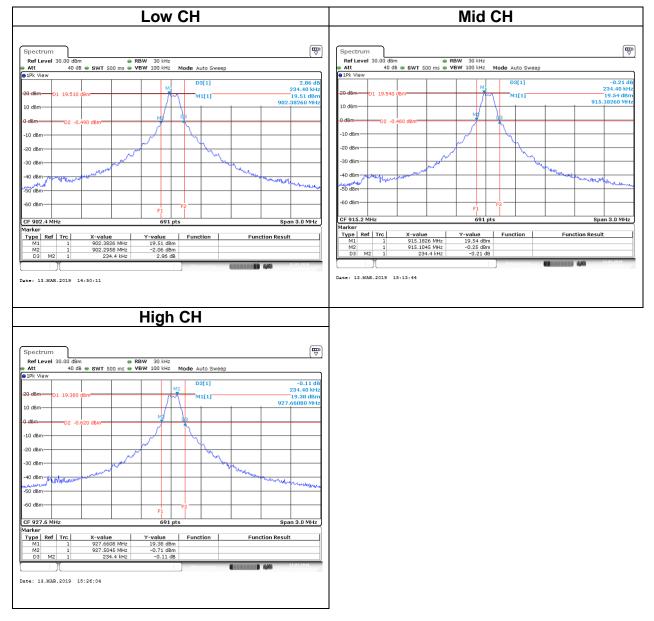
5.2.2 Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

5.2.3 Test Setup

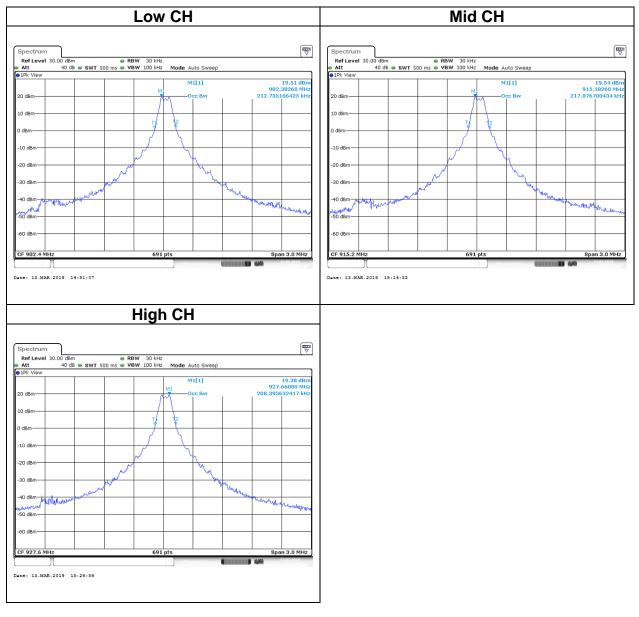
Page: 17 / 53 Rev.: 00


5.2.4 Test Result

Test mode: 902.4 MHz ~ 927.6 MHz					
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)		
Low	902.4	0.2127	0.2344		
Mid	915.2	0.2170	0.2344		
High	927.6	0.2083	0.2344		

<u>Test Data</u>

20 dB Bandwidth



Page: 18 / 53 Rev.: 00

Page: 19 / 53 Rev.: 00

99% Bandwidth

Page: 20 / 53 Rev.: 00

5.3 OUTPUT POWER MEASUREMENT

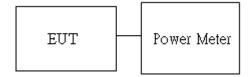
5.3.1 Test Limit

According to §15.247(b)(2).

Peak output power :

FCC

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.


	Antenna not exceed 6 dBi : 30dBm
Limit	Antenna with DG greater than 6 dBi : 24dBm
	[Limit = 24 - (DG - 6)]

Average output power : For reporting purposes only.

5.3.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

5.3.3 Test Setup

5.3.4 Test Result

Peak output power :

Zigbee						
Config.	СН	Freq. (MHz)	Power Setting	PK Power (dBm)	PK Power (W)	Limit (dBm)
	0	902.4	30	28.21	0.6622	
Zigbee	32	915.2	30	28.44	0.6982	30
	63	927.6	30	28.19	0.6592	

Average output power :

Zigbee						
Config.	СН	Power Setting	Freq. (MHz)	AV Power (dBm)		
	0	30	902.4	28.13		
Zigbee	32	30	915.2	28.42		
	63	30	927.6	28.12		

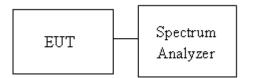
Page: 21 / 53 Rev.: 00

Page: 22 / 53 Rev.: 00

5.4 FREQUENCY SEPARATION

5.4.1 Test Limit

According to §15.247(a)(1),

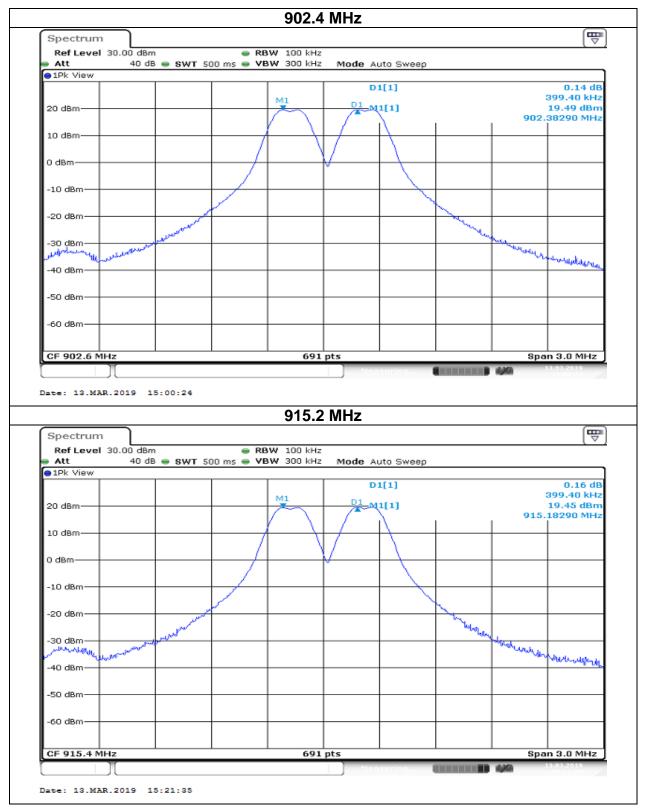

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Limit	> two-thirds of the 20 dB bandwidth

5.4.2 Test Procedure

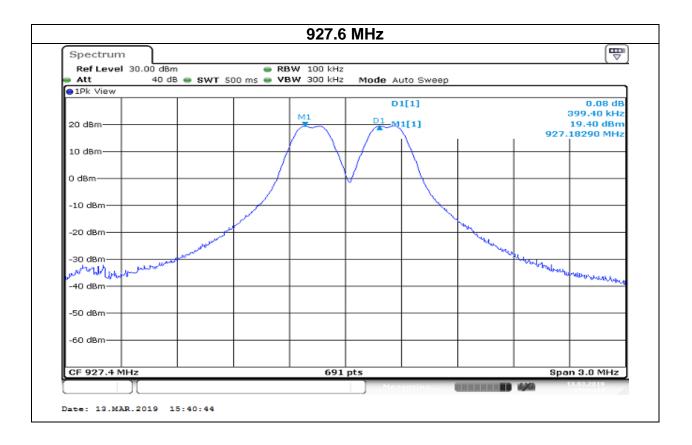
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

5.4.3 Test Setup


5.4.4 Test Result

	Test mode: 902.4 MHz ~ 927.6 MHz					
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result		
Low	902.4	0.3994	0.156	PASS		
Mid	915.2	0.3994	0.156	PASS		
High	927.6	0.3994	0.156	PASS		

Page: 23 / 53 Rev.: 00


Test Data

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

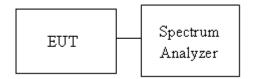
Page: 24 / 53 Rev.: 00

Page: 25 / 53 Rev.: 00

5.5 NUMBER OF HOPPING

5.5.1 Test Limit

According to §15.247(a)(1)(i)

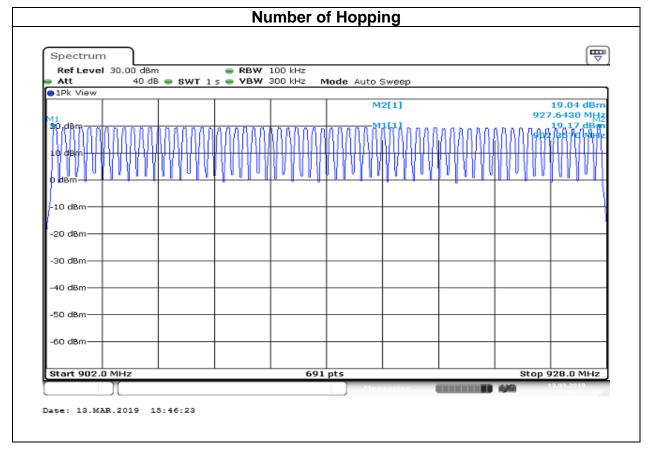

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

5.5.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 902.0 MHz, Stop Freq. = 928.0 MHz, RBW =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

5.5.3 Test Setup



5.5.4 Test Result

Number of Hopping						
Mode	Frequency (MHz)	Hopping Channel Number	Hopping Channel Number Limits	Result		
FHSS	902.4-927.6	64	50	Pass		

Test Data

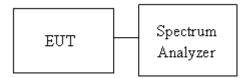
Page: 27 / 53 Rev.: 00

5.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

5.6.1 Test Limit

According to §15.247(d),

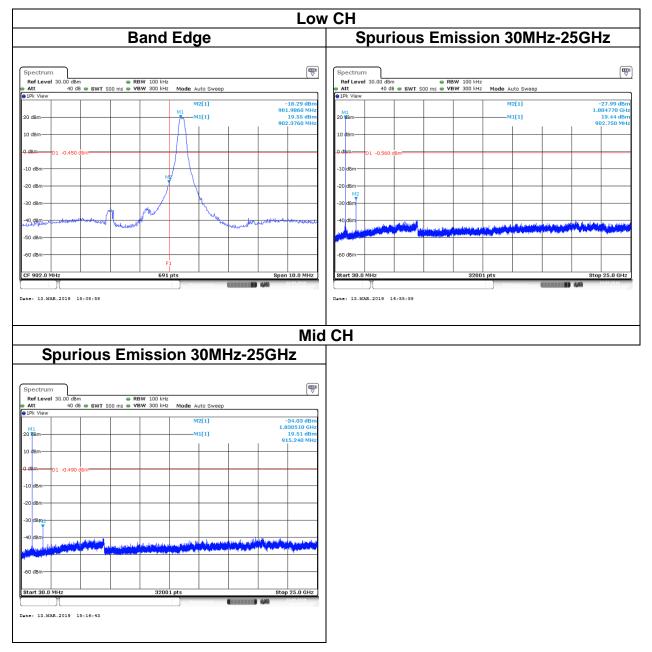
Limit -20 dBc


5.6.2 Test Procedure

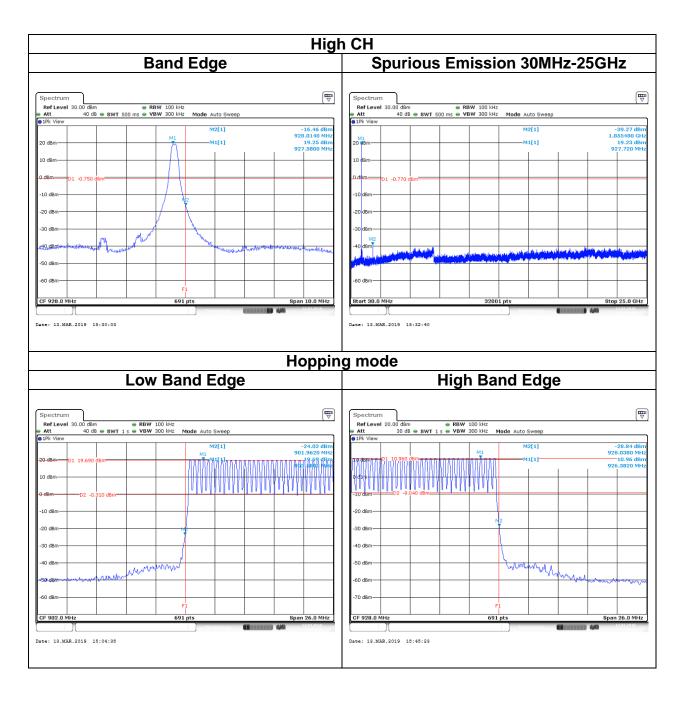
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 902.0MHz and 928.0MHz are investigated with normal hopping mode.


5.6.3 Test Setup

5.6.4 Test Result


Test Data

Page: 28 / 53 Rev.: 00

Page: 29 / 53 Rev.: 00

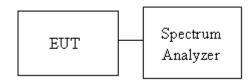
Page: 30 / 53 Rev.: 00

5.7 TIME OF OCCUPANCY (DWELL TIME)

5.7.1 Test Limit

According to §15.247(a)(1)(i),

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

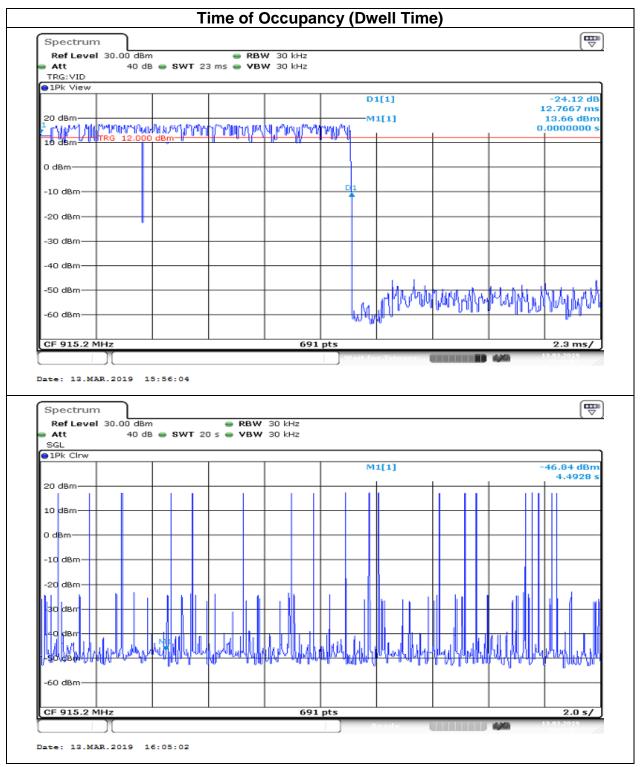

5.7.2 Test Procedure

1. EUT RF output port connected to the SA by RF cable.

2. Set center frequency of spectrum analyzer = operating frequency.

3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

5.7.3 Test Setup


5.7.4 Test Result

Time of O	ccupancy	(Dwell Time)				
Mode	Frequency (MHz)	Pulse Time Per Hopping (ms)	Minimum Number of Hopping Freq.	Average time of occupancy (s)	Dwell Time Limits (s)	Result
FHSS	915.2	12.7667	19	0.242567	0.4	Pass

Page: 31 / 53 Rev.: 00

Test Data

Page: 32 / 53 Rev.: 00

5.8 RADIATION BANDEDGE AND SPURIOUS EMISSION

5.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 33 / 53 Rev.: 00

5.8.2 Test Procedure

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

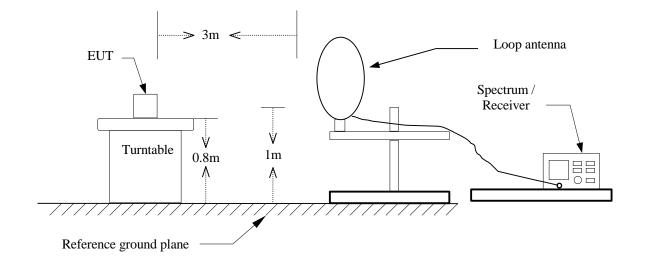
4. The SA setting following :

- (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
- (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

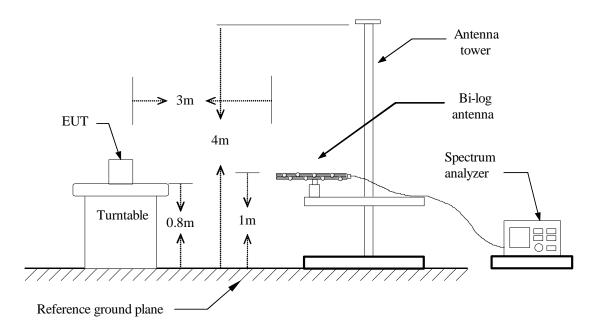
If Duty Cycle \geq 98%, VBW=10Hz.

'If Duty Cycle < 98%, VBW≥1/T.

Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW Setting
Zigbee	67.31%	28.8300	0.035	36Hz

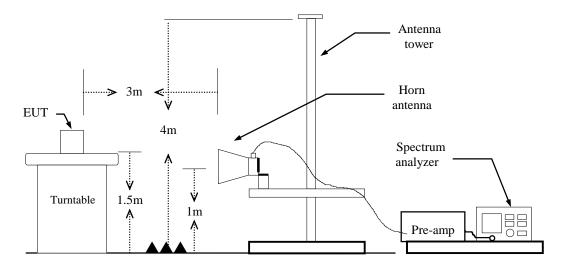

Remark:

- Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).



5.8.3 Test Setup

<u>9kHz ~ 30MHz</u>


<u> 30MHz ~ 1GHz</u>

Page: 35 / 53 Rev.: 00

Above 1 GHz

5.8.4 Test Result

Below 1G Test Data

Test Mode	e: Zigb	ee Mode-L	ow CH	Temp/Hum	20(°C)	/ 61%RH	
Test Item		30MHz-1GHz		Test Date	April [•]	April 16, 2019	
Polarize		Vertical		Test Engineer		Dally Hong	
Detector		Peak		Test Voltage	120Va	ac / 60Hz	
120 Level (dBuV/m))						
110							
90							
70							
50	3	4					
30 1	2 3	Ĩ	5		6		
10							
0							
30	224.	418.	Frequency (MH)	612. :)	806.	1000	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
57.16	43.65	-15.91	27.74	40.00	-12.26	Peak	
151.25	44.96	-9.90	35.06	43.50	-8.44	Peak	
240.49	47.91	-10.25	37.66	46.00	-8.34	Peak	
	44.94	-7.86	37.08	46.00	-8.92	Peak	
311.30	44.34						
311.30 454.86	33.05	-3.79	29.26	46.00	-16.74	Peak	

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

Page: 37 / 53 Rev.: 00

Test Mode	e: Zigl	bee Mode-L	ow CH	Temp/Hum	20(°C)	/ 61%RH
Test Item		30MHz-1G		Test Date		16, 2019
Polarize		Horizonta		est Engineer		y Hong
Detector		Peak		Test Voltage	120Va	ic / 60Hz
120 Level (dBuV/m)		I	1		
110						
90						
70						
50						
1		4 5		6		
30		Ĭ				
10						
0 <mark></mark> 30	224.	418.	Frequency (MHz)	612.	806.	1000
		Correct				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
61.04	49.85	-15.64	34.21	40.00	-5.79	Peak
95.96	52.34	-13.95	38.39	43.50	-5.11	Peak
264.74	50.13	-8.95	41.18	46.00	-4.82	Peak
	45.35	-7.18	38.17	46.00	-7.83	Peak
335.55	00.54	-4.32	29.19	46.00	-16.81	Peak
432.55	33.51	1.02				

Page: 38 / 53 Rev.: 00

Test Mode	: Zigl	bee Mode-N	/lid CH	Temp	/Hum	20(°C)	/ 61%RH
Test Item		30MHz-1G	Hz		Date		16, 2019
Polarize		Vertical			ngineer		y Hong
Detector		Peak		lest v	oltage	120Va	ac / 60Hz
120 Level (dBuV/m)							
110							
90							
70							
50							
1 2		3 4	E			6	
30			Ĭ			Ĭ	
10							
0 <mark></mark> 30	224.	418.	Frequency (612. (MHz)	1	806.	1000
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit IBuV/m)	Margin (dB)	Remarl
57.16	50.69	-15.91	34.7	8	40.00	-5.22	Peak
95.96	51.07	-13.95	37.1	2	43.50	-6.38	Peak
311.30	48.41	-7.86	40.5	5	46.00	-5.45	Peak
335.55	45.52	-7.18	38.3	4	46.00	-7.66	Peak
	30.65	-3.03	27.6	2	46.00	-18.38	Peak
503.36	00.00			-			

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

Page: 39 / 53 Rev.: 00

Test Mode	e: Zig	bee Mode-N	/id CH	Temp/Hum	20(°C)/	/ 61%R⊦
Test Item		30MHz-1G		Test Date		16, 2019
Polarize		Horizonta		est Engineer		/ Hong
Detector		Peak		est Voltage	120Va	ic / 60Hz
120)					
110						
90						
70						
10						
50	2 3					
30 1		4		5	6	
10						
0 <mark></mark> 30	224.	418.	Frequency (MHz)	6 12.	806.	1000
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
71.71	43.17	-14.74	28.43	40.00	-11.57	Peak
167.74	47.92	-10.56	37.36	43.50	-6.14	Peak
264.74	50.09	-8.95	41.14	46.00	-4.86	Peak
	34.14	-4.47	29.67	46.00	-16.33	Peak
430.61		0.04	28.08	46.00	-17.92	Peak
430.61 658.56	28.29	-0.21	20.00	10.00		

Page: 40 / 53 Rev.: 00

Test Mod	le: Z	igbee Mode-H	ligh CH	Temp/Hum	20(°C)	/ 61%R⊦
Test Iter		30MHz-1G		Test Date		16, 2019
Polarize		Vertical		Test Enginee		y Hong
Detecto	ſ	Peak		Test Voltage	12008	ac / 60Hz
120 Level (dBuV/i	m)					
110						
90						
70						
50						
1 2		3 5			6	
30						
10						
0 <mark>11 </mark>	224.	418.	Frequency (MH	612. z)	806.	1000
Frequency (MHz)	Reading (dBuV)		Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
34.85	40.28	-5.52	34.76	40.00	-5.24	Peak
95.96	51.96	-13.95	38.01	43.50	-5.49	Peak
264.74	44.20	-8.95	35.25	46.00	-10.75	Peak
311.30	46.72	-7.86	38.86	46.00	-7.14	Peak
050.00	39.06	-6.59	32.47	46.00	-13.53	Peak
359.80						

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

Page: 41 / 53 Rev.: 00

-	: Zię	gbee Mode-H	•		emp/Hum	. ,	/ 61%RH
Test Item Polarize		30MHz-1G Horizonta			est Date		16, 2019
Detector		Peak	ai		t Engineer st Voltage		y Hong ic / 60Hz
120 Level (dBuV/m) 110 90 70 50							
30	2	3 4			5	6	
10							
0 <mark></mark>	224.	418.	Frequency (N	612 NHz)	2.	806.	1000
	Reading	Correct Factor	Resul		Limit (dBuV/m)	Margin (dB)	Remark
Frequency (MHz)	(dBuV)	(dB/m)	(dBuV/r	n)	(abuv/iii)	. ,	
	(dBuV) 52.47	(dB/m) -13.95	(dBuV/r 38.52		43.50	-4.98	Peak
(MHz)				2			Peak Peak
(MHz) 95.96	52.47	-13.95	38.52	2 1	43.50	-4.98	
(MHz) 95.96 264.74	52.47 50.39	-13.95 -8.95	38.52 41.44	2 1 7	43.50 46.00	-4.98 -4.56	Peak
(MHz) 95.96 264.74 311.30	52.47 50.39 48.23	-13.95 -8.95 -7.86	38.52 41.44 40.37	2 1 7 1	43.50 46.00 46.00	-4.98 -4.56 -5.63	Peak Peak

Above 1G Test Data (1G ~ 3G)

Pe	Harmonic Vertical ak and Ave	Te	Test Date est Engineer fest Voltage	Dally	16, 2019 y Hong ac / 60Hz
Pe					
	eak and Ave	erage 1	Test Voltage	120Va	ac / 60Hz
	2				
				4	
				3	
1400.	1800.	2 Frequency (MHz)	2200.	2600.	3000
Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
-	-10.80	50.70	54.00	-3.30	Average
72.16	-10.66	61.50	74.00	-12.50	Peak
-	-10.80	33.07	54.00	-20.93	Average
51.74	-7.87	43.87	74.00	-30.13	Peak
	Reading (dBuV) - 72.16 -	Reading (dBuV) Correct Factor (dB/m) - -10.80 72.16 -10.66 - -10.80	Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) - -10.80 50.70 72.16 -10.66 61.50 - -10.80 33.07	Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) - -10.80 50.70 54.00 72.16 -10.66 61.50 74.00 - -10.80 33.07 54.00	Image: Note of the state o

Page: 43 / 53 Rev.: 00

Test Mode	e:	Low CH		Temp/Hum	, , ,	/ 62%RH	
Test Item		Harmonio		Test Date		April 16, 2019	
Polarize Detector		Horizonta		Test Engineer Test Voltage		y Hong ac / 60Hz	
		eak and Ave		Test voltage	12008		
120 Level (dBuV/m	I)						
110							
90							
70		2					
50							
30					4		
10							
0L 1000	1400.	1800.	Frequency (MH	2200. z)	2600.	300	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m	Limit (dBuV/m)	Margin (dB)	Remar	
1804.80	-	-10.80	48.70	54.00	-5.30	Averag	
1804.80	70.16	-10.66	59.50	74.00	-14.50	Peak	
2707.20	-	-10.80	26.04	54.00	-27.96	Averag	
2707.20	44.71	-7.87	36.84	74.00	-37.16	Peak	
N/A							
					1		

Remark:

Test Mode	:	Mid CH		Temp/Hu			/ 62%RH
Test Item		Harmonie	C	Test Da			16, 2019
Polarize Detector	D	Vertical eak and Ave	rago	Test Engir Test Volta			y Hong ac / 60Hz
120 Level (dBuV/m)							
110							
90							
70		2					
50						4	
30						3	
10							
0 ¹ 1000	1400.	1800.	Frequency (MH	2200. 1)		2600.	3000
Frequency	Reading	Correct Factor	Result	Lin		Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBu)	/m)	(dB)	
1830.40	-	-10.80	50.72	54.	00	-3.28	Averag
1830.40	72.16	-10.64	61.52	74.	00	-12.48	Peak
2745.60	-	-10.80	33.30	54.	00	-20.70	Average
2745.60	52.05	-7.95	44.10	74.	00	-29.90	Peak
N/A							
	1		I			1	1

Page: 45 / 53 Rev.: 00

Test Mode	:	Mid CH		Temp/Hu			/ 62%RH
Test Item		Harmonio		Test Da			16, 2019
Polarize Detector		Horizonta eak and Ave		Test Engir Test Volta			y Hong ac / 60Hz
120 Level (dBuV/m)	·						
110							
90							
70		2					
50						4	
30						3	
10							
0 <mark>1000</mark>	1400.	1800.	Frequency (MI	2200. Iz)		2600.	3000
Frequency	Reading	Correct Factor	Result	Lim	iit	Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m) (dBu\	//m)	(dB)	Remark
1830.40	-	-10.80	49.63	54.0	00	-4.37	Average
1830.40	71.07	-10.64	60.43	74.0	00	-13.57	Peak
2745.60	-	-10.80	31.52	54.0	00	-22.48	Average
2745.60	50.27	-7.95	42.32	74.0	00	-31.68	Peak
N/A							
	1	1	1				1

Page: 46 / 53 Rev.: 00

Test Mod	de:	High CH	1	Temp/Hum	20(°C)	/ 62%RH
Test Iter		Harmoni		Test Date		16, 2019
Polariz		Vertical		Test Engineer		y Hong
Detecto	or	Peak and Ave	erage	Test Voltage	120Va	ac / 60Hz
120 Level (dBuV/	m)					
110						
90						
70			2			
50			1		4	
30					3	
10						
0 <mark></mark>	1400.	1800		2200.	2600.	3000
			Frequency (MHz)			
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1855.20	-	-10.80	48.78	54.00	-5.22	Average
1855.20	70.17	-10.59	59.58	74.00	-14.42	Peak
2782.80	-	-10.80	32.14	54.00	-21.86	Average
2782.80	51.22	-8.28	42.94	74.00	-31.06	Peak
N/A						
	1					1

Test Mod		High Cl		Temp/H		. ,	/ 62%RH
Test Iter		Harmon		Test Da			<u>16, 2019</u>
Polarizo Detecto		Horizont Peak and Av		Test Engi Test Volt			y Hong ac / 60Hz
120 Level (dBuV/	m)						
110							
90							
70			2				
50						4	
30							
10							
0 <mark>1000</mark>	1400.	180	0. Frequency (I	2200. ЛН z)	1	2600.	3000
Frequency (MHz)	Reading (dBuV)		Resul (dBuV/		nit IV/m)	Margin (dB)	Remark
1855.20	-	-10.80	48.8	2 54	.00	-5.18	Average
1855.20	68.21	-10.59	57.62	2 74	.00	-16.38	Peak
2782.80	-	-10.80	27.79	9 54	.00	-26.21	Average
2782.80	46.87	-8.28	38.59	9 74	.00	-35.41	Peak
N/A	_						

Above 1G Test Data (3G ~ 10G)

Test Mode	:	Low CH		Temp/Hum	20(°C)	/ 62%RH
Test Item		Harmonio		Test Date		16, 2019
Polarize		Vertical		est Engineer		y Hong
Detector	Pe	eak and Ave	erage	Test Voltage	120Va	ac / 60Hz
120)					
110						
90						
70						
50						
30	2	3				
10						
0 <mark></mark> 3000	4400.	5800.	Frequency (MHz)	7200.	8600.	10000
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
3609.60	46.69	-6.15	40.54	74.00	-33.46	Peak
4512.00	38.79	-4.90	33.89	74.00	-40.11	Peak
5432.40	37.86	-3.45	34.41	74.00	-39.59	Peak
N/A						

Page: 49 / 53 Rev.: 00

Test Mode	:	Low CH		Temp/Hum		20(°C)/ 62%RH		
Test Item		Harmonic			Test Dat		April 16, 2019	
Polarize		Horizonta		Test Engineer		Dally Hong		
Detector	P	eak and Ave	erage	Te	est Volta	ge	120Va	c / 60Hz
120								
110								
90								
70								
50 1								
30	2	3						
10								
0 <mark>3000</mark>	4400.	5800.		72	200.		8600.	1000
			Frequency (M	Hz)				
Frequency (MHz)	Reading (dBuV)	ding BuV) Correct Factor (dB/m)		n)	Limit (dBuV/m)		Margin (dB)	Remarl
3609.60	46.68	-6.15	40.53		74.00		-33.47	Peak
4512.00	38.20	-4.90	33.30		74.00		-40.70	Peak
5432.40	35.66	-3.45	32.21	74.00		00	-41.79	Peak
N/A								

Remark:

Test Iten	n	Harmonio	c	Test Date	20(°C)/ 62%RH April 16, 2019	
Polarize		Vertical	Te	est Engineer	Dally	y Hong
Detecto	r P	eak and Ave	erage T	est Voltage	120Va	ac / 60Hz
120 Level (dBuV/n	n)			1		
110						
90						
70						
50						
30	2	3				
10						
03000	4400.	5800.	7 Frequency (MHz)	200.	8600.	1000
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remarl
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
3660.80	41.47	-4.47	37.00	74.00	-37.00	Peak
4576.00	39.60	-4.92	34.68	74.00	-39.32	Peak
5491.20	39.39	-3.97	35.42	74.00	-38.58	Peak
N/A						
	_					

Page: 51 / 53 Rev.: 00

Test Mode	:	Mid CH		Temp/Hum			20(°C)/ 62%RH		
Test Item			Harmonic			Test Dat			6, 2019
Polarize		Horizontal				st Engin		Dally	/ Hong
Detector		Peak a	nd Ave	erage	Te	est Volta	ige	120Va	c / 60Hz
120 Level (dBuV/m))								
120									
90									
70									
50									
30	2		3						
10									
0 <mark></mark> 3000	4400.		5800	Frequency (200.		8600.	1000
Frequency (MHz)	Readin (dBuV	9 Fa	rrect ctor B/m)	Resu (dBuV/		Lim (dBuV		Margin (dB)	Remarl
3660.80	41.43	-4	.47	36.96		74.00		-37.04	Peak
4576.00	38.10	-4	-4.92 33.1		8	74.00		-40.82	Peak
5491.20	37.57	· -3	-3.97		0	74.00		-40.40	Peak
N/A									

Remark:

Test Mode		High CH		Temp/Hum	20(°C)/ 62%RH	
Test Item	1	Harmoni		Test Date	April 16, 2019	
Polarize		Vertical		est Engineer	Dally Hong	
Detector	Pe	Peak and Average		Test Voltage	120Va	ac / 60Hz
120 Level (dBuV/m)					
110						
90						
70						
50 1						
30	2	3				
10						
0 <mark></mark> 3000	4400.	5800.	Frequency (MHz)	7200.	8600.	10000
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
3710.40	43.81	-1.51	42.30	74.00	-31.70	Peak
4638.00	39.74	-4.99	34.75	74.00	-39.25	Peak
5565.60	39.77	-3.14	36.63	74.00	-37.37	Peak
N/A						

Pe	Horizonta ak and Ave	-		t Engine st Voltag			/ Hong c / 60Hz
Pe	ak and Ave				e	120Va	<u>c / 60Hz</u>
2	3						
4400.	5800.			D.	1	8600.	1000
Reading (dBuV)	Correct Factor (dB/m)			Limit (dBuV/n	ו)	Margin (dB)	Remar
42.83	-1.51	41.32	2	74.00		-32.68	Peak
38.95	-4.99	33.96		74.00		-40.04	Peak
38.38	-3.14	35.24	ŀ	74.00		-38.76	Peak
	Reading (dBuV) 42.83 38.95 38.38	Reading (dBuV) Correct Factor (dB/m) 42.83 -1.51 38.95 -4.99 38.38 -3.14	Reading (dBuV) Correct Factor (dB/m) Result (dBuV/r 42.83 -1.51 41.32 38.95 -4.99 33.96	Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) 42.83 -1.51 41.32 38.95 -4.99 33.96 38.38 -3.14 35.24 1 1 1 1 1 1	Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) Limit (dBuV/n) 42.83 -1.51 41.32 74.00 38.95 -4.99 33.96 74.00 38.38 -3.14 35.24 74.00 1 1 1 1	Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 42.83 -1.51 41.32 74.00 38.95 -4.99 33.96 74.00 38.38 -3.14 35.24 74.00 1 1 1 1	Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) 42.83 -1.51 41.32 74.00 -32.68 38.95 -4.99 33.96 74.00 -40.04 38.38 -3.14 35.24 74.00 -38.76 Image:

--End of Test Report--