

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 1708RSU00101 Report Version: V01 Issue Date: 11-21-2017

MEASUREMENT REPORT

FCC PART 15.250

APPLICANT: Ninebot (Changzhou) Tech Co., Ltd.

- **Application Type:** Certification
- Product: Remote Controller
- Model No.: N4MZ68
- Brand Name: SEGWAY
- FCC Classification: Wideband Transmitter (WBT)
- FCC Rule Part(s): Part 15, Section 15.250
- Test Procedure(s): ANSI C63.10-2013
- Test Date: August 02 ~ November 21, 2017

: Surry Sur (Sunny Sun) Reviewed By Marlinchen Approved By CREDI TESTING LABORATORY CERTIFICATE #3628.01 (Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANCI 63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1708RSU00101	Rev. 01	Initial Report	11-11-2017	Invalid
1708RSU01401	Rev. 02	Updated the Standard	11-21-2017	Valid

CONTENTS

Des	scription	n	Page
§2.1	1033 Ge	eneral Information	5
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	DUCT INFORMATION	7
	0.4	Facture of Equipment under Test	7
	2.1.		
	2.2.	Description of Test Software	7
	2.4.	Device Capabilities	
	2.5.	Test Configuration	
	2.6.	EMI Suppression Device(s)/Modifications	7
	2.7.	Labeling Requirements	8
3.	DESC	RIPTION of TEST	9
	2.4		0
	3.1. 3.2	AC Line Conducted Emissions	9 0
	3.2. 3.3	Rediated Emissions	
	0.0.		
			44
4.	ANTE	NNA REQUIREMENTS	11
4. 5.	ANTE TEST	NNA REQUIREMENTS	11
4. 5. 6.	ANTE TEST MEAS	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY	11 12 13
4. 5. 6. 7.	ANTE TEST MEAS TEST	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT	11 12 13 14
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT Summary	11 12 13 14 14
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT	11 12 13 14 14 14
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2. 7.2.1.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT	11 12 13 14 14 14 15 15
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2. 7.2.1. 7.2.2.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT	11 12 13 14 14 15 15 15
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2. 7.2.1. 7.2.2. 7.2.3.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT	11 12 13 13 14 14 15 15 15
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT	11 12 13 13 14 14 15 15 15 15 15 16
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT Summary Occupied Bandwidth and Operation Frequency Range Measurement Test Limit Test Limit Test Procedure used Test Setting Test Setting Test Setup Test Result.	11 12 13 13 14 14 15 15 15 15 15 16 17
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.3.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT Summary Occupied Bandwidth and Operation Frequency Range Measurement Test Limit Test Procedure used Test Procedure used Test Setting Test Setting Test Setup Test Result Radiated Spurious Emission Measurements Below 960MHz	11 12 13 13 14 14 15 15 15 15 15 15 16 17 18
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.3. 7.3.1.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT Occupied Bandwidth and Operation Frequency Range Measurement Test Limit Test Procedure used Test Setting Test Setting Test Setting Test Result Radiated Spurious Emission Measurements Below 960MHz Test Limit	11 12 13 13 14 14 15 15 15 15 15 15 15 18 18
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2. 7.2.1. 7.2.3. 7.2.4. 7.2.5. 7.3.1. 7.3.1. 7.3.2.	NNA REQUIREMENTS	11 12 13 13 14 15 15 15 15 11 13 14 14 15 15 15 15
4. 5. 6. 7.	ANTE TEST MEAS TEST 7.1. 7.2. 7.2.1. 7.2.3. 7.2.4. 7.2.5. 7.3.1. 7.3.1. 7.3.2. 7.3.3.	NNA REQUIREMENTS EQUIPMENT CALIBRATION DATE SUREMENT UNCERTAINTY RESULT Occupied Bandwidth and Operation Frequency Range Measurement Test Limit Test Procedure used Test Setting Test Setting Test Setup Test Result Radiated Spurious Emission Measurements Below 960MHz Test Limit Test Limit Test Procedure Used Test Setting	11 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 18 18 18 18 18 18
4. 5. 7.	ANTE TEST MEAS TEST 7.1. 7.2. 7.2.1. 7.2.3. 7.2.4. 7.2.5. 7.3.1. 7.3.1. 7.3.2. 7.3.3. 7.3.4.	NNA REQUIREMENTS	11 12 13 13 13 13 14 15 15 15 15 15 15

8.

7.4.	Radiated Spurious Emission Measurements Above 960MHz	23
7.4.1.	Test Limit	23
7.4.2.	Test Procedure Used	23
7.4.3.	Test Setting	23
7.4.4.	Test Setup	24
7.4.5.	Test Result	26
7.5.	Peak Power within 50 MHz bandwidth	43
7.5.1.	Test Limit	43
7.5.2.	Test Procedure Used	43
7.5.3.	Test Setting	43
7.5.4.	Test Setup	44
7.5.5.	Test Result	45
7.6.	AC Conducted Emissions Measurement	48
7.6.1.	Test Limit	48
7.6.2.	Test Procedure Used	48
7.6.3.	Test Setting	48
7.6.4.	Test Setup	49
7.6.5.	Test Result	49
CONC	CLUSION	50

Applicant:	Ninebot (Changzhou) Tech Co., Ltd.		
Applicant Address:	16F-17F, Block A, Building 3, Changwu Mid Road 18#, Wujin Dist.,		
	Changzhou, Jiangsu, China.		
Manufacturer:	Ninebot (Changzhou) Tech Co., Ltd.		
Manufacturer Address:	16F-17F, Block A, Building 3, Changwu Mid Road 18#, Wujin Dist.,		
	Changzhou, Jiangsu, China.		
Test Site:	MRT Technology (Suzhou) Co., Ltd		
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic		
	Development Zone, Suzhou, China		
MRT FCC Registration No.:	893164		
FCC Rule Part(s):	FCC CFR 47 Part 15, section 15.250		
Test Device Serial No.:	N/A Production Pre-Production Engineering		

§2.1033 General Information

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	Remote Controller		
Model No.:	N4MZ68		
Brand Name:	SEGWAY		
Operation Frequency:	6489.6 MHz		
Antenna Type:	Tag Antenna		
Antenna Gain:	6.97dBi		
Modulation	Frequency Hopping Modulation Stepped Frequency Modulation		
	Swept Frequency Modulation X other		
SW Power Setting:	6		

2.2. Test Mode

Node 1. Halisinit at 0+05Wi12	Test Mode	Mode 1: Transmit at 6489MHz
-------------------------------	-----------	-----------------------------

2.3. Description of Test Software

N/A

2.4. Device Capabilities

This device contains the following capabilities: Wideband Transmitter Device.

2.5. Test Configuration

The **Remote Controller** was tested per the guidance of ANSI C63.10-2013.

2.6. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.7. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Procedures for measuring ultra-wideband devices (ANSI C63.10-2013).

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions were used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the Radio Controller is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The **Remote Controller** unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Disturbance - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
MXE EMI Receiver	Agilent	N9038A	MRTSUE06125	1 year	2018/08/17
Loop Antenna	Schwarzbeck	FMZB1519	MRTSUE06025	1 year	2017/12/21
Bilog Period Antenna	Schwarzbeck	VULB9162	MRTSUE06022	1 year	2018/10/21
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2018/11/18
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06106	1 year	2017/12/10
Broadband Horn Antenna	Schwarzbeck	BBHA9170	MRTSUE06024	1 year	2018/04/25
Digitial Thermometer & Hygrometer	Minggao	ETH529	MRTSUE06170	1 year	2017/11/30
Anechoic Chamber	RIKEN	Chamber-AC1	MRTSUE06213	1 year	2018/05/10

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2018/04/25
MXE EMI Receiver	Keysight	N9038A	MRTSUE06125	1 year	2018/08/17
Signal Analyzer	R&S	FSV40	MRTSUE06218	1 year	2018/03/27
Programmable Temperature & Humidity Chamber	ΒΑΟΥΤ	BYH-1500L	MRTSUE06051	1 year	2017/12/06
Temperature/Humidity Meter	Yuhuaze	HTC-2	MRTSUE06184	1 year	2017/12/22

Software	Version	Function
e3	V8.3.5	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement - AC1

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 9kHz ~ 1GHz: ± 4.18dB 1GHz ~ 40GHz: ± 4.76dB

7. TEST RESULT

7.1. Summary

Product Name:	Remote Controller
FCC ID:	2ALS8-NBPLUS
FCC Classification:	Wideband Transmitter (WBT)

FCC	Test	Test	Test	Test	Reference
Section(s)	Description	Limit	Condition	Result	
FCC Section	Operation	within the	Conducted	Dooo	Section 7.2
15.250(a)	Frequency	5925-7250 MHz	Conducted	r ass	Section 7.2
FCC Section	Occupied		Conducted	Dooo	Section 7.2
15.250(b)	Bandwidth	250 MHZ	Conducted	F d 5 5	Section 7.2
ECC Section	Radiated Spurious				
	Emissions	Refer to Section 7.3		Pass	Section 7.3
15.250(d)(4)	below 960 MHz				
FCC Section 15.250(d)(1)	Radiated Spurious				
	Emissions above	Refer to Section 7.4		Pass	Section 7.4
	960 MHz		Radiated		
FCC Section 15.250(d)(2)	Radiated Spurious				
	Emissions in GPS	Refer to Section 7.4		Pass	Section 7.4
	Band				
FCC Section	Peak Power within	Defer to Section 7 5		Daga	Section
15.250(d)(3)	50 MHz Bandwidth	Refer to Section 7.5		Pass	7.5
FCC Section	AC Conducted	Poter to Section 7 6	Conducted	NI/A	Section 7.6
15.207	Emission		Conducted	IN/A	

Notes:

- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified and showed the worst axis in the test setup photos. The test results shown in the following sections represent the worst case emissions.

7.2. Occupied Bandwidth and Operation Frequency Range Measurement

7.2.1.Test Limit

The -10 dB bandwidth of a device operating under the provisions of this section must be contained within the 5925-7250 MHz band under all conditions and the fundamental emission shall be at least 50 MHz.

7.2.2.Test Procedure used

ANSI C63.10-2013, section 10.1

7.2.3.Test Setting

The frequency at which the maximum power level is measured with the peak detector is designated f_M . The peak power measurements shall be made using a spectrum analyzer or EMI receiver with a 1 MHz resolution bandwidth and a video bandwidth of 1 MHz or greater. The instrument shall be set to peak detection using the maximum-hold trace mode. The outermost 1 MHz segments above and below f_M , where the peak power falls by 10 dB relative to the level at f_M , are designated as fH and f_L , respectively:

a) For the lowest frequency bound f_L , the emission is searched from a frequency lower than f_M that has, by inspection, a peak power much lower than 10 dB less than the power at f_M and increased toward f_M until the peak power indicates 10 dB less than the power at f_M . The frequency of that segment is recorded.

b) This process is repeated for the highest frequency bound f_H , beginning at a frequency higher than f_M that has, by inspection, a peak power much lower than 10 dB below the power at f_M . The frequency of that segment is recorded.

c) The two recorded frequencies represent the highest fH and lowest f_L bounds of the UWB transmission, and the -10 dB bandwidth (B - 10) is defined as ($f_H - f_L$). The center frequency (fc) is mathematically determined from ($f_H - f_L$) / 2.

d) The fractional bandwidth is defined as $2(f_H - f_L) / (f_H + f_L)$.

e) Determine whether the -10 dB bandwidth ($f_H - f_L$) is ≥500 MHz, or whether the fractional bandwidth 2($f_H - f_L$) / ($f_H + f_L$) is ≥0.2.

7.2.4.Test Setup

Spectrum Analyzer

7.2.5.Test Result

Product	Remote Controller	Temperature	25°C		
Test Engineer	Roy Cheng	Relative Humidity	60%		
Test Site	TR3	Test Date	2017/11/21		
Test Item	-10dB Occupied Bandwidth & Operation Frequency Range				

Voltage	Power	Temp	-10dB Bandwidth				Operation Fr	equency Range
(%)	(VDC)	(°C)	(MHz)			(N	/IHz)	
			0min	2 min	5 min	10 min	Lower (Min)	Upper (Max)
		- 30	661.50	690.00	731.25	774.00	6199.85	6863.85
		- 20	633.75	678.00	681.00	690.00	6147.60	6828.60
		- 10	627.00	665.25	673.50	688.50	6144.60	6833.10
		0	667.50	672.75	674.25	688.50	6149.10	6837.60
100%	3.70	+ 10	677.25	684.75	687.00	687.75	6146.10	6833.85
		+ 20 (Ref)	651.00	657.00	666.00	693.75	6138.60	6832.35
		+ 30	630.75	639.75	663.00	672.00	6147.60	6819.60
		+ 40	654.00	679.50	695.25	733.50	6110.10	6843.60
		+ 50	671.25	673.50	681.00	687.75	6147.60	6835.35
115%	4.26	+ 20	591.75	672.00	684.00	693.75	6139.35	6833.10
85%	3.15	+ 20	662.25	663.75	666.75	669.00	6145.35	6814.35

Note 1: All the test result of -10dB Bandwidth is greater than 50MHz and meet with FCC rule.

Note 2: All the test result of Operation Frequency Range is within the 5925-7250 MHz and meet with FCC rule.

7.3. Radiated Spurious Emission Measurements Below 960MHz

7.3.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.209					
Frequency	Field Strength	Measured Distance			
[MHz]	[uV/m]	[Meters]			
0.009 - 0.490	2400/F (kHz)	300			
0.490 - 1.705	24000/F (kHz)	30			
1.705 - 30	30	30			
30 - 88	100	3			
88 - 216	150	3			
216 - 960	200	3			
Above 960	500	3			

7.3.2.Test Procedure Used

ANSI C63.10-2013, sections 10.2, 10.3

7.3.3.Test Setting

- 1. RBW = as specified in Table 1
- 2. VBW ≥ 3 RBW
- 3. Sweep Detector = peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize and record the test result with Table 1 measurement detector.

Table 1 - RBW as a function of frequency

Frequency	RBW	Measurement Detector
9 ~ 150 kHz	200 ~ 300 Hz	Peak or CISPR quasi-peak
0.15 ~ 30 MHz	9 ~ 10 kHz	Peak or CISPR quasi-peak
30 ~ 1000 MHz	100 ~ 120 kHz	CISPR quasi-peak

7.3.4.Test Setup

9kHz ~ 30MHz Test Setup:

7.3.5.Test Setup

Product	Remote Controller	Temperature	25°C	
Test Engineer	Roy Cheng	Relative Humidity	60%	
Test Site	AC1	Test Date	2017/08/06	
Test Item	Radiated Spurious Emission Measurements Below 960MHz			

Frequency	Equivalent field strength	Limit in MHz	Margin	Polarity	Verdict	
		(dDµv/m)	(UD)			
39.70	15.85	40.00	-24.15	Horizontal	Pass	
161.92	19.32	43.50	-24.18	Horizontal	Pass	
242.92	18.08	46.00	-27.92	Horizontal	Pass	
296.75	15.47	46.00	-30.53	Horizontal	Pass	
682.33	23.86	46.00	-22.14	Horizontal	Pass	
845.77	24.75	46.00	-21.25	Horizontal	Pass	
107.60	15.98	43.50	-27.52	Vertical	Pass	
161.92	16.32	43.50	-27.18	Vertical	Pass	
189.08	23.04	43.50	-20.47	Vertical	Pass	
242.92	23.07	46.00	-22.93	Vertical	Pass	
296.75	22.46	46.00	-23.55	Vertical	Pass	
825.89	24.59	46.00	-21.41	Vertical	Pass	
Note 1: The Margin = Equivalent field strength – Limit.						

Note 2: The detail test plots have been showed as below.

Site: AC1	Time: 2017/08/06 - 17:08
Limit: FCC_Part15.209_RE(3m)	Engineer: Will Yan
Probe: VULB 9168_20-2000MHz	Polarity: Horizontal
EUT: Remote Controller	Power: By Battery

Note: Transmit at 6489MHz

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1			39.700	15.849	1.291	-24.151	40.000	14.558	QP
2			161.920	19.321	4.298	-24.179	43.500	15.023	QP
3			242.915	18.079	5.292	-27.921	46.000	12.787	QP
4			296.750	15.470	1.298	-30.530	46.000	14.172	QP
5			682.325	23.864	2.198	-22.136	46.000	21.666	QP
6		*	845.770	24.752	1.299	-21.248	46.000	23.453	QP

Note 1: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz), therefore no data appear in the report.

Site: AC1			Т	Time: 2017/08/06 - 17:12					
Limi	Limit: FCC_Part15.209_RE(3m)			E	Engineer: Will	Yan			
Prob	be: VUI	LB 9168	3_20-2000MH	lz	F	Polarity: Vertic	al		
EUT	Remo	ote Con	troller		F	Power: By Bat	tery		
Note	e: Tran	smit at (6489MHz		L.				
	90					(1	
	80								
	70		· ·						
	60								
Ê	50								
BuV/I	40								
evel(d	20								6
-	50				1 2	3 4	5		Land of the state
	20		mmm	mangeneral	tomonaphilipping	mullinger warden and	how the prover the second	- Senting and a senting and	
	10								
	0								
	-10 30			100					1000
		Γ	1	1	Freque	ncy(MHz)	1	1	1
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1			107.600	15.981	4.219	-27.519	43.500	11.762	QP
2			161.920	16.321	1.298	-27.179	43.500	15.023	QP
3		*	189.080	23.035	11.298	-20.465	43.500	11.737	QP
4			242.915	23.071	10.284	-22.929	46.000	12.787	QP
5			296.750	22.455	8.283	-23.545	46.000	14.172	QP

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

825.885

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz), therefore no data appear in the report.

-21.414

46.000

23.288

1.298

6

QP

7.4. Radiated Spurious Emission Measurements Above 960MHz

7.4.1.Test Limit

Radiated emission average limits above 960MHz						
Frequency	RBW	EIRP of spurious	Equivalent field strength			
[MHz]	[kHz]	[dBm]	limit @ 1m [dB(µV/m)]			
960 - 1610	1000	-75.3	29.4			
1610 - 1990	1000	-63.3	41.4			
1990 - 3100	1000	-61.3	43.4			
3100 - 5925	1000	-51.3	53.4			
5925 - 7250	1000	-41.3	63.4			
7250-10600	1000	-51.3	53.4			
Above 10600	1000	-61.3	43.4			
Radiated emission average limits in GPS Band						
1164 - 1240	≥ 1	-85.3	19.4			
1559 - 1610	≥ 1	-85.3	19.4			

Note 1: Because the limits are so low, some bands may have been scanned at a distance closer than 1 meter. If any emissions were detected in these bands, final measurements were made at distance of 1 meter or greater. The actual distance for final measurement was indicated in the measurement data.

Note 2: Equivalent field strength limit @ 1m = EIRP of spurious[dBm] + 95.2 + 20*log(3m/1m)

7.4.2.Test Procedure Used

ANSI C63.10-2013, sections 10.2, 10.3

7.4.3.Test Setting

The rms detector is selected, make the trace to max hold and the sweep time and number of measurement bins are set to provide the requisite 1 ms integration time. In this test, the RBW may be reduced to a minimum of 1 kHz (30 kHz is recommended) to enhance the resolution of the individual spectral lines. A ratio of VBW / RBW > 3 shall be maintained when possible.

7.4.4.Test Setup

9kHz ~ 30MHz Test Setup:

1GHz ~ 40GHz Test Setup:

7.4.5.Test Result

Product	Remote Controller	Temperature	25°C	
Test Engineer	Roy Cheng	Relative Humidity	60%	
Test Site	AC1	Test Date	2017/08/06	
Test Item	Radiated Spurious Emission Measurements above 960MHz			

Frequency Range (MHz)	Equivalent field strength in MHz (dBuv/m)	Limit in MHz (dBuv/m)	Margin (dB)	Polarity	Verdict	
	26.47	29.40	-2.93	Horizontal	Pass	
960 ~ 1610	24.15	29.40	-5.25	Vertical	Pass	
	23.09	41.40	-18.31	Horizontal	Pass	
1610 ~ 1990	23.09	41.40	-18.31	Vertical	Pass	
1000 0100	25.34	43.40	-18.06	Horizontal	Pass	
1990 ~ 3100	30.78	43.40	-12.62	Vertical	Pass	
0400 5005	27.21	53.40	-26.19	Horizontal	Pass	
3100 - 5925	27.28	53.40	-26.12	Vertical	Pass	
5005 7050	50.79	63.40	-12.61	Horizontal	Pass	
5925 - 7250	52.24	63.40	-11.16	Vertical	Pass	
7050 40000	35.89	53.40	-17.51	Horizontal	Pass	
7250-10600	35.87	53.40	-17.53	Vertical	Pass	
Above 10000	40.94	43.40	-2.46	Horizontal	Pass	
Above 10600	41.17	43.40	-2.23	Vertical	Pass	
Note 1: The Margin = Equivalent field strength - Limit. Note 2: The detail test plots have been showed as below.						

Site: AC1	Time: 2017/08/06 - 19:42
Limit: FCC_Part 15.250_RMS (1m)	Engineer: Will Yan
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Remote Controller	Power: By Battery
Note: Transmit at 6489MHz	

	. iag	mant	i requeriej	measure	rtodding			i dotoi	.)pe
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1		*	1008.100	26.467	37.682	-2.933	29.400	-11.214	AV

Site	: AC1				٦	Time: 2017/08/06 - 19:48				
Limit: FCC_Part 15.250_RMS (1m)						Engineer: Will Yan				
Prob	be: BB	BHA9120	D_1-18GHz		F	Polarity: Vertic	al			
EUT	Rem	ote Con	troller		F	Power: By Bat	tery			
Note: Transmit at 6489MHz										
	90									
	80									
	70									
	60									
E	50									
dBuV	40									
Level	30						1			
	20						+			
	10									
	0									
	-10									
	960	1000			Freque	ncy(MHz)			161	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)			
				(dBuV/m)	(dBuV)					
1		*	1335.375	24.153	32.129	-5.247	29.400	-7.976	AV	

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Note 2: The test plot of this frequency range was base noise unrelated to the UWB transmission. We had reduced the RBW to assess this frequency range.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Note 2: The test plot of this frequency range was base noise unrelated to the UWB transmission. We had reduced the RBW to assess this frequency range.

Site: AC1					٦	Time: 2017/08/06 - 21:35			
Limi	Limit: FCC_Part 15.250_RMS (1m)				E	Engineer: Will Yan			
Prob	e: B	BHA9170	_18-40GHz		F	Polarity: Horiz	ontal		
EUT	: Rer	note Con	troller		F	Power: By Bat	tery		
Note	e: Tra	insmit at	6489MHz						
	100								
	80								
	70								
e	60								
n//n	00								2
/el(dB	50	1							n.
Lei	40 ~	ntim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m		~~~~			
	30								
	20								
	10								
	0								
	1800	0			Freque	ncy(MHz)			40000
No	Flag	g Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		-
				(dBuV/m)	(dBuV)				

46.772 Note 1: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

40.094

18451.000

39978.000

1

2

*

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Note 2: The test plot of this frequency range was base noise unrelated to the UWB transmission. We had reduced the RBW to assess this frequency range.

30.712

27.885

-3.306

N/A

43.400

N/A

9.382

18.887

AV

AV

39978.000

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Note 2: The test plot of this frequency range was base noise unrelated to the UWB transmission. We had reduced the RBW to assess this frequency range.

N/A

27.829

N/A

2

*

AV

18.887

Radiated Emission in GPS Receive Band Test Result Summary

Frequency (MHz)	Equivalent field strength in MHz (dBµv/m)	Limit in MHz (dBµv/m)	Margin (dB)	Polarity	Verdict					
4404 4040	0.04	19.40	-19.36	Horizontal	Pass					
1164 ~ 1240	-3.50	19.40	-22.90	Vertical	Pass					
	6.36	19.40	-13.04	Horizontal	Pass					
1559 ~ 1610	1559 ~ 1610 -0.49 19.40 -19.89 Vertical Pass									
Note 1: The Margin = Equivalent field strength – Limit.										
Note 2: The det	ail test plots have been sho	owed as below.								

Site: AC1	Time: 2017/08/07 - 10:54
Limit: FCC_Part 15.250_RMS (1m)	Engineer: Will Yan
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Remote Controller	Power: By Battery
Note: Transmit at 6489MHz	

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1		*	1199.986	0.040	9.260	-19.360	19.400	-9.221	AV

Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

7.5. Peak Power within 50 MHz bandwidth

7.5.1.Test Limit

This test was performed to measure effective radiated power emanated by transmitter at carrier

frequency. Specification test limits are given in the following table.

Assigned frequency band	EIRP in 50MHz BW	Equivalent field strength limit in	
(MHz)	(dBm)	MHz @ 1m (dBµv/m)	
FCC section 15.250(d)(3)			
5925 ~ 7250	20 log ^(RBW/50)	70.74	

Peak Power Limit (EIRP)

Note 1: Because the limits are so low, some bands may have been scanned at a distance closer than 1 meter. If any emissions were detected in these bands, final measurements were made at distance of 1 meter or greater. The actual distance for final measurement was indicated in the measurement data.

Note 2: Peak power limit at 1m = 20*log(1MHz/50MHz) + 95.2 + 20*log(3m/1m) = 70.74dBµv/m

7.5.2.Test Procedure Used

ANSI C63.10-2013, Section 10.3

7.5.3.Test Setting

Bandwidth conversion of peak power measurements

It is acceptable to employ an RBW(1MHz) of less than 50 MHz (but no less than 1 MHz) when performing the required peak power measurements. When this approach is employed, the peak emissions EIRP limit (0 dBm / 50 MHz) is converted to a limit commensurate with the RBW by employing a [20 log (RBW/50 MHz)] relationship. For example, the peak power limit could be expressed in a 1 MHz bandwidth as follows in Equation:

$EIRP_{1MHz} = 20log(1MHz/50MHz) dBm = (-34dB) = -34dBm$

When a resolution bandwidth of less than 50 MHz is used, this measurement shall be performed over a 50 MHz span centered on the frequency associated with the highest detected average emission level.

7.5.4.Test Setup

1GHz ~ 40GHz Test Setup:

7.5.5.Test Result

Product	Remote Controller	Temperature	25°C
Test Engineer	Roy Cheng	Relative Humidity	60%
Test Site	AC1	Test Date	2017/08/07
Test Item	Peak Power within 50MHz BW		

Frequency	Equivalent field strength	Limit in MHz	Margin	Polarity	Verdict
(MHz)	(MHz) in MHz (dBµv/m)		(dB)		
6463.55 62.68		70.74	-8.06	Horizontal	Pass
6260.15	65.35	70.74	-5.39	Vertical	Pass

Note 1: The Margin = Equivalent field strength – Limit.

Note 2: The detail test plots have been showed as below.

20 10 0 -10 6441.85

Site: AC1	Time: 2017/08/07 - 01:15
Limit: FCC_Part 250_(1m)	Engineer: Will Yan
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Remote Controller	Power: By Battery
Note: Bandwidth conversion of peak power measu	rements
90	
80	
70 1	
60 months Million and me interior Martin Manual Martin and Martin and Martin	ashow he have been the the of the of the many her to be the the second her after a second her a second her after a second her a
	A strain of the second se
AD 40	
30	

4	rrequency(winz)											
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре			
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)				
				(dBuV/m)	(dBuV)							
1		*	6463.550	62.681	56.896	-8.059	70.740	5.786	PK			

Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

6491.85

Site: AC1	Time: 2017/08/07 - 01:12	
Limit: FCC_Part 250_(1m)	Engineer: Will Yan	
Probe: BBHA9120D_1-18GHz	Polarity: Vertical	
EUT: Remote Controller	Power: By Battery	

Note: Bandwidth conversion of peak power measurements

Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

65.354

6260.150

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

60.579

-5.386

70.740

*

1

ΡK

4.776

7.6. AC Conducted Emissions Measurement

7.6.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits		
Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.6.2.Test Procedure Used

FCC Part 15 Subpart C Paragraph 15.207

7.6.3.Test Setting

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

7.6.4.Test Setup

7.6.5.Test Result

Note applicable with battery supply.

8. CONCLUSION

The data collected relate only the item(s) tested and show that the **Remote Controller FCC ID**:

2ALS8-NBPLUS is in compliance with Part 15.250 of the FCC Rules.