

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 1901RSU040-U1 Report Version: V01 Issue Date: 04-08-2019

MEASUREMENT REPORT

FCC PART 15.247 / RSS-247 Bluetooth-LE

FCC ID:	2ALS8-NB9676
IC:	22636-NB9676
Applicant:	Ninebot (Changzhou) Tech Co., Ltd.
Application Type:	Certification
Product:	Ninebot KickScooter Max
Model No.:	G30
Brand Name:	Ninebot
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part15 Subpart C (Section 15.247)
IC Rule(s):	RSS-247 Issue 2, RSS-GEN Issue 4
Test Procedure(s):	ANSI C63.10-2013, KDB 558074 D01v05r01
Test Date:	January 22 ~ March 12, 2019

Reviewed By:

Approved By:

Juny Sur Sunny Sun) sbin Wu TESTING LABORATORY CERTIFICATE #3628.01 (Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1901RSU040-U1	Rev. 01	Initial Report	04-08-2019	Valid

Note: This report is based on MRT test report "1901RSU039-U1" to copy report, here is the fold construction between "SNSC 2.0" and "G30".

CONTENTS

Des	scriptio	n	Page
1.	INTRO	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	DUCT INFORMATION	7
	2.1.	Feature of Equipment under Test	7
	2.2.	Product Specification Subjective to this Report	
	2.3.	Working Frequencies for this Report	
	2.4.	Test Mode	8
	2.5.	Device Capabilities	9
	2.6.	Test Configuration	9
	2.7.	EMI Suppression Device(s)/Modifications	9
	2.8.	Description of Test Software	9
	2.9.	Labeling Requirements	10
3.	DESC	RIPTION OF TEST	11
	3.1.	Evaluation Procedure	11
	3.2.	AC Line Conducted Emissions	11
	3.3.	Radiated Emissions	12
4.	ANTE	INNA REQUIREMENTS	13
5.	TEST	EQUIPMENT CALIBRATION DATE	14
6.	MEAS	SUREMENT UNCERTAINTY	15
7.	TEST	RESULT	16
	7.1.	Summary	16
	7.2.	6dB Bandwidth Measurement	
	7.2.1.	Test Limit	17
	7.2.2.	Test Procedure used	17
	7.2.3.	Test Setting	17
	7.2.4.	Test Setup	17
	7.2.5.	Test Result	18
	7.3.	Output Power Measurement	19
	7.3.1.	Test Limit	19
	7.3.2.	Test Procedure Used	19
	7.3.3.	Test Setting	19
	7.3.4.	Test Setup	20

	7.3.5.	Test Result of Output Power	21
	7.4.	Power Spectral Density Measurement	.22
	7.4.1.	Test Limit	.22
	7.4.2.	Test Procedure Used	.22
	7.4.3.	Test Setting	.22
	7.4.4.	Test Setup	.22
	7.4.5.	Test Result	.23
	7.5.	Conducted Band Edge and Out-of-Band Emissions	.24
	7.5.1.	Test Limit	.24
	7.5.2.	Test Procedure Used	.24
	7.5.3.	Test Settitng	.24
	7.5.4.	Test Setup	25
	7.5.5.	Test Result	26
	7.6.	Radiated Spurious Emission Measurement	28
	7.6.1.	Test Limit	28
	7.6.2.	Test Procedure Used	28
	7.6.3.	Test Setting	28
	7.6.4.	Test Setup	.30
	7.6.5.	Test Result	.31
	7.7.	Radiated Restricted Band Edge Measurement	.36
	7.7.1.	Test Limit	.36
	7.7.2.	Test Procedure Used	.39
	7.7.3.	Test Setting	.39
	7.7.4.	Test Setup	.40
	7.7.5.	Test Result	.41
	7.8.	AC Conducted Emissions Measurement	49
	7.8.1.	Test Limit	49
	7.8.2.	Test Setup	49
	7.8.3.	Test Result	50
8.	CONC	LUSION	.52
Арр	endix /	A - Test Setup Photograph	.53
Арр	endix I	B - EUT Photograph	.54

§2.1033 General Information

Applicant:	Ninebot (Changzhou) Tech Co., Ltd.				
Applicant Address:	16F-17F, Block A, Building 3, Changwu Mid Road 18#, Wujin Dist.,				
	Changzhou, Jiangsu, China				
Manufacturer:	Ninebot (Changzhou) Tech Co., Ltd.				
Manufacturer Address:	I6F-17F, Block A, Building 3, Changwu Mid Road 18#, Wujin Dist.,				
	Changzhou, Jiangsu, China				
Test Site:	MRT Technology (Suzhou) Co., Ltd				
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic				
	Development Zone, Suzhou, China				
MRT FCC Registration No.:	893164				
MRT IC Registration No.:	11384A-1				
Test Device Serial No.:	N/A Production Pre-Production Engineering				

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	Ninebot KickScooter Max			
Model No.:	G30			
Brand Name:	inebot			
Accessory				
	Model No.: BCTA+71420-1700			
Adapter:	Input Power: 100 - 240V ~ 50/60Hz, Max. 2.0A			
	Output Power: 42VDC 1.7A			

2.2. Product Specification Subjective to this Report

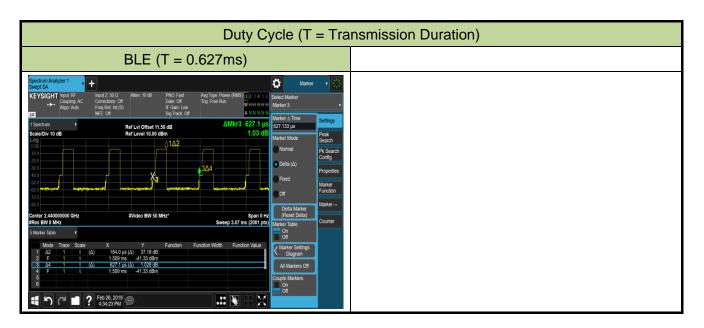
Bluetooth Frequency:	2402~2480MHz
Bluetooth Version:	v4.1 BLE only
Type of modulation:	GFSK
Data Rate:	1Mbps
Antenna Type:	PCB Antenna
Antenna Gain:	-1.26dBi

Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2404 MHz	02	2406 MHz
03	2408 MHz	04	2410 MHz	05	2412 MHz
06	2414 MHz	07	2416 MHz	08	2418 MHz
09	2420 MHz	10	2422 MHz	11	2424 MHz
12	2426 MHz	13	2428 MHz	14	2430 MHz
15	2432 MHz	16	2434 MHz	17	2436 MHz
18	2438 MHz	19	2440 MHz	20	2442 MHz
21	2444 MHz	22	2446 MHz	23	2448 MHz
24	2450 MHz	25	2452 MHz	26	2454 MHz
27	2456 MHz	28	2458 MHz	29	2460 MHz
30	2462 MHz	31	2464 MHz	32	2466 MHz
33	2468 MHz	34	2470 MHz	35	2472 MHz
36	2474 MHz	37	2476 MHz	38	2478 MHz
39	2480 MHz				

2.3. Working Frequencies for this Report

2.4. Test Mode

Test Mode	Mode 1: Transmit by BLE
-----------	-------------------------


2.5. Device Capabilities

This device contains the following capabilities:

Bluetooth (v4.1 BLE only)

Note: The maximum achievable duty cycles was determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
BLE	29.34%

2.6. Test Configuration

The **Ninebot KickScooter Max** was tested per the guidance of ANSI C63.10. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.7. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.8. Description of Test Software

The test utility software used during testing was "nRFgo Studio", and the version was "1.12.1.1992".

2.9. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSP-100 Issue 11 Section 3

The manufacturer, importer or distributor shall meet the labelling requirements set out in this section for every unit:

(i) prior to marketing in Canada, for products manufactured in Canada

(ii) prior to importation into Canada, for imported products

For information regarding the e-labelling option, see Notice 2014-DRS1003. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements.

Please see attachment for IC label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 558074 D01v05r01 were used in the measurement.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions were used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the Antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive Antenna height using a broadband Antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn Antennas were used. For frequencies below 30MHz, a calibrated loop Antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband Antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive Antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn Antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive Antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive Antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn Antenna, the horn Antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the Ninebot KickScooter Max is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2019/04/20
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2019/06/15
Two-Line V-Network	R&S	ENV216	MRTSUE06003	1 year	2019/06/15
Temperature/Humidity Meter	testo	608-H1	MRTSUE06404	1 year	2019/08/15
Shielding Anechoic Chamber	Mikebang	Chamber-SR2	MRTSUE06214	N/A	N/A

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
PXA Signal Analyzer	Keysight	N9030B	MRTSUE06395	1 year	2019/09/05
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2019/08/14
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2019/11/16
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/09
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2019/04/12
Broad Band Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06023	1 year	2019/10/20
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Amplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2019/06/12
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2019/08/15
Anechoic Chamber	ток	Chamber-AC1	MRTSUE06212	1 year	2019/05/02

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Power Meter	Agilent	U2021XA	MRTSUE06030	1 year	2019/11/16
Programmable Temperature & Humidity Chamber	BAOYT	BYH-1500L	MRTSUE06051	1 year	2019/11/16
Spectrum Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2019/04/20
Thermohygrometer	Yuhuaze	608-H1	MRTSUE06401	1 year	2019/08/15

Software	Version	Function
EMI Software	V3	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement - SR2
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: 3.46dB
Radiated Emission Measurement - AC1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 4.18dB
1GHz ~ 25GHz: 4.76dB
Spurious Emissions, Conducted - TR3
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
0.78dB
Output Power - TR3
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
1.13dB
Power Spectrum Density - TR3
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
1.15dB
Occupied Bandwidth - TR3
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
0.28%
0.2070

7. TEST RESULT

7.1. Summary

Product Name:

Ninebot KickScooter Max

Data Rate(s) Tested:

1Mbps(GFSK)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b)(3)	RSS-247 [5.4(d)]	Output Power	≤ 1Watt & EIRP ≤ 4Watt		Pass	Section 7.3
15.247(e)	RSS-247 [5.2]	Power Spectral Density	≤ 8dBm / 3kHz	Conducted	Pass	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc(Peak)		Pass	Section 7.5
15.205 15.209	RSS-247 [5.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

 The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

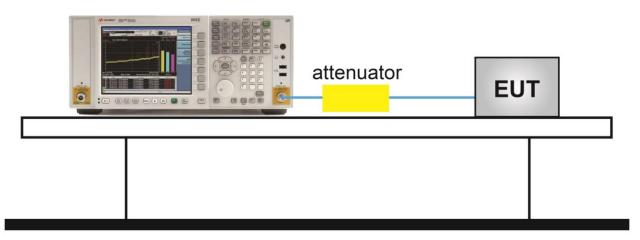
2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

7.2. 6dB Bandwidth Measurement

7.2.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.2.2.Test Procedure used

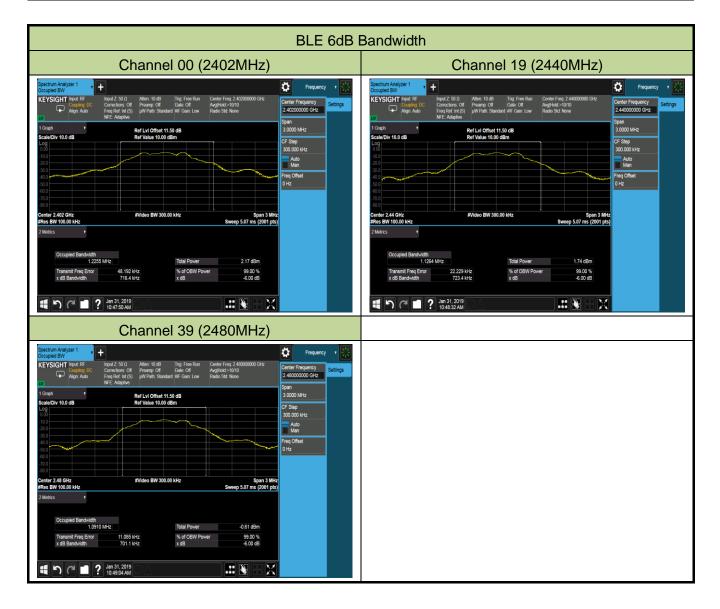

ANSI C63.10-2013 - Section 11.8.2 Option 2

7.2.3.Test Setting

- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

7.2.4.Test Setup

Spectrum Analyzer



7.2.5.Test Result

Product	Ninebot KickScooter Max	Temperature	25°C
Test Engineer	Will Yan	Relative Humidity	52%
Test Site	TR3	Test Date	2019/01/31

Test Mode	Data Rate	Channel	Frequency	6dB Bandwidth	Limit	99% Bandwidth	Result
	(Mbps)	No.	(MHz)	(MHz)	(MHz)	(MHz)	
BLE	1	00	2402	0.72	≥ 0.5	1.23	Pass
BLE	1	19	2440	0.72	≥ 0.5	1.13	Pass
BLE	1	39	2480	0.70	≥ 0.5	1.09	Pass

7.3. Output Power Measurement

7.3.1.Test Limit

The maximum out power shall be less 1 Watt (30dBm) and the E.I.R.P shall not exceed 4 Watt (36dBm).

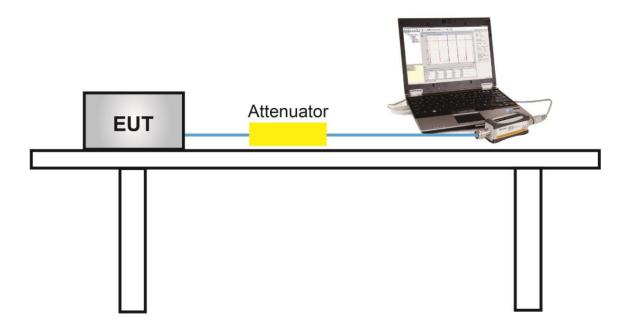
The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6dBi. If transmitting antennas of directional gain greater than 6dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.3.2.Test Procedure Used

ANSI C63.10-2013 - Section 11.9.2.3

7.3.3.Test Setting

Method PKPM1 (Peak Power Measurement)


Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Measurement using a gated RF average-reading power meter)

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

7.3.4.Test Setup

7.3.5.Test Result of Output Power

Product	Ninebot KickScooter Max	Temperature	25°C
Test Engineer	Will Yan	Relative Humidity	52%
Test Site	TR3	Test Date	2019/01/31
Test Item	Peak Output Power		

Test Mode	Data Rate	Channel	Frequency	Peak Power	Limit	E.I.R.P	E.I.R.P	Result
	(Mbps)	No.	(MHz)	(dBm)	(dBm)	(dBm)	Limit (dBm)	
BLE	1	00	2402	-6.04	≤ 30.00	-7.30	≤ 36.00	Pass
BLE	1	19	2440	-5.94	≤ 30.00	-7.20	≤ 36.00	Pass
BLE	1	39	2480	-7.23	≤ 30.00	-8.49	≤ 36.00	Pass

Note: EIRP (dBm) = Conducted Power (dBm) + Antenna Gain (dBi), Antenna Gain = -1.26 dBi.

Product	Ninebot KickScooter Max	Temperature	25°C			
Test Engineer	Will Yan	Relative Humidity	52%			
Test Site	TR3	TR3 Test Date 2019/01/31				
Test Item	Average Output Power (Reporting Only)					

Test Mode	Data Rate	Channel	Frequency	Average	Limit	E.I.R.P	E.I.R.P	Result
	(Mbps)	No.	(MHz)	Power (dBm)	(dBm)	(dBm)	Limit (dBm)	
BLE	1	00	2402	-7.16	≤ 30.00	-8.42	≤ 36.00	Pass
BLE	1	19	2440	-6.73	≤ 30.00	-7.99	≤ 36.00	Pass
BLE	1	39	2480	-8.58	≤ 30.00	-9.84	≤ 36.00	Pass

Note: EIRP (dBm) = Conducted Power (dBm) + Antenna Gain (dBi), Antenna Gain = -1.26 dBi.

7.4. Power Spectral Density Measurement

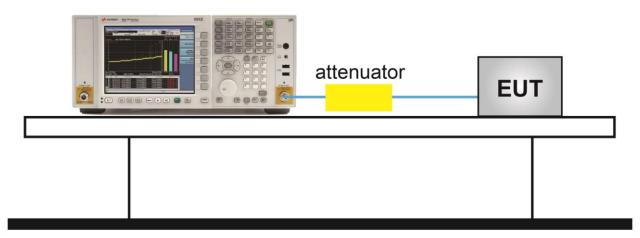
7.4.1.Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power

spectral density.

7.4.2.Test Procedure Used


ANSI C63.10 Section 11.10.6

7.4.3.Test Setting

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 10kHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

7.4.4.Test Setup

Spectrum Analyzer

7.4.5.Test Result

Product	Ninebot KickScooter Max	Temperature	25°C
Test Engineer	Will Yan	Relative Humidity	52%
Test Site	TR3	Test Date	2019/01/31

Test Mode	Data Rate	Channel No.	Frequency	PSD Result	Limit	Result
	(Mbps)		(MHz)	(dBm / 3kHz)	(dBm / 3kHz)	
BLE	1	00	2402	-18.96	≤ 8.00	Pass
BLE	1	19	2440	-19.19	≤ 8.00	Pass
BLE	1	39	2480	-20.68	≤ 8.00	Pass

7.5. Conducted Band Edge and Out-of-Band Emissions

7.5.1.Test Limit

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental

emission level, as determined from the in-band power measurement of the DTS channel performed

in a 100kHz bandwidth per the PSD procedure.

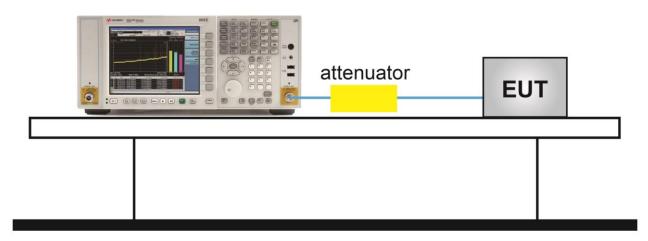
7.5.2.Test Procedure Used

ANSI C63.10 Section 11.11

7.5.3.Test Settitng

Reference level measurement

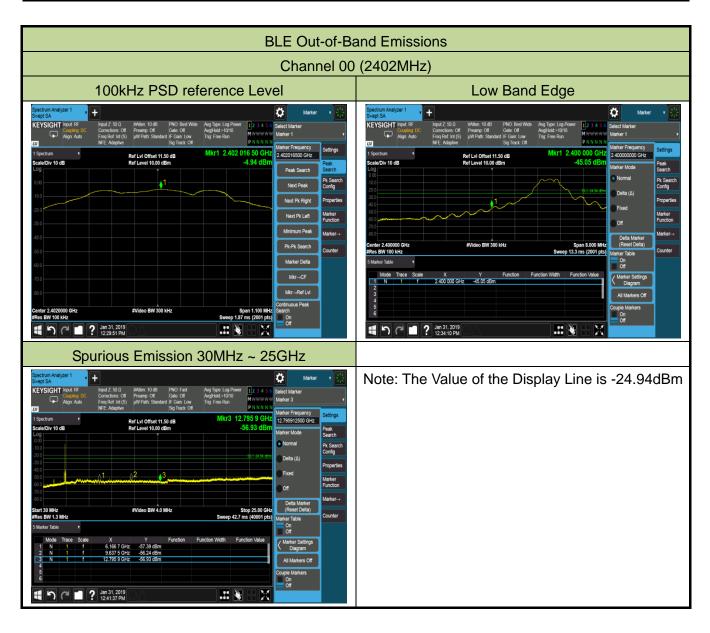
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize

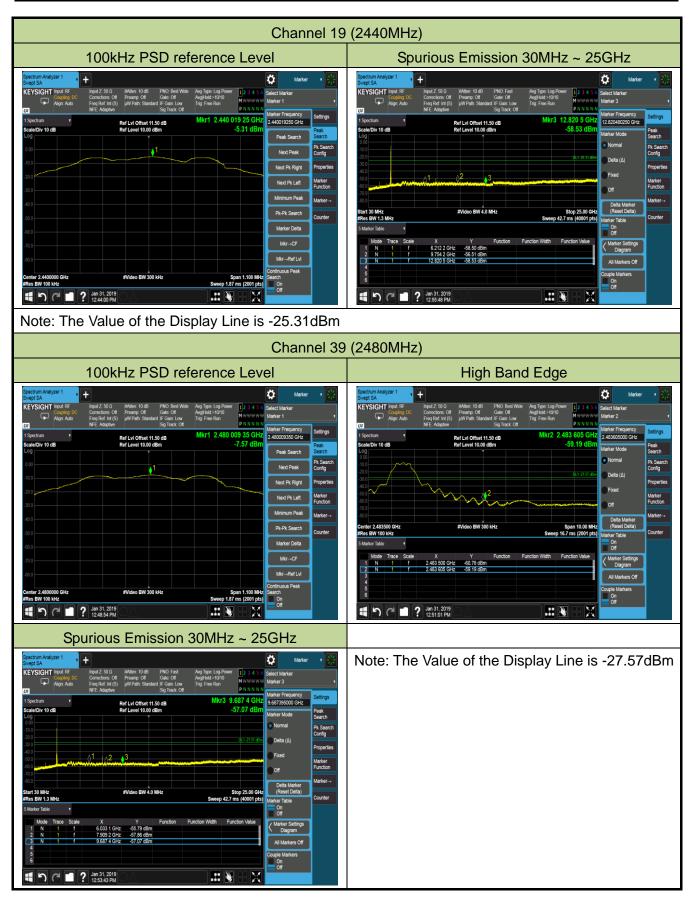

Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

7.5.4.Test Setup

Spectrum Analyzer




7.5.5.Test Result

Product	Ninebot KickScooter Max	Temperature	25°C
Test Engineer	Will Yan	Relative Humidity	52%
Test Site	TR3	Test Date	2019/01/31

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Limit	Result
BLE	1	00	2402	20dBc	Pass
BLE	1	19	2440	20dBc	Pass
BLE	1	39	2480	20dBc	Pass

7.6. Radiated Spurious Emission Measurement

7.6.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209								
Frequency	Field Strength	Measured Distance						
[MHz]	[V/m]	[Meters]						
0.009 - 0.490	2400/F (kHz)	300						
0.490 - 1.705	24000/F (kHz)	30						
1.705 - 30	30	30						
30 - 88	100	3						
88 - 216	150	3						
216 - 960	200	3						
Above 960	500	3						

7.6.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

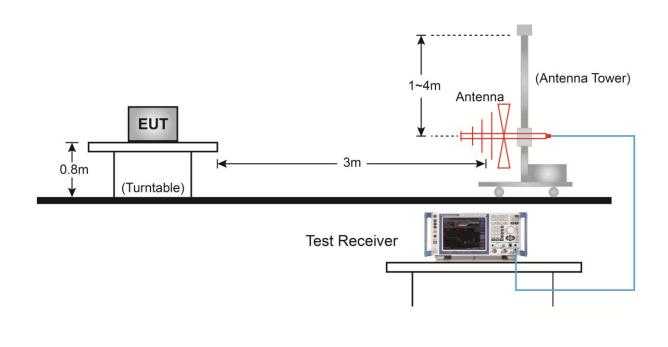
7.6.3.Test Setting

Peak Field Strength Measurements

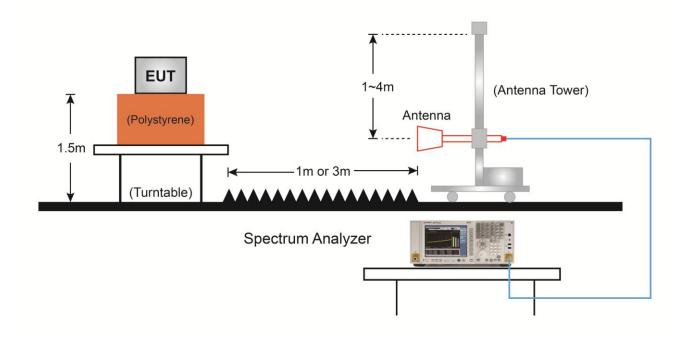
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in Table 1
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Table 1	- RBW	as a	function	of	frequency
---------	-------	------	----------	----	-----------

Frequency	RBW		
9 ~ 150 kHz	200 ~ 300 Hz		
0.15 ~ 30 MHz	9 ~ 10 kHz		
30 ~ 1000 MHz	100 ~ 120 kHz		
> 1000 MHz	1 MHz		


Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T
- 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces



7.6.4.Test Setup

<u>30MHz ~ 1GHz Test Setup:</u>

<u>1GHz ~ 18GHz Test Setup:</u>

7.6.5.Test Result

Product	Ninebot KickScooter Max	Temperature	25°C
Test Engineer	Bacon Dong	Relative Humidity	54%
Test Site	AC1	Test Date	2019/02/26
Test Mode:	BLE	Test Channel:	00
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average
	limit.		
	2. Other frequency was 20dB bel	ow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency (MHz)	Reading Level (dBµV)	Factor (dB)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
	4808.0	46.4	5.9	52.3	74.0	-21.7	Peak	Horizontal
	7383.5	32.7	12.6	45.3	74.0	-28.7	Peak	Horizontal
*	8879.5	32.3	13.2	45.5	74.0	-28.5	Peak	Horizontal
*	9806.0	31.1	16.3	47.4	74.0	-26.6	Peak	Horizontal
	4799.5	40.1	5.8	45.9	74.0	-28.1	Peak	Vertical
	7570.5	32.7	12.9	45.6	74.0	-28.4	Peak	Vertical
*	8718.0	33.8	13.0	46.8	74.0	-27.2	Peak	Vertical
*	10010.0	31.2	16.6	47.8	74.0	-26.2	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (90.5dB μ V/m) or 15.209 which is higher.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	Ninebot KickScooter Max	Temperature	25°C				
Test Engineer	Bacon Dong	Relative Humidity	54%				
Test Site	AC1	Test Date	2019/02/26				
Test Mode:	BLE	Test Channel:	19				
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average				
	limit. So the margin was calcul	ated using the avera	age limit for emissions fall				
	within the restricted bands.						
	2. Other frequency was 20dB bel	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	4884.5	47.1	6.0	53.1	74.0	-20.9	Peak	Horizontal
	7324.0	38.7	12.6	51.3	74.0	-22.7	Peak	Horizontal
*	8752.0	33.6	13.2	46.8	74.0	-27.2	Peak	Horizontal
*	10265.0	31.2	17.2	48.4	74.0	-25.6	Peak	Horizontal
	4876.0	39.0	6.0	45.0	74.0	-29.0	Peak	Vertical
	7324.0	37.0	12.6	49.6	74.0	-24.4	Peak	Vertical
*	8752.0	32.7	13.2	45.9	74.0	-28.1	Peak	Vertical
*	10078.0	30.4	17.0	47.4	74.0	-26.6	Peak	Vertical

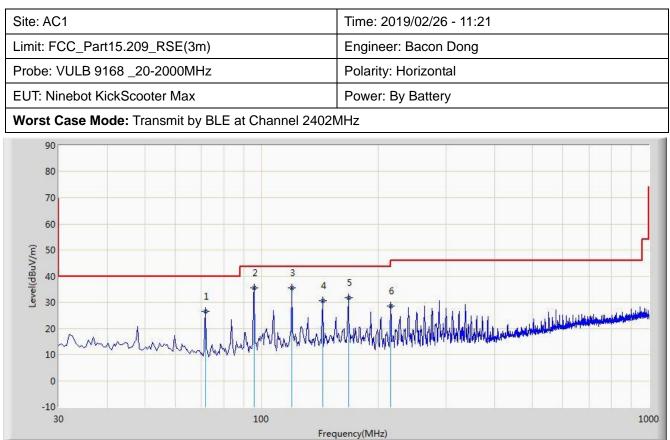
Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (88.5dBµV/m) or 15.209 which is higher.

Note 2: Measure Level $(dB\mu V/m) = Reading Level (dB\mu V) + Factor (dB)$

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	Ninebot KickScooter Max	Temperature	25°C			
Test Engineer	Bacon Dong	Relative Humidity	54%			
Test Site	AC1	Test Date	2019/02/26			
Test Mode:	BLE	Test Channel:	39			
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average			
	limit. So the margin was calcul	ated using the avera	age limit for emissions fall			
	within the restricted bands.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	4961.0	44.3	6.1	50.4	74.0	-23.6	Peak	Horizontal
	7443.0	37.9	12.9	50.8	74.0	-23.2	Peak	Horizontal
*	8862.5	32.5	13.3	45.8	74.0	-28.2	Peak	Horizontal
*	10027.0	31.1	16.6	47.7	74.0	-26.3	Peak	Horizontal
	4961.0	38.4	6.1	44.5	74.0	-29.5	Peak	Vertical
	7443.0	39.0	12.9	51.9	74.0	-22.1	Peak	Vertical
*	8777.5	33.1	13.2	46.3	74.0	-27.7	Peak	Vertical
*	9950.5	31.5	16.7	48.2	74.0	-25.8	Peak	Vertical


Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (86.4dBµV/m) or 15.209 which is higher.

Note 2: Measure Level $(dB\mu V/m) = Reading Level (dB\mu V) + Factor (dB)$

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

The Worst Case of Radiated Emission below 1GHz:

No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
			(dBuV/m)	(dBuV)				
1		71.710	26.486	15.150	-13.514	40.000	11.337	QP
2		95.960	35.522	24.760	-7.978	43.500	10.762	QP
3	*	119.725	35.650	22.460	-7.850	43.500	13.190	QP
4		143.975	30.446	15.580	-13.054	43.500	14.866	QP
5		167.740	31.642	17.050	-11.858	43.500	14.592	QP
6		215.755	28.599	16.850	-14.901	43.500	11.749	QP

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

Site: AC1					Time: 2019/02/26 - 11:26					
	Limit: FCC_Part15.209_RSE(3m)				Engineer: Bacon Dong					
Probe: VULB 9168 _20-2000MHz				Polarity: Vertical						
EUT: Ninebot KickScooter Max					Power: By Battery					
Worst Case Mode: Transmit by BLE at Channel 2402MHz										
	90									
	80									
	70									
	60									
Ē	50							[
svelto		1	* 3	6						
Level(dBuV/m)	30	1	* 3 * 4	6	1 × 3			مناطب والمساللة مأدد الم		
Level(c	30 20 ///	n Min	t 3 4	6	whater I dated	. Marchelding mar	un television and the state of the second	ing in the second states		
Levelic	1.00	n Min	t 3 4	6 MM Un un when	Montumentalistic	hald and a faith and a second	مرينا المرينية المرينية المحالية المرينية المرينية المرينية المرينية المرينية المرينية المرينية المرينية المرين	and the second		
Level	20	n M	* * * * Mm/MM	6 Munummun	Montumidation	halaman an a	ng bilan tan bina bina bina bina bina bina bina bi	and a state of the		
Level(c	20 /// 10 -10		howing	un lin unorther	Matumalabili	halidation of the second	nghijata atalikan kata kata ata			
Levelo	20 /// 10 0		howing	100	uency(MHz)	hold an old manager	mittleter statistication in the pro-	1000		
	20 /// 10 0 -10 30		hhh	M M M M M M M M M M M M M M M M M M M	uency(MHz)	Limit		1000		
No	20 /// 10 -10	Frequency	Measure	M M M M M M M M M M M M M M M M M M M	Margin		Factor			
	20 /// 10 0 -10 30	Frequency (MHz)	Measure Level	Reading Level		Limit (dBuV/m)		1000		
No	20 /// 10 0 -10 30	(MHz)	Measure Level (dBuV/m)	100 Freq Reading Level (dBuV)	Margin (dB)	(dBuV/m)	Factor (dB)	1000 Type		
No 1	20 /// 10 0 -10 30	(MHz) 47.945	Measure Level (dBuV/m) 26.056	100 Freq Reading Level (dBuV) 11.830	Margin (dB) -13.944	(dBuV/m) 40.000	Factor (dB) 14.226	1000 Type QP		
No 1 2	20 /// 10 0 -10 30	(MHz) 47.945 71.710	Measure Level (dBuV/m) 26.056 33.796	Reading Level (dBuV) 11.830 22.460	Margin (dB) -13.944 -6.204	(dBuV/m) 40.000 40.000	Factor (dB) 14.226 11.337	1000 Type QP QP		
No 1	20 /// 10 0 -10 30	(MHz) 47.945	Measure Level (dBuV/m) 26.056	100 Freq Reading Level (dBuV) 11.830	Margin (dB) -13.944	(dBuV/m) 40.000	Factor (dB) 14.226	1000 Type QP		
No 1 2	20 /// 10 0 -10 30	(MHz) 47.945 71.710	Measure Level (dBuV/m) 26.056 33.796	Reading Level (dBuV) 11.830 22.460	Margin (dB) -13.944 -6.204	(dBuV/m) 40.000 40.000	Factor (dB) 14.226 11.337	1000 Type QP QP		

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

29.690

15.800

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

40.452

28.990

95.960

119.725

5

6

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

-3.048

-14.510

43.500

43.500

10.762

13.190

QP

QP

7.7. Radiated Restricted Band Edge Measurement

7.7.1.Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209						
Frequency	Field Strength	Measured Distance				
[MHz]	[uV/m]	[Meters]				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	24000/F (kHz)	30				
1.705 - 30	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

For RSS-Gen Section 8.10 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 8.10 of RSS-Gen, must

also comply with the radiated emission limits specified in Section 8.9.

Frequency	Frequency	Frequency
(MHz)	(MHz)	(GHz)
0.009 - 0.110	240 - 285	9.0 - 9.2
2.1735 - 2.1905	322 - 335.4	9.3 - 9.5
3.020 - 3.026	399.9 - 410	10.6 - 12.7
4.125 - 4.128	608 - 614	13.25 - 13.4
4.17725 - 4.17775	960 - 1427	14.47 - 14.5
4.20725 - 4.20775	1435 - 1626.5	15.35 - 16.2
5.677 - 5.683	1645.5 - 1646.5	17.7 - 21.4
6.215 - 6.218	1660 - 1710	22.01 - 23.12
6.26775 - 6.26825	1718.8 -1722.2	23.6 - 24.0
6.31175 - 6.31225	2200 - 2300	31.2 - 31.8
8.291 - 8.294	2310 -2390	36.43 - 36.5
8.362 - 8.366	2655 - 2900	Above 38.6
8.37625 - 8.38675	3260 - 3267	-
8.41425 - 8.41475	3332 -3339	
12.29 - 12.293	334.5 - 3358	-
12.51975 - 12.52025	3500 - 4400	_
12.57675 - 12.57725	4500 - 5150	_
13.36 -13.41	5350 - 5460	_
16.42 - 16.423	7250 - 7750	_
16.69475 - 16.69525	8025 - 8500	
16.80425 - 16.80475		
25.5 - 25.67		
37.5 - 38.25		
73 - 74.6		
74.8 - 75.2	-	
108 - 138		
156.52475 - 156.525225		
156.7 - 156.9		

All out of band emissions appearing in a restricted band as specified in Section 8.10 of the RSS-Gen must not exceed the limits shown in Table per Section 8.9.

RSS-Gen Section 8.9						
Frequency	Field Strength	Measured Distance				
[MHz]	[uV/m]	[Meters]				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	24000/F (kHz)	30				
1.705 - 30	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

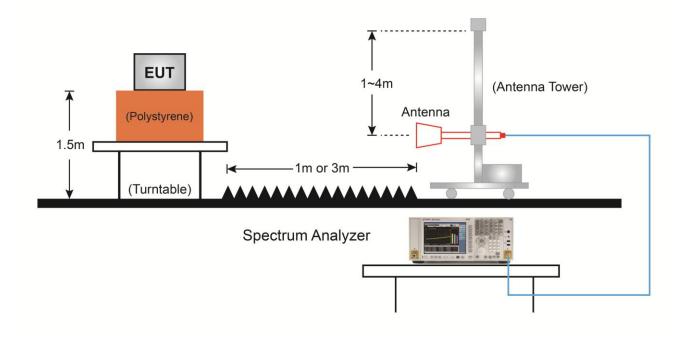
7.7.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.7.3.Test Setting

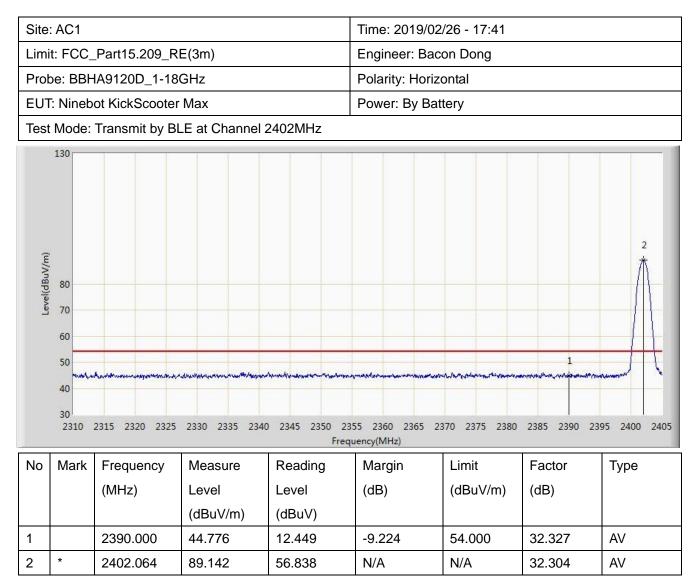
Peak Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

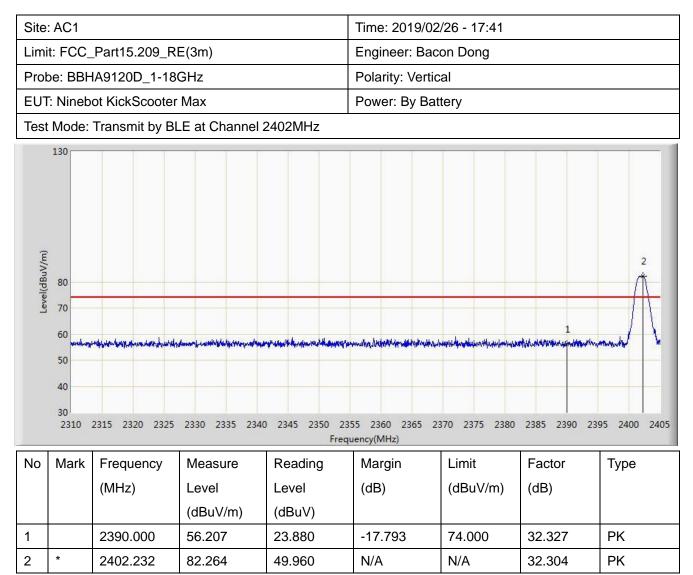
Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T
- 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces

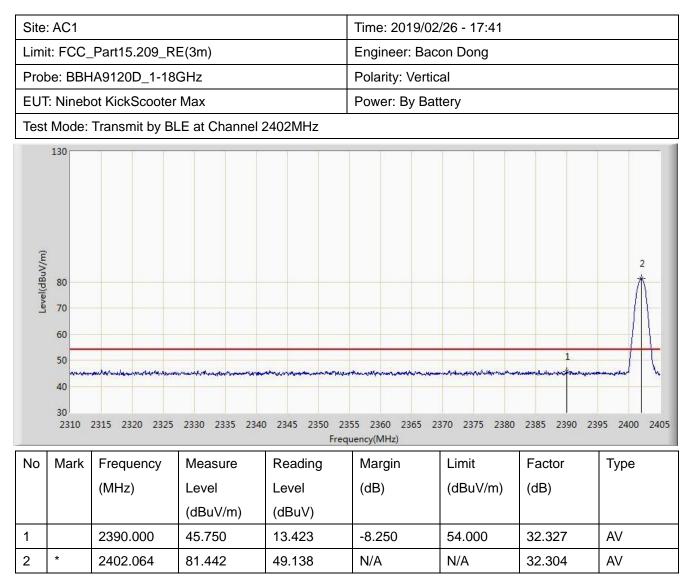
7.7.4.Test Setup

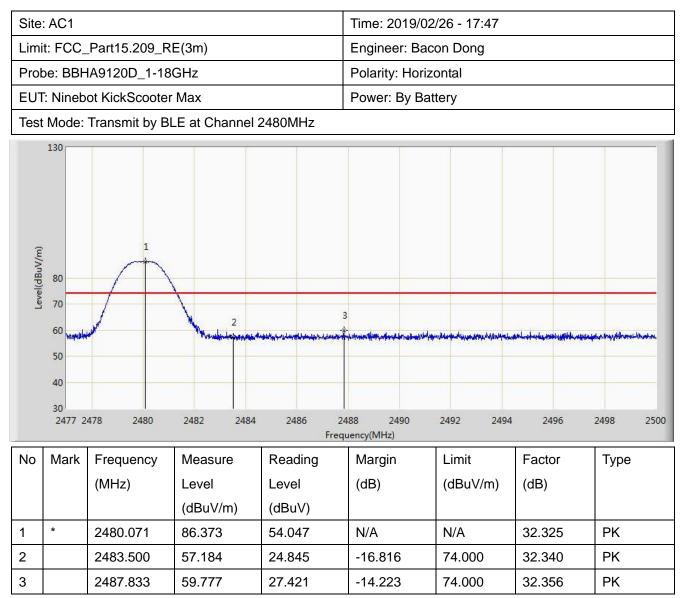


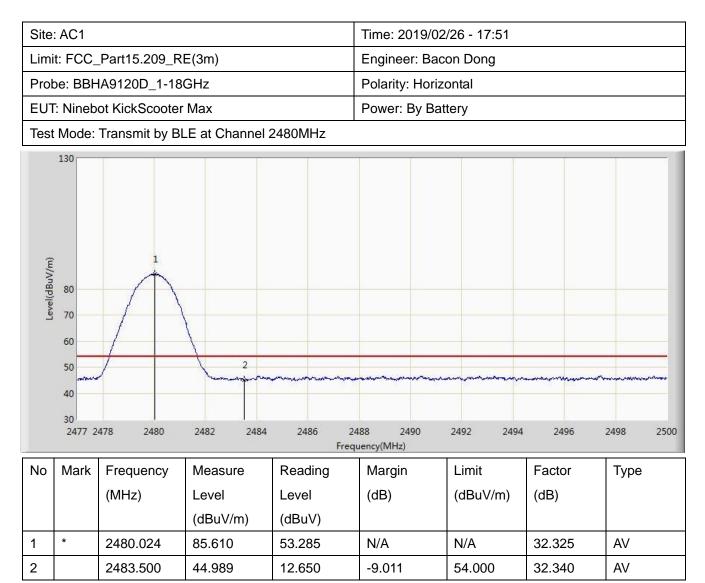
7.7.5.Test Result

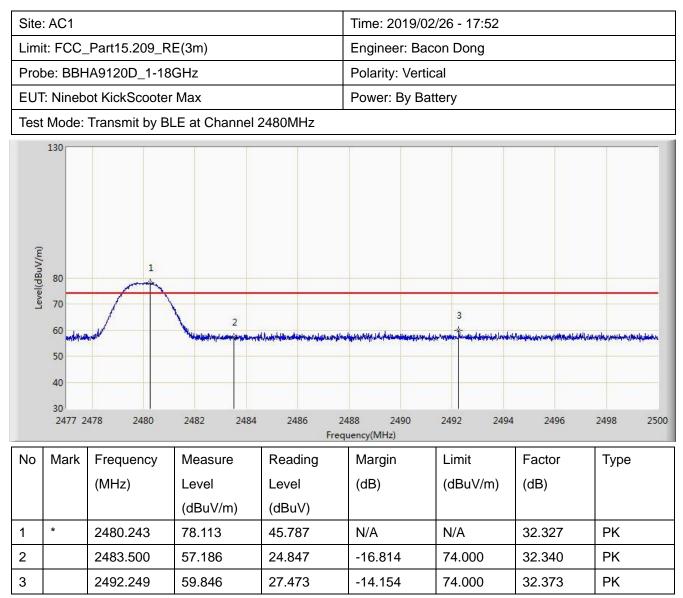

Site	: AC1				Time: 2019/02/26 - 17:39				
Limit: FCC_Part15.209_RE(3m)				Engineer: Bac	on Dong				
Prol	be: BBH	IA9120D_1-18	GHz		Polarity: Horiz	ontal			
EUT	T: Nineb	ot KickScooter	Max		Power: By Bat	tery			
Test	t Mode:	Transmit by Bl	LE at Channel	2402MHz					
Level(dBuV/m)	60 New-yh 50 40 30 2310	2315 2320 2325	2330 2335 2340	0 2345 2350 23	м/мании/////////////////////////////////	370 2375 2380	2385 2390 23	3	
No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
		(MHz)	Level	Level	(dB)	(dBuV/m) (dB)			
			(dBuV/m)	(dBuV)					
1		2375.576	59.750	27.403	-14.250	74.000	32.347	PK	
2		2390.000	56.430	24.103	-17.570	74.000	32.327	PK	
2									

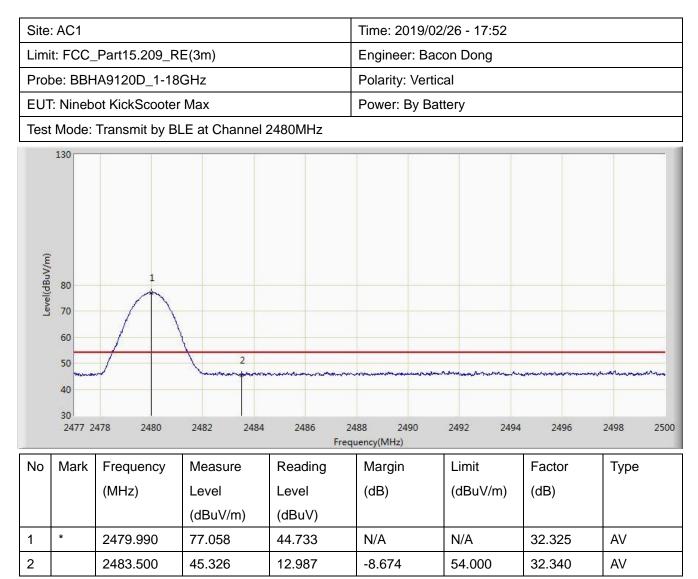
Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

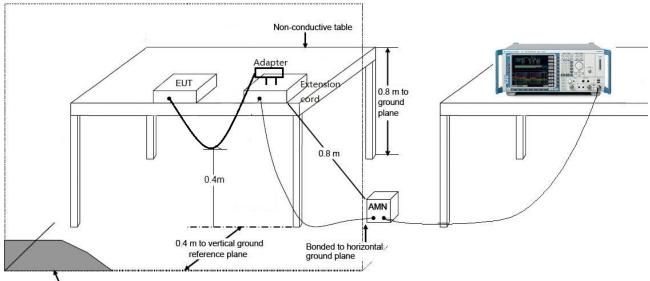











7.8. AC Conducted Emissions Measurement

7.8.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits								
Frequency (MHz) QP (dBuV) AV (dBuV)								
0.15 ~ 0.50	66 ~ 56	56 ~ 46						
0.50 ~ 5.0 56 46								
5.0 ~ 30 60 50								
Note 1: The lower limit shall apply at the transition frequencies.								
Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to								

7.8.2.Test Setup

0.5MHz.

Vertical ground reference plane

7.8.3.Test Result

Sito	· SD3					ime: 2010/02	8/12 - 11.12			
Site: SR2 Limit: FCC Part15.207 CE AC Power						Time: 2019/03/12 - 14:42				
Probe: ENV216_101683_Filter On						Engineer: Liz	ruan			
				On		Polarity: Line	0.//0011			
			Scooter Max		F	Power: AC 12	0V/60HZ			
lest	Mode	1								
80 70 60 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5									30	
3						ncy(MHz)				
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)		
		*	0.450	(dBuV)	(dBuV)	0.500	00.000	44,400	0.0	
1		^	0.150	56.437	45.268	-9.563	66.000	11.168	QP	
2			0.150	39.545	28.377	-16.455	56.000	11.168	AV	
3			0.182	51.539	41.490	-12.855	64.394	10.048	QP	
4			0.182	39.621	29.573	-14.773	54.394	10.048	AV	
5			0.234	45.060	35.109	-17.246	62.307	9.951	QP	
6			0.234	31.950	22.000	-20.356	52.307	9.951	AV	
7			0.266	44.980	35.003	-16.262	61.242	9.977	QP	
8			0.266	37.569	27.592	-13.673	51.242	9.977	AV	
9			2.018	30.328	20.457	-25.672	56.000	9.871	QP	
10			2.018	24.097	14.226	-21.903	46.000	9.871	AV	
11			13.762	41.611	31.563	-18.389	60.000	10.048	QP	
12			13.762	34.054	24.006	-15.946	50.000	10.048	AV	

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB).

Site: SR2	Time: 2019/03/12 - 14:46					
_imit: FCC_Part15.207_CE_AC Power	Engineer: Liz Yuan					
Probe: ENV216_101683_Filter On	Polarity: Neutral					
EUT: Ninebot KickScooter Max	Power: AC 120V/60Hz					
Test Mode 1						
70 60 50 40 40 30 20 10 0 10 0 10 0 10 0 10 10 1	10 30 Frequency(MHz)					

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1		*	0.150	55.469	44.327	-10.531	66.000	11.142	QP
2			0.150	38.718	27.576	-17.282	56.000	11.142	AV
3			0.182	50.910	40.868	-13.484	64.394	10.042	QP
4			0.182	39.293	29.251	-15.101	54.394	10.042	AV
5			0.198	50.055	40.040	-13.639	63.694	10.015	QP
6			0.198	41.919	31.905	-11.775	53.694	10.015	AV
7			0.222	44.674	34.694	-18.070	62.744	9.980	QP
8			0.222	32.783	22.804	-19.961	52.744	9.980	AV
9			2.670	31.869	22.013	-24.131	56.000	9.856	QP
10			2.670	25.952	16.096	-20.048	46.000	9.856	AV
11			13.894	41.423	31.321	-18.577	60.000	10.102	QP
12			13.894	33.843	23.741	-16.157	50.000	10.102	AV

Factor (dB) = Cable Loss (dB) + LISN Factor (dB).

8. CONCLUSION

The data collected relate only the item(s) tested and show that the Ninebot KickScooter Max is in

compliance with Part 15C of the FCC rules and ISED rules.

Appendix A - Test Setup Photograph

Refer to "1901RSU039-UT" file.

Appendix B - EUT Photograph

Refer to "1901RSU039-UE" file.