IEST REPORT							
28(175-20, Annye Hwaseong-si	EC CO., Ltd. oong-dong) 406-gil sejaro, o Gyeonggi-do, Korea 251, Fax:031-222-4252	Report No.: KST	FCR-170002(1)	KOSTEC Co., Ltd. http://www.kostec.org			
1. Applicant							
• Name :	Telechips						
• Address :	19~23 Floor, Luther Buil	ding, 7-20 Sinche	eon-dong, Songpa-gu,	Seoul, 138-240, Korea			
2. Test Item							
 Product Na 	me: Bluetooth module)					
Model Nam	e: TCM3901						
• Brand:	None						
• FCC ID:	2ALS3-3901	• IC:	22661-3901				
3. Manufacture	r						
• Name :	Telechips						
• Address :	19~23 Floor, Luther Buil	ding, 7-20 Sinche	eon-dong, Songpa-gu,	Seoul, 138-240, Korea			
4. Date of Test	: 2017. 05. 15. ~ 201	7. 05. 17.					
5. Test Method	DA 00-705		C-15.247				
6. Test Result :	Compliance						
7. Note: Non	e						
Supplementary	Information						
applicable techni measurement pro We attest to the a were made unde	The device bearing the brand name and FCC ID& IC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with measurement procedures specified in <u>ANSI C 63.10-2013</u> . We attest to the accuracy of data and all measurements reported herein were performed by KOSTEC Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.						
			-				
The re	sults shown in this test repo	rt refer only to the s	sample(s) tested unless c 占	therwise stated.			
Affirmation	Tested by Name : Lee, Mi-Young	s (Signature)	Technical Manager Name : Park, Gyeon	g-Hyeon (Signature)			
	2017. 06. 08.						
KOSTEC Co., Ltd.							

Table of Contents

1. GENERAL INFORMATION	3
1.1 Test Facility	3
1.2 Location	3
1.3 Revision History of test report	4
2. EQUIPMENT DESCRIPTION	
3. SYSTEM CONFIGURATION FOR TEST	
3.1 Characteristics of equipment	6
3.2 Used peripherals list	6
3.3 Product Modification	6
3.4 Operating Mode	6
3.5 Test Setup of EUT	6
3.6 Parameters of Test Software Setting	7
3.7 Table for Test condition	8
3.8 Used Test Equipment List	
4. SUMMARY TEST RESULTS	
5. MEASUREMENT RESULTS	
5.1 Peak Output Power	
5.2 20 dB Bandwidth	17
5.3 Channel Separation	
5.4 Number of Hopping Channels	
5.5 Time of Occupancy	
5.6 Conducted Spurious Emissions (Band-edge)	32
5.7 Spurious RF Radiated emissions	39
5.8 Antenna requirement	44
5.9 AC Power Conducted emissions	45

1. GENERAL INFORMATION

1.1 Test Facility

Test laboratory and address

KOSTEC Co., Ltd. 128(175-20,Annyeong-dong)406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea

Registration information

KOLAS No. : 232 FCC Designation No. : KR0041 IC Registration Site No. : 8305A-1

1.2 Location

1.3 Revision History of test report

Rev	Revisions	Revisions Effect page Reviewed		Date	
-	Initial issue	All	Gyeong Hyeon, Park	2017. 05. 22.	
1	Revised IC registration site no	3	Gyeong Hyeon, Park	2017. 06. 08.	

2. EQUIPMENT DESCRIPTION

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

Equipment Name	Bluetooth module
Model No	TCM3901
Usage	Bluetooth module
Serial Number	Proto type
Modulation type	FHSS
Emission Type	F1D/G1D
Maximum output power	2.01 dBm
Operated Frequency	2 402 MHz ~ 2 480 MHz
Channel Number	79
Operation temperature	-10 °C ~ 55 °C
Power Source	DC 3.3 V
Antenna Description	PCB antenna embed in PCB of EUT, max gain :1.5 dBi
Remark	 The device was operating at its maximum output power for all measurements. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case (X) is shown in the report. The above DUT's information was declared by manufacturer. Please refer to the specifications or user manual for more detailed description.
FCC ID	2ALS3-3901
IC	22661-3901

3. SYSTEM CONFIGURATION FOR TEST

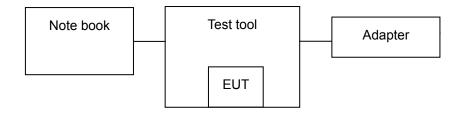
3.1 Characteristics of equipment

Bluetooth module

3.2 Used peripherals list

Description	Model No.	Serial No.	Manufacture	Remark
Notebook	BCM-1063	2Z7S1Z1	Dell Inc	
Adapter	DA65NM111-00	None	Dell Inc	For notebook

3.3 Product Modification


N/A

3.4 Operating Mode

Constantly transmitting with a modulated carrier at maximum power on the low, middle and high channels.

3.5 Test Setup of EUT

The measurements were taken in continuous transmit mode using the test mode which controlled by teraterm. The test command and the test Jig and cables were provided by the applicant.

3.6 Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

TX Power setting value during test

Dand	TX Power setting value				
Band	Low CH	Middle CH	High CH		
2.4 GHz band	0	0	0		

Test Program

Teraterm
command> bredr_tx 0 4 1 4 27 9 0
Reset
Read_BD_ADDR
BD_ADDR is 0x0018CE0F4512
Reset
Local_Device_BD_ADDR : 0x0018CE0F4512
Hopping_Mode : 0x1
Frequency : 0
Modulation_Type : 4
Logical_Channel : 1
BB_Packet_Type : 4
BB_Packet_Length : 27
Tx_Power_Level : 9
Transmit_Power_Table_Index : 0
Enter BR/EDR TX Test
BREDR_TX Complete!

Parameter	Name	Infomation
1	Frequency	0 (2402 MHz) ~ 39 (2441 MHz) ~ 78 (2480 MHz)
2	Modulation Type	1 (ACL Basic), 3 (0xAA 8-bit Pattern), 4 (PRBS9 Pattern), 9 (0xF0 8-bit Pattern)
3	Logical Channel	1 (ACL Basic)
4	BB Packet Type	0 (NULL), 1 (POLL), 2 (FHS), 3 (DM1), 4 (DH1/2-DH1), 5 (HV1), 6 (HV2/2-EV3), 7 (HV3/EV3/3-EV3), 8 (DV/3-DH1), 9 (AUX1/PS), 10 (DM3/2-DH3), 11 (DH3/3-DH3), 12 (EV4/2-EV5), 13 (EV5/3-EV5), 14 (DM5/2-DH5), 15 (DH5/3-DH5)
5	BB Packet Length	27
6	Tx Power Level	Specific Power Table Index
7	Transmit Power Table Index	0-7

3.7 Table for Test condition

Test Items	Channel No	Frequency (MHz)	Operated Condition
Channel Separation	39, 40	2 441, 2 442	Hopping on and continuous modulation setting mode
Number of Hopping Channels	0 ~ 78	2 402 ~ 2 480	Hopping on mode
Time of occupancy	39	2 441	Hopping on mode
	0	2 402	
Peak Output Power	39	2 441	Hopping off and continuous modulation setting mode
	78	2 480	
Dand adap Compliance	0	2 402	Hopping off and continuous
Band-edge Compliance	78	2 480	modulation setting mode
Spurious RF conducted emissions	-	-	Frequency band setting by required
Spurious radiated emissions	-	-	standard (FCC Rules)*

*Note: Channel number is selected lowest, middle, highest channel and also hopping on/off mode operation

3.8 Used Test Equipment List

No.	Instrument	Model	S/N	Manufacturer	Due to cal date	Cal interval	used
1	T & H Chamber	EY-101	90E14260	TABAI ESPEC	2017.09.07	1 year	
2	T & H Chamber	SH-641	92006831	ESPEC CORP	2018.02.02	1 year	
3	Spectrum Analyzer	8563E	3846A10662	Agilent Technology	2018.02.02	1 year	
4	Spectrum Analyzer	8593E	3710A02859	Agilent Technology	2018.02.02	1 year	
5	Spectrum Analyzer	FSV30	20-353063	Rohde& Schwarz	2018.02.01	1 year	\boxtimes
6	Signal Analyzer	N9010A	MY56070441	Agilent Technologies	2018.05.15	1 year	
7	EMI Test Receiver	ESCI7	100823	Rohde& Schwarz	2018.01.31	1 year	\square
8	EMI Test Receiver	ESI	837514/004	Rohde& Schwarz	2017.09.07	1 year	\boxtimes
9	Vector Signal Analyzer	89441A	3416A02620	Agilent Technology	2018.02.03	1 year	
10	Network Analyzer	8753ES	US39172348	AGILENT	2017.09.06	1 year	
11	EPM Series Power meter	E4418B	GB39512547	Agilent Technology	2018.02.01	1 year	
12	RF Power Sensor	E9300A	MY41496631	Agilent Technology	2018.02.01	1 year	
13	Microwave Frequency Counter	5352B	2908A00480	Agilent Technology	2018.02.01	1 year	
14	Modulation Analyzer	8901A	3538A07071	Agilent Technology	2018.02.02	1 year	
15	Audio Analyzer	8903B	3514A16919	Agilent Technology	2018.01.31	1 year	
16	Audio Telephone Analyzer	DD-5601CID	520010281	CREDIX	2018.02.02	1 year	
17	Digital storage Oscilloscope	TDS3052	B015962	Tektronix	2017.09.06	1 year	
18	ESG-D Series Signal Generator	E4436B	US39260458	Agilent Technology	2018.02.02	1 year	
19	Vector Signal Generator	SMBV100A	257557	Rohde & Schwarz	2018.02.02	1 year	
20	Signal Generator	SMB100A	179628	Rohde & Schwarz	2017.06.02	1 year	
21	Tracking Source	85645A	070521-A1	Agilent Technology	2018.02.03	1 year	
22	SLIDAC	None	0207-4	Myoung sung Ele.	2018.01.31	1 year	
23	DC Power supply	DRP-5030	9028029	Digital Electronic Co.,Ltd	2018.02.01	1 year	
24	DC Power supply	6038A	3440A12674	Agilent Technology	2018.01.31	1 year	
25	DC Power supply	E3610A	KR24104505	Agilent Technology	2018.01.31	1 year	
25	DC Power supply	UP-3005T	68	Unicon Co.,Ltd	2018.01.31	1 year	
20	DC Power Supply	SM 3004-D	114701000117	DELTA ELEKTRONIKA	2018.01.31	1 year	
27	Dummy Load	8173	3780	Bird Electronic Co., Corp	2018.02.03	, , , , , , , , , , , , , , , , , , ,	
20	Attenuator	50FH-030-500	140410 9433	JEW Idustries Inc.		1 year	
					2018.02.02	1 year	
30 31	Attenuator	765-20	9703	Narda	2017.09.06	1 year	
	Attenuator	24-30-34	BX5630	Aeroflex / Weinschel	2017.12.27	1 year	
32	Attenuator	8498A	3318A09485	HP	2018.02.01	1 year	
33	Step Attenuator	8494B	3308A32809	HP	2018.02.02	1 year	
34	Attenuator	18B50W-20F	64671	INMET	2018.02.02	1 year	
35	Attenuator	10 dB	1	Rohde & Schwarz	2018.05.18	1 year	
36	Attenuator	10 dB	2	Rohde & Schwarz	2018.05.18	1 year	
37	Attenuator	10 dB	3	Rohde & Schwarz	2018.05.18	1 year	
38	Attenuator	10 dB	4	Rohde & Schwarz	2018.05.18	1 year	
39	Attenuator	54A-10	74564	WEINSCHEL	2018.05.18	1 year	
40	Attenuator	56-10	66920	WEINSCHEL	2018.05.18	1 year	
41	Power divider	11636B	51212	HP	2018.02.01	1 year	
42	3Way Power divider	KPDSU3W	00070365	KMW	2017.09.06	1 year	
43	4Way Power divider	70052651	173834	KRYTAR	2018.02.01	1 year	
44	3Way Power divider	1580	SQ361	WEINSCHEL	2018.05.18	1 year	
45	OSP	OSP120	101577	Rohde & Schwarz	2018.05.19	1 year	
46	White noise audio filter	ST31EQ	101902	SoundTech	2017.09.07	1 year	
47	Dual directional coupler	778D	17693	HEWLETT PACKARD	2018.02.02	1 year	
48	Dual directional coupler	772D	2839A00924	HEWLETT PACKARD	2018.02.02	1 year	
49	Band rejection filter	3TNF-0006	26	DOVER Tech	2018.02.03	1 year	
50	Band rejection filter	3TNF-0008	317	DOVER Tech	2018.02.03	1 year	

No.	Instrument	Model	S/N	Manufacturer	Due to cal date	Cal interval	used
51	Band rejection filter	3TNF-0007	311	DOVER Tech	2018.02.03	1 year	
52	Band rejection filter	WTR-BRF2442-84NN	09020001	WAVE TECH Co.,LTD	2018.02.02	1 year	\boxtimes
53	Band rejection filter	WRCJV12-5695-5725- 5825-5855-50SS	1	Wainwright Instruments GmbH	2018.05.18	1 year	
54	Band rejection filter	WRCJV12-5120-5150- 5350-5380-40SS	4	Wainwright Instruments GmbH	2018.05.18	1 year	
55	Band rejection filter	WRCGV10-2360-2400- 2500-2540-50SS	2	Wainwright Instruments GmbH	2018.05.18	1 year	
56	Highpass Filter	WHJS1100-10EF	1	WAINWRIGHT	2018.02.02	1 year	
57	Highpass Filter	WHJS3000-10EF	1	WAINWRIGHT	2018.02.02	1 year	
58	Highpass Filter	WHNX6-5530-3000- 26500-40CC	2	Wainwright Instruments GmbH	2018.05.19	1 year	
59	Highpass Filter	WHNX6-2370-7000- 26500-40CC	4	Wainwright Instruments GmbH	2018.05.19	1 year	
60	WideBand Radio Communication Tester	CMW500	102276	Rohde & Schwarz	2018.02.03	1 year	
61	Radio Communication Tester	CMU 200	112026	Rohde & Schwarz	2018.02.03	1 year	
62	Bluetooth Tester	TC-3000B	3000B6A0166	TESCOM CO., LTD.	2018.02.03	1 year	
63	RF Up/Down Converter	DCP-1780	980901003	CREDIX	2018.02.03	1 year	
64	DECT Test set	CMD60	840677/005	Rohde& Schwarz	2017.09.06	1 year	
65	Loop Antenna	6502	9203-0493	EMCO	2017.06.04	2 year	\boxtimes
66	BiconiLog Antenna	3142B	9910-1432	EMCO	2018.04.25	2 year	\square
67	Trilog-Broadband Antenna	VULB 9168	9168-606	SCHWARZBECK	2018.09.09	2 year	
68	Horn Antenna	3115	2996	EMCO	2018.02.11	2 year	\square
69	Horn Antenna	BBHA9170	BBHA9170152	SCHWARZBECK	2019.04.25	2 year	\square
70	Antenna Master(3)	AT13	None	AUDIX	N/A	N/A	\boxtimes
71	Turn Table(3)	None	None	AUDIX	N/A	N/A	\square
72	PREAMPLIFIER(3)	8449B	3008A02577	Agilent	2018.02.01	1 year	\boxtimes
73	Antenna Master(10)	MA4000-EP	None	inno systems GmbH	N/A	N/A	\boxtimes
74	Turn Table(10)	None	None	inno systems GmbH	N/A	N/A	\boxtimes
75	AMPLIFIER(10)	TK-PA6S	120009	TESTEK	2018.01.31	1 year	\boxtimes
76	Antenna Mast	MA2000-EP	None	inno systems GmbH	N/A	N/A	
77	Turn Device	DE3700-RH	None	inno systems GmbH	N/A	N/A	

4. SUMMARY TEST RESULTS

Description of Test	FCC Rule	IC Rule	Reference Clause	Used	Test Result		
Peak Output Power	§ 15.247(b)(1)	RSS-247, 5.4.2	Clause 5.1	\boxtimes	Compliance		
20 dB Bandwidth	§ 15.247(a)(1)	RSS-247, 5.1.1	Clause 5.2		Compliance		
Channel Separation	§ 15.247(a)(1)	RSS-247, 5.1.2	Clause 5.3	\boxtimes	Compliance		
Number of Hopping Channels	§ 15.247(a)(1)	RSS-247, 5.1.4	Clause 5.4		Compliance		
Time of Occupancy	§ 15.247(a)(1)	RSS-247, 5.1.2	Clause 5.5	\boxtimes	Compliance		
Conducted Spurious Emissions	§ 15.247(d)	RSS-247, 5.5	Clause 5.6		Compliance		
Radiated Spurious Emissions	§ 15.247(d), § 15.209, and § 15.205	RSS-GEN, 8.8	Clause 5.7		Compliance		
Antenna Requirement	§ 15.203	-	Clause 5.8		Compliance		
AC Power Conducted emissions	§ 15.207	RSS-GEN, 8.8	Clause 5.9		Compliance		
Compliance: The ELIT complice with the acceptial requirements in the standard							

Compliance: The EUT complies with the essential requirements in the standard.

Not Compliance : The EUT does not comply with the essential requirements in the standard.

N/A : The test was not applicable in the standard.

Procedure Reference

FCC CFR 47, Part 15. Subpart C-15.247 DA 00-705 RSS-GEN Issue 4 RSS-247 Issue 2 ANSI C 63.10-2013

5. MEASUREMENT RESULTS

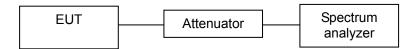
5.1 Peak Output Power

5.1.1 Standard Applicable [FCC §15.247(b)(1) / RSS-247 5.4.2]

For frequency hopping systems operating in the 2 400 ~ 2 483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5 725 ~ 5 850 MHz band : 1 Watt. For all other frequency hopping systems in the 2400 ~ 2483.5 MHz band: 0.125 watts.

5.1.2 Test Environment conditions

• Ambient temperature : (24 ~ 25) °C • Relative Humidity : (49 ~ 55) % R.H.


5.1.3 Measurement Procedure

ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. The peak output power was measured using the marker to peak function of the spectrum analyzer.

The spectrum analyzer is set to the as follows :

- Span : approximately 5 times the 20 dB bandwidth
- RBW : > 20 dB bandwidth of the emission being measured
- VBW \geq RBW.
- Sweep time = auto
- Detector = peak.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level.

5.1.4 Test setup

5.1.5 Measurement Result

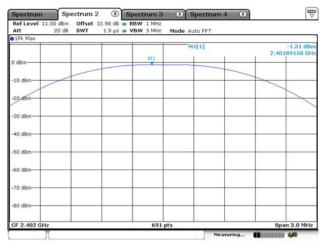
BDR(GFSK)

Channel	Frequency	Output Power	Limit	Toot Booulto
Channer	[MHz]	[dBm]	[dBm]	Test Results
0	2 402	-1.31	30	Compliance
39	2 441	-0.95	30	Compliance
78	2 480	-1.32	30	Compliance

EDR(π/4DQPSK)

Channal	Frequency	Output Power	Limit	Test Desults
	[MHz]	[dBm]	[dBm]	Test Results
0	2 402	1.10	30	Compliance
39	2 441	1.51	30	Compliance
78	2 480	1.06	30	Compliance

EDR(8DPSK)


Channel	Frequency	Output Power	Limit	Test Results	
[M	[MHz]	[dBm]	[dBm]	iest Results	
0	2 402	1.65	30	Compliance	
39	2 441	2.01	30	Compliance	
78	2 480	1.65	30	Compliance	

5.1.6 Test Plot

BDR(GFSK)

CH Low

CH Middle

(X) Spe	ectrum 4 🛛 🗵	
Mode Auto I	0 FFT	
Tour Hate		
M1[1]	[1]	-0.95 dBn 2.44110420 GH
-		
-		
		_
s		Span 3.0 MHz

Spectrum	Spectrur	n 2 🗷 S	pectrum 3	Spectrum	4 🛪	E.
Ref Level 11.0 Att	0 dBm Offs 20 dB SWT	et 10.98 dB 😐 1.9 µs 🖷	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		
1Pk Max						
			M1	M1[1]		-1.32 dBn 2.47985670 GH
0 dBm						
-10 dBm		_	+ +			
-20 d8m						
-30 dBm						
40 dBm	_	-				
-50 d8m						
-60 dBm	_					
70 d8m-						
-80 d8m		-				
CF 2.48 GHz			691	pts		Span 3.0 MHz
1				Me	asuring	AND 10 10 10 10 10 10 10 10 10 10 10 10 10

EDR(π/4DQPSK)

CH Low

8	Spectrum 4	ctrum 3 🛛 🗶	(X) Spectr	ectrum 2	n Sp	Spectrum
	Auto FFT		.98 dB . RBW		11.00 dBm 20 dB	Ref Level Att
						1Pk Max
1.10 d 2.40211290 d	M1[1]	MI				
				-		0 dBm
		-		-		-10 dBm
				-		-20 dBm
						-30 dBm
	-			_		-40 d8m
						-50 d8m
	-		-			-60 d8m
						-70 d8m
						-80 d8m
Span 3.0 Mi		101 -1-				CE 0.100.0
	Measuring	691 pts			anz .	CF 2.402 G

CH Middle

Spectrum	Spectrum 2	X Sp	ectrum 3	X	Spectrum 4	×		
Ref Level 11.00 dB Att 20 d		1.9 µs . VI		Mode	Auto FFT			
1Pk Max								
				M1	M1[1]	7		1.51 dBn 0850 GH;
0 dBm	-			-		-	<	
-10 dBar					+ +			~
-20 dBm					-			
-30 dBm					++			
40 dBm	-	-			-	-		
-50 d8m								
-60 dBm	-							
-70 d8m								
-80 d8m	-				-			
CF 2.441 GHz			691 p	ts		6	Span	3.0 MHz
Y					Measu	ring III	anna an	00

	Mode Auto FFT	et 10.98 dB • RBW 1 MHz 1.9 µs • VBW 3 MHz	Ref Level 11.00 dBm C Att 20 dB S
			1Pk Max
1.06 dB 2.47987410 GF	M1[1]	MI	
) dBm
			10 dBm
			20 dBm
			30 dBm
			40 dBm
			50 dBm
			60 dBm
			70 d8m
			80 dBm
Span 3.0 MH	te .	691	CF 2.48 GHz

EDR(8DPSK)

CH Low

Spectrum	Spectrum	2 🗷 Sp	ectrum 3	Spectr	um 4 🙁		₩
Ref Level 11.00 Att 2		10.98 dB . RI		Mode Auto FF1	r		
1Pk Max							
			M	M1[1]		1 2.40198	.65 dBn 700 GH
0 dBm	-						
-10 dBm	_						_
-20 dBm	_						
-30 dBm	_						
-40 d8m	_						
-50 d8m	_	_					
-60 dBm		-			-		
-70 d8m	_						
-80 d8m	_	-					
CF 2.402 GHz			691	pts	2	Span 3	.0 MHz
1					Measuring	H ERERARD 4	0

CH Middle

	14 🛞	Spectrum	×	trum 3	Spect	2 🕱	ectrum	1 Sp	Spectrum
		Auto FFT	Mode		B RBW	10.98 dB	Offset	11.00 dBm 20 dB	Ref Level Att
									1Pk Max
2.01 d£ 2.44098260 G	77	M1[1]	(M					
					-		-		0 dBm
						+			-10 dBm
	-			_	-	-			-20 dBm
	-	_			_	_			-30 dBm
	-	-			_	-	-		-40 d8m
					_				-50 d8m
	-	-			_	-			-60 d8m
					_	_			-70 d8m
		-			_	-			-80 d8m
Span 3.0 MH			pts	691		_		Hz	CF 2.441 0
	easuring	Mea						10	

	0.98 dB • RBW 1 MHz 1.9 µs • VBW 3 MHz Mode	Auto FFT	
IPk Max			
	ML	M1[1]	1.65 dBn 2.47998700 GH
dBm			
0 dBm			
0 dBm			
0 dBm			
0 dBm			
0 d8m			
0 dBm	· · · ·		
0 d8m			
0 dBm			
F 2.48 GHz	691 pts		Span 3.0 MHz

5.2 20 dB Bandwidth

5.2.1 Standard Applicable [FCC §15.247(a)(1) / RSS-247, 5.1.1]

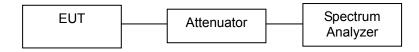
Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.2.2 Test Environment conditions

• Ambient temperature : (24 ~ 25) °C • Relative Humidity : (49 ~ 55) % R.H.

5.2.3 Measurement Procedure


ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

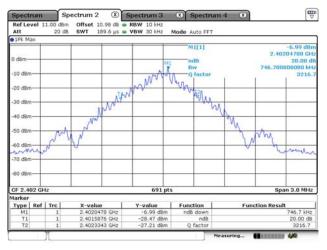
1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.

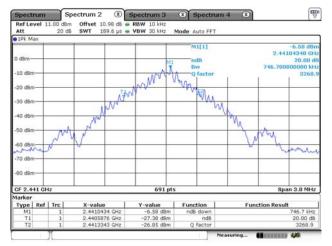
2. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW \geq 1 % of the 20 dB bandwidth and VBW \geq RBW.

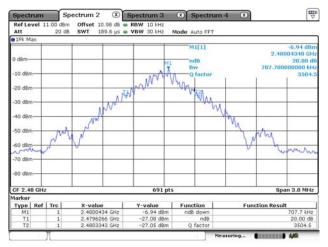
3. Measured the spectrum width with power higher than 20 dB below carrier.

5.2.4 Test setup

5.2.5 Measurement Result

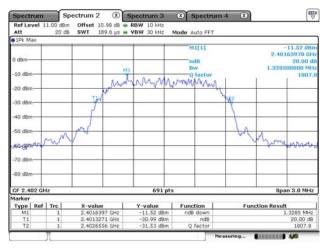

Modulation Type	Channel	Frequency [MHz]	20 dB Bandwidth [MHz]	99 % Bandwidth [MHz]	Limit [MHz]	Test Results
	0	2 402	0.747	0.860	-	Compliance
BDR(GFSK)	39	2 441	0.747	0.864	-	Compliance
	78	2 480	0.708	0.860	-	Compliance
	0	2 402	1.329	1.185	-	Compliance
EDR(π/4DQPSK)	39	2 441	1.329	1.185	-	Compliance
	78	2 480	1.333	1.185	-	Compliance
	0	2 402	1.320	1.194	-	Compliance
EDR(8DPSK)	39	2 441	1.324	1.194	-	Compliance
	78	2 480	1.324	1.198	-	Compliance

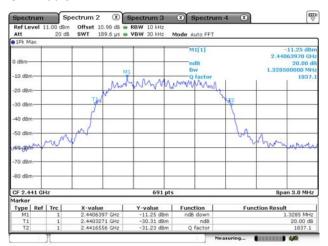

5.2.6 Test Plot (20 dB bandwidth)


BDR(GFSK)

CH Low

CH Middle

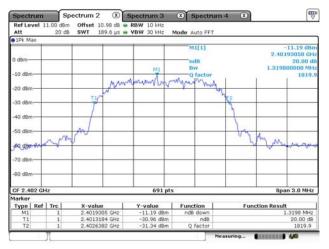




EDR(π/4DQPSK)

CH Low

CH Middle

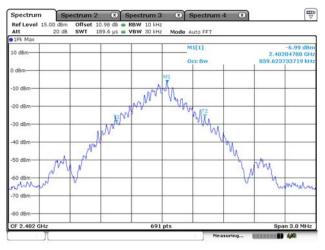


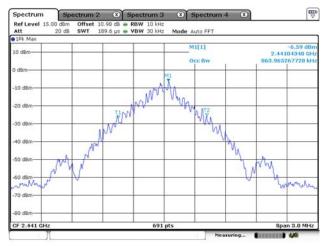
	4 ×	Spectrum	() = 1	Spectrum 3	2 🛞	ectrum	and the second se		Spect
		e Auto FFT		BW 10 kHz		Offset SWT	1.00 dBm 20 dB	vel 1	Ref Le
								эх	0 1Pk M
-11.63 dBr 2.47963970 GH 20.00 d 1.332900000 MH 1860.		M1[1] ndB Bw -Q factor		11	_				0 d8m- -10 d8r
		mount	nn	huma	Mw	-		-	-20 dBn
	12	1	_		pr 1	Ţ		+	-30 dBr
		_	_			ſ		+	-40 dBr
4	LA	_	_	-	-	mi	.4	+	-50 dBr
mana	2	_	_		_	Y	wa	m	Alea-day
	-	_	_	_	_			-	-70 dBn
		_	_		_			+	-80 d8n
Span 3.0 MHz			pts	691			2	3 GHz	CF 2.4
				6				2	Marker
tion Result	Fund	unction	_	Y-value		X-val		Ref	Туре
1.3329 MHz 20.00 dB		ndB down ndB		-11.63 dBr -32.52 dBr	6397 GHz		1		M1 T1
1860.4		Q factor		-31.76 dBr	6556 GHz		1	-	T2

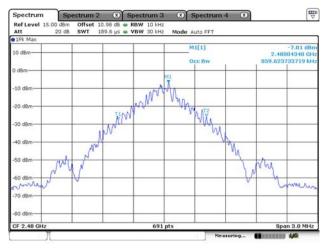
EDR(8DPSK)

CH Low

CH Middle

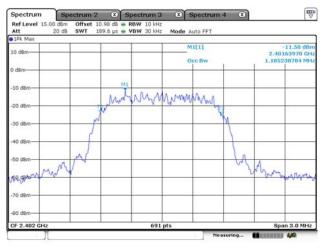

	n4 🙁	× Spectrum	Spectrum 3	ectrum 2 🛞	and the second se		Spect
		Mode Auto FFT		Offset 10.98 dB	1.00 dBn 20 dB	vel 1	Ref Le
						ах	D 1Pk M
-11.29 dBr 2.47992620 GH 20.00 d 1.324200000 MH 1872.		M1[1] ndB Bw Q factor	M1 X			1	0 d8m-
	4	man may	munum	Arm		-	-20 dBn
	12			T		-	-30 dBn
	1					+	-40 dBri
4	h		-	m		+	-50 dBri
Jun manan	L			Ψ	w	wood	60.d80
				<u> </u>		+	-70 dBn
						+	-80 d8n
Span 3.0 MHz			691 pts		2	8 GHz	CF 2.4
		Function					Marker
	Function Result		Y-value	X-value		Ref	Type M1
1.3242 MHz 20.00 dB		ndB down ndB	-11.29 dBm -31.25 dBm	2.4799262 GHz 2.479314 GHz	1		M1 T1
1872.8		Q factor	-31.46 dBm	2.4806382 GHz	1	-	T2

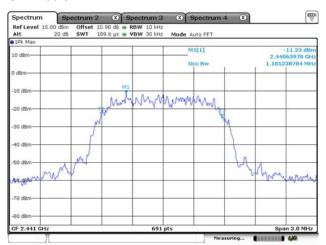

Test Plot (99 % bandwidth)


BDR(GFSK)

CH Low

CH Middle

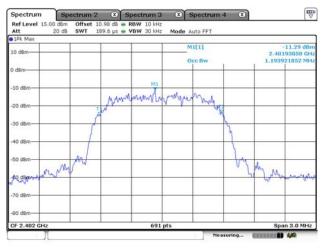





EDR(π/4DQPSK)

CH Low

CH Middle



EDR(8DPSK)

CH Low

CH Middle

5.3 Channel Separation

5.3.1 Standard Applicable [FCC §15.247(a)(1) / RSS-247, 5.1.2]

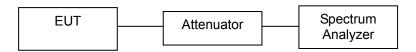
Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.3.2 Test Environment conditions

• Ambient temperature : (24 ~ 25) $\,^\circ\!\!\mathbb{C}\,$ • Relative Humidity : (49 ~ 55) % R.H.

5.3.3 Measurement Procedure


ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

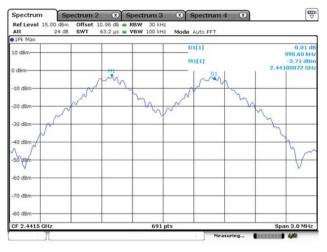
- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were used.
- 3. After the trace being stable, the reading value between the peak of the adjacent channels using the marker- Delta function was recorded as the measurement results.

The spectrum analyzer is set to the as follows :

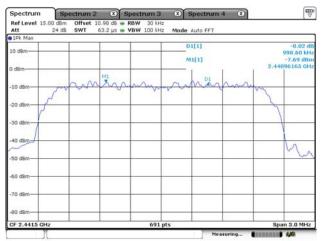
- Span : wide enough to capture the peak of two adjacent channels
- RBW : ≥ 1% of the span
- VBW : ≥ RBW
- Sweep : auto
- Detector function : peak
- Trace : max hold

5.3.4 Test setup

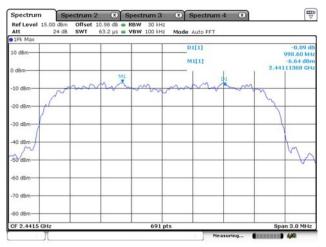
5.3.5 Measurement Result


Modulation Type	Channel	Frequency[MHz]	uency[MHz] Channel Separation(MHz) Limit(Test Results
BDR(GFSK)	39	2441	0.999	≥0.498	Compliance
EDR(π/4DQPSK)	39	2441	0.999	≥0.889	Compliance
EDR(8DPSK)	39	2441	0.999	≥0.883	Compliance

* Limit : ≥ 25 kHz or two-thirds of the 20 dB bandwidth



5.3.6 Test plot


BDR(GFSK)

EDR(π/4DQPSK)

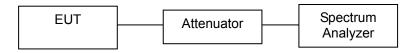
EDR(8DPSK)

5.4 Number of Hopping Channels

5.4.1 Standard Applicable [FCC §15.247(a)(1) / RSS-247, 5.1.4]

Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1)(iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


5.4.2 Test Environment conditions

• Ambient temperature : (24 ~ 25) $^\circ$ C • Relative Humidity : (49 ~ 55) % R.H.

5.4.3 Measurement Procedure

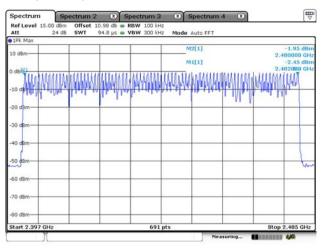
ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

5.4.4 Test setup

5.4.5 Measurement Result

Modulation Type	Hopping channels number	Limit	Test Results
BDR(GFSK)	79	≥15	Compliance
EDR(π/4DQPSK)	79	≥15	Compliance
EDR(8DPSK)	79	≥15	Compliance

5.4.6 Test plot


BDR(GFSK)

Spectrum	Spectrum	2 🙁 Sp	ectrum 3	× 5	Spectrum	4 🛞		
Ref Level 15.00 Att 2	dBm Offset	10.98 dB 🗰 R 94.8 µs 🖷 V			Auto FFT			
1Pk Max								
10 d8m		-		M	2[1]			.50 dBr
		1 1		M	1[1]			.85 dBi
dBm					Carlos Carlos			OND CH
DAMAMA	1100000	1010/5/104	MUM	<u>AUMI</u>		IMALIN)		
10 d8 1.	WY MW	WWW U	WWW	MANNA	WWWI	WWW	I A DO A MARKA	W
20 dBm								
30 dBm								+
40 dBm					-			+
50 dBm		-					-	-
i0 dBm								
70 d8m	-							
s0 dBm								
tart 2.397 GHz			691	pts			Stop 2.4	85 GH2
The second se					Mea	suring	CONTRACTOR &	0

EDR(π/4DQPSK)

Spectrum	and the second second	ctrum 2	and the second s	pectrum 3		Spectrum	4 🛪		
Ref Level 15.00 Att	dBm 24 dB	Offset	10.98 dB 🖷 1 94.8 µs 🖷			Auto FFT			
1Pk Max									
10 dBm				-		2[1]		2.4	-2.11 dBn 80000 GH -2.24 dBn
dB/M									02000 CH
-10 den	W	119M	WHANK	WW	10000	MMM	MAIM		MM
20 dam-	V					4.14	V 4	DMa	
-30 dBm	-		-						
40 dBm	-		-			-			
50 dBm-					-		-		ho
60 dBm			-			1			-
70 dBm			-						
80 dBm									
Start 2.397 GHz	2			691	pts			Stop 2	2.485 GHz

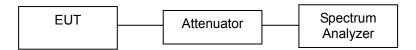
EDR(8DPSK)

5.5 Time of Occupancy

5.5.1 Standard Applicable [FCC §15.247(a)(1) / RSS-247, 5.1.2]

(1)(iii) The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.5.2 Test Environment conditions


• Ambient temperature : (24 ~ 25) $^\circ$ C • Relative Humidity : (49 ~ 55) % R.H.

5.5.3 Measurement Procedure

ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled. After used the marker-delta function to determine the dwell time.

5.5.4 Test setup

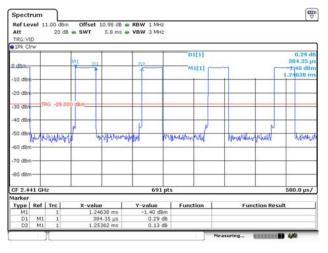
5.5.5 Measurement Result

Burst width	per one hop (ms)	Test	Results	
Τ)	īme slot)		Dwell time (ms)	Limit	Result
	DH1	0.384	0.123	≤ 0.4	Compliance
BDR(GFSK)	DH3	1.638	0.262	≤ 0.4	Compliance
	DH5	2.899	0.309	≤ 0.4	Compliance
	2DH1	0.391	0.125	≤ 0.4	Compliance
EDR(π/4DQPSK)	2DH3	1.638	0.262	≤ 0.4	Compliance
	2DH5	2.899	0.309	≤ 0.4	Compliance
	3DH1	0.391	0.125	≤ 0.4	Compliance
EDR(8DPSK)	3DH3	1.626	0.260	≤ 0.4	Compliance
	3DH5	2.899	0.309	≤ 0.4	Compliance

Note:

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX). DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

Therefore, dwell Time can be calculated as follows:


Data Packet	Dwell Time(s)									
DH1/2DH1/3DH1	1600/79/2*0.4*79*(MkrDelta)/1000									
DH3/2DH3/3DH3	1600/79/4*0.4*79*(MkrDelta)/1000									
DH5/2DH5/3DH5	1600/79/6*0.4*79*(MkrDelta)/1000									

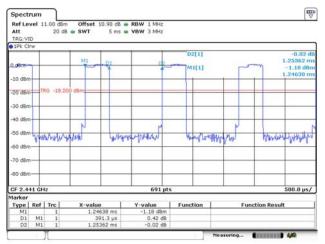
5.5.6 Test plot

BDR(GFSK)

DH1

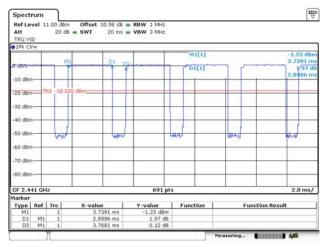
DH3

Ref Le Att TRG:VI			am Offset 1 dB e SWT		RBW 1 MHz VBW 3 MHz				
1Pk Cl	rw					100000			
			MI			D2[1]			-0.01 df
0.dBm-	-	-	The second secon		R P	M1[1]	-		1.33 dBn
					IT T				2,4928 m
-10 dBn	-	-							
-20 d8n	-	-						_	
	-		000 d8m						
-30 dBn	-	NO -28.	000 08/11						
-40 dBn									
10 001			2						
-50 dBn	+	-	working	-	Warth Maler		Marry		Hondas
			and the second sec						A Brown
-60 dBn	-								
-70 dBn	-		-		-		-		
					1 1				
-80 dBri	-		-						
CF 2.4	H1 GH	12			691 pt				1.0 ms/
Marker						-			210 1107
Type	Ref	Trc	X-value	- I	Y-value	Function	1	Functio	n Result
M1	1	1		28 ms	-1.33 dBm				
D1 D2	M1 M1	1		77 ms	0.10 dB -0.01 dB		-		

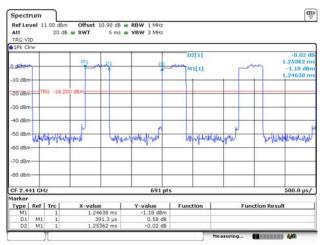

DH5

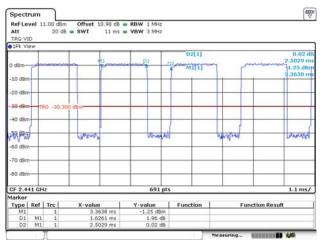
	1.00 dBi 20 d	B 🖷 SWT		RBW 1 MH VBW 3 MH				
-		12	<u></u>	2		M1[1]		-1,36 dBn 3,7391 m -0 ,03 di 2,8986 m
17			- Luc		here		where a	
				601	ate			2.0 ms/
Ref	Trc 1	3	.7391 ms	Y-value -1.36 di	Bm F	unction	Functi	ion Result
	TP	V TRG -28.0 VLV 1 GHz Ref Trc 1 M1 1	V M1 TRG -28,000 d8m V&NV 1 GHz Ref Trc X-val M1 1 2	M1 min TRG -28.000 dBm UNV	M1 n1 p2 TRG -28.000 dBm - - 1 GHz 691 - - Ref Trc X-value Y-value 1 3.7391 ms -1.36 dBm -1.36 dBm M1 1.2998 ms -0.03	M1 n1 02 TRG 28,030 dBm 1 1 TRG 28,030 dBm 1 1 ICHz 691 pts 691 pts Ref Trc X-value Y-value F 1 3.7391 ms -1.36 dBm 1.36 dBm M1 1 2.0906 ms -0.36 dBm	W M1 P1 P2 M1[1] TPG 28.000 dBm 01(1) 01(1) TPG 28.000 dBm 01(1) 01(1) I CH2 691 pts 01(1) 01(1) I CH2 691 pts 01(1) 01(1) I CH2 691 pts 01(1) 01(1) I 1 3.7391 ms -1.36 dBm 1.30 dBm	M1 M1 <thm1< th=""> M1 M1 M1<!--</td--></thm1<>

EDR(π/4DQPSK)


2DH1

2DH3


2DH5



EDR(8DPSK)


3DH1

3DH3

3DH5

5.6 Conducted Spurious Emissions (Band-edge)

5.6.1 Standard Applicable [FCC §15.247(d) / RSS-247, 5.5]

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on RF conducted.

5.6.2 Test Environment conditions

• Ambient temperature : (24 ~ 25) °C • Relative Humidity : (49 ~ 55) % R.H.

5.6.3 Measurement Procedure

(1) The transmitter output was connected to the spectrum analyzer through an attenuator.

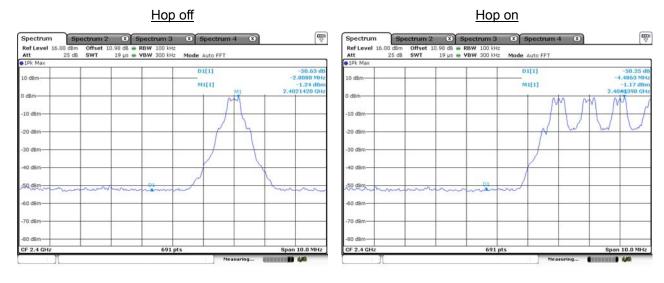
(2) Conducted spurious emission the bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz.

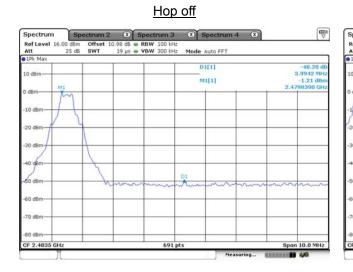
(3) Below -20dB of the highest emission level in operating band.

5.6.4 Test setup

5.6.5 Measurement Result

				Test Results	
Setting Cha	nnel	Measured	value [dB]	Limit [dB]	Result
		Hop on	Hop off		Result
BDR(GFSK)	CH 0	-50.25	-50.63		Compliance
BDR(GF3R)	CH 78	-49.39	-48.20		Compliance
EDR(π/4DQPSK)	CH 0	-50.07	-49.55	≤ 20 than PSD level	Compliance
EDR(11/4DQF3R)	CH 78	-48.66	-49.96		Compliance
EDR(8DPSK)	CH 0	-51.00	-50.64		Compliance
EDR(ODFSR)	CH 78	-49.14	-49.75		Compliance


Note: The following plots show that there are no conducted spurious emissions exceeding the 20dB down criteria. Plots are also presented showing the band edge compliance.


5.6.6 Test Plot (Band-edge)

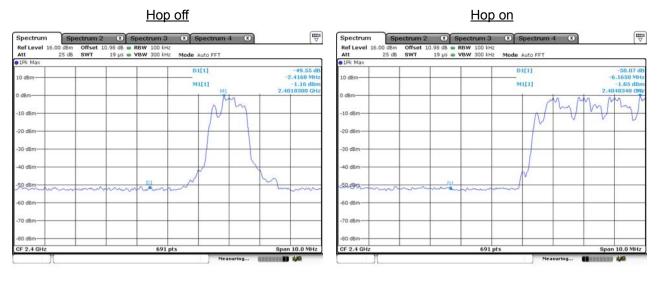
BDR(GFSK)

CH Low

CH High

Spectrum **m** ⊽ Spectrum 2 (3) Spectrum 3 (3) Spectrum 4 (8) Ref Level 16.00 Att Offset 10 Mode Auto FFT 25 dB SWT 19 µs 🖷 VBW 300 kHz IPk Ma D1[1] 49.39 d 5.5572 MF -1.19 dB 2.4791440 GF 0 dB M1[1] dB 30 dB l0 di 50 di 70 dB 80 d8 CF 2.4835 GHz 691 pts n 10.0 MHz Sp Measuring 1....

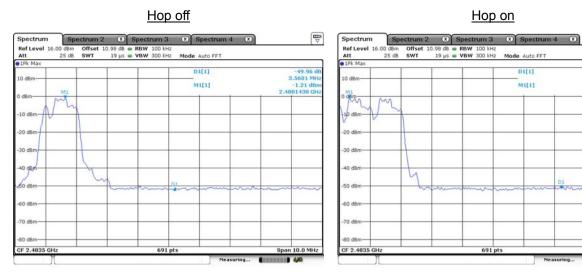
Hop on


KST-FCR-RFS-Rev.0.3 Page: 33 / 48 This report shall not be reproduced except in full without the written approval of KOSTEC Co., Ltd,

Report No.: KST-FCR-170002(1)

EDR(π/4DQPSK)

CH Low

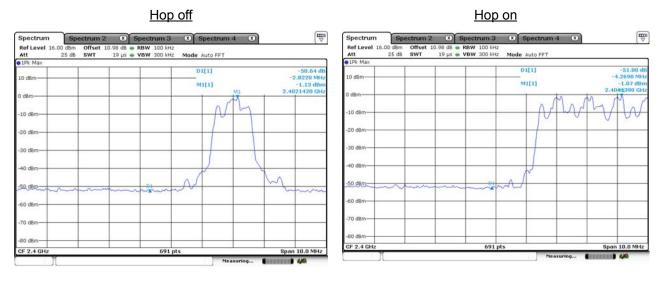

E ∏

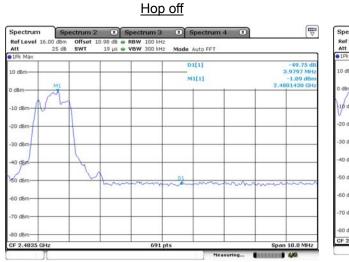
48.66

6.8890 MH -1.11 dBr 788400 GH

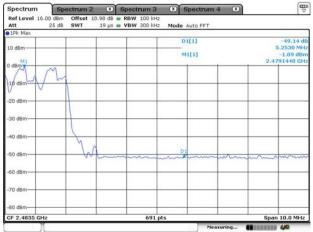
2.47

Span 10.0 MHz



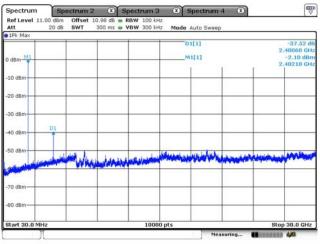

Report No.: KST-FCR-170002(1)

EDR(8DPSK)


CH Low

CH High

Hop on



Test Plot (Conducted spurious emissions)

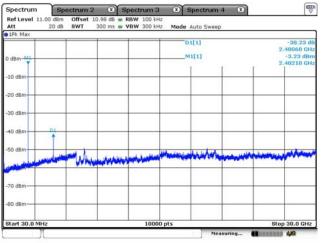
BDR(GFSK)

CH Low

CH Middle

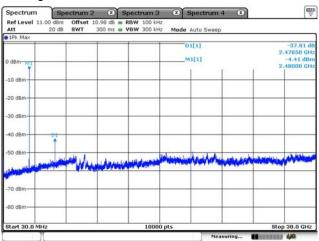
Spectrum	Spectrum	2 🗴 Spe	ctrum 3	Sp Sp	ectrum 4	×	
Ref Level 11.00			W 100 kHz				
Att :	20 dB SWT	300 ms 🖷 VB	W 300 kHz	Mode Au	ito Sweep		
APR. Dillo.				DI	1]		-39.00 di 2.43960 GH
0 dBm M1				M1[1]		-1.77 dBr 2.44110 GH
-10 dBm-				1			
-20 dBm-		+ +					
-30 dBm							
-40 dBm	D1						
-50 dBm-							
بعظلن مندر	al a second second	-	Mir states	and the set	And the second second	and a state of the state	and the second
-70 dBm		+ +					
-80 dBm							
Start 30.0 MHz			10000 pt				Stop 30.0 GHz
Traine and the second s			10000 p		Measuri		1000 0010 dill

CH High


Spectrum Spectrum Ref Level 11.00 dBm	Offset 10.98 dB	RBW 100 kHz	Spectrum 4	(X)		
Att 20 d8	SWT 300 ms	- VBW 300 kHz	Mode Auto Sweep			
1Pk Max						
			D1[1]		-38.43 dE 2.48150 GH	
0 dBm M1			M1[1]		-1.53 dBn	
				8 - B	2.48000 GH	
-10 dBm		_				
-20 dBm						
-30 dBm-						
DI						
-40 dBm						
-50 dBm	and all and	and the second sec	Athank harden	Sharden Autor	the states	
and a state of the	A MANANA AN	MA DO WARMIN				
-70 dBm						
26222603						
-80 dBm						
Start 30.0 MHz	- <u> </u>	10000 pts			Stop 30.0 GHz	

Note: It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits

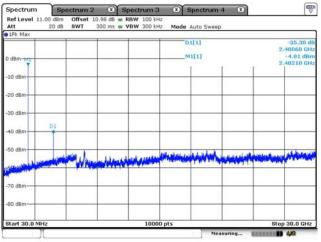
EDR(π/4DQPSK)


CH Low

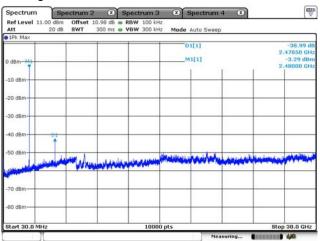
CH Middle

Spectrum	Spectrum	2 🗶 Spe	ctrum 3 🛛 🔅	Spectrum	4 X		The second seco
Ref Level 11.00 0	dBm Offset	10.98 dB . RB	W 100 kHz	ode Auto Swee			
1Pk Max	00 0111	500 115 - 15	N DOD KILL IN	Due Auto Swee	<i>p</i>		
0 dBm 141				D1[1] _M1[1]		2.43	960 GH 74 dBn 110 GH
-10 dBm	_			_			
-20 dBm-	_	++					
-30 dBm	_						
-40 dBm	-						
-50 dBm	in the		A. L. LANDER	Mine Maril Wh	-	-	When the
States and a state of the states of the stat	Mar Mar	Mental Manual					
-70 dBm							
-80 dBm							
Start 30.0 MHz			10000 pts			Stop 30	.0 GHz

CH High



EDR(8DPSK)


CH Low

CH Middle

	The second seco
Ref Level 11.00 dBm Offset 10.98 dB	
Att 20 dB SWT 300 ms WBW 300 kHz Mode Auto Sweep	
01(1)	37.73 df 960 GH .18 dBn 110 GH
10 dBm	
20 dBm	
50 dBm-	
40 dBm	
	-
70 dBm	
30 dBm	
tart 30.0 MHz 10000 pts Stop 30	.0 GHz

CH High

Note: It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits

5.7 Spurious RF Radiated emissions

5.7.1 Standard Applicable [FCC §15.247(d) / RSS-GEN, 8.8]

FCC

All other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10 GHz, the frequency Range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, Whichever is lower. In addition, radiated emissions which fall in the restricted bands, as defined in Sec.15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a)

IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

0		,	,	
Frequency Band [MHz]	DISTANCE [Meters]	Limit [⊭V/m]	Limit [dB µV/m]	Detector
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)	Peak
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)	Peak
1.705 ~ 30.0	30	30	29.54	Peak
30 - 88	3	100 **	40.00	Quasi peak
88 - 216	3	150 **	43.52	Quasi peak
216 - 960	3	200 **	46.02	Quasi peak
Above 960	3	500	54.00	Average
Above 1000	3	74.0 dB	μ /m (Peak), 54.0 dB μ /m	(Average)
			ection shall not be located in on within these Frequency ba	

§15.209 and RSS-Gen limits for radiated emissions measurements (distance at 3 m)

sections of this Part Section 15.231 and 15.241 \$15,205 Restrict Band of Operation for ECC

[MHz]	[MHz]	[MHz]	[GHz]
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505**	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.
4.177 25 - 4.177 75	37.5 -38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 -1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.38 6 75	156.7 - 156.9	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 – 4 400	Above 38.6
13.36 - 13.41			

** Until February 1, 1999, this restricted band shall be 0.490-0.510

[MHz]	[MHz]	[MHz]	[GHz]
0.090 - 0.110	12.519 75 - 12.520 25	399.9 - 410	5.35 - 5.46
2.173 5 - 2.190 5	12.576 75 - 12.577 25	608 - 614	7.25 - 7.75
3.020 - 3.026	13.36 - 13.41	960 - 1 427	8.025 - 8.
4.125 - 4.128	16.42 - 16.423	1 435 - 1 626.5	9.0 - 9.2
4.177 25 - 4.177 75	16.694 75 - 16.695 25	1 645.5 - 1 646.5	9.3 - 9.5
4.207 25 - 4.207 75	16.804 25 - 16.804 75	1 660 - 1 710	10.6 - 12.7
5.677 - 5.683	25.5 - 25.67	1 718.8 -1 722.2	13.25 - 13.4
6.215 - 6.218	37.5 -38.25	2 200 - 2 300	14.47 - 14.5
6.26775-6.26825	73 - 74.6	2 310 - 2 390	15.35 - 16.2
6.31175–6.31225	74.8 - 75.2	2 655 - 2 900	17.7 - 21.4
8.291 - 8.294	108 - 138	3 260 - 3 267	22.01 - 23.12
8.362 - 8.366	156.524 75 - 156.525 25	3 332 - 3 339	23.6 - 24.0
8.376 25 - 8.38 6 75	156.7 - 156.9	3 345.8 - 3 358	31.2 - 31.8
8.414 25 - 8.414 75	240 - 285	3 500 - 4 400	36.43 - 36.5
12.29 - 12.293	322 - 335.4	4 500 - 5 150	Above 38.6

§15.205. Restrict Band of Operation for IC

5.7.2 Test Environment conditions

• Ambient temperature : (24 ~ 25) °C • Relative Humidity : (49 ~ 55) % R.H.

5.7.3 Measurement Procedure

The measurements procedure of the Spurious RF Radiated emissions is as following describe method.

1. The EUT was placed on the top of a rotating table (0.8 meters for below 1 GHz and 1.5 meters for above 1 GHz) above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation.

2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna master.

3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both Horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotating table was turned from 0 - 360 degrees to find the maximum reading.

5. The measuring receiver was set to peak detector and specified bandwidth with max hold function.

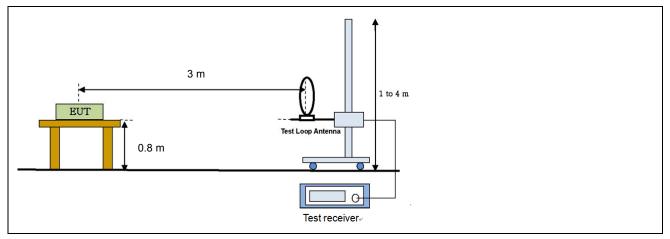
6. Low, Middle and high channels were measured, and radiation measurements are performed in X, Y, Z axis

positioning. And found the worst axis position and only the test worst case mode is recorded in the report.

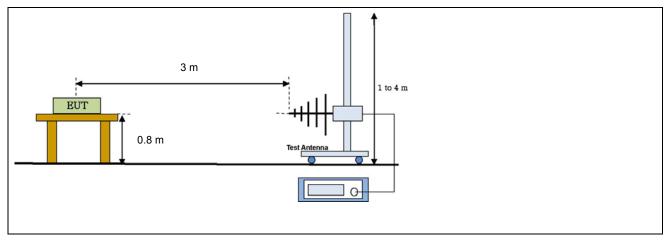
· The measurement results are obtained as described below:

Result($dB \mu M/m$) = Reading($dB \mu M$) + Antenna factor(dB/m)+ CL(dB) + other applicable factor (dB)

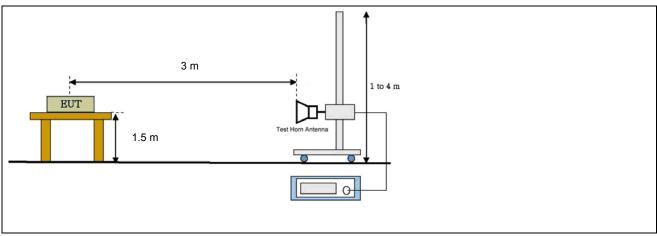
- The resolution bandwidth of test receiver/spectrum analyzer is 1 Ma and the video bandwidth is 3 Ma for RMS Average (Duty cycle < 98 %) for Average detection (AV) at frequency above 1 GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- The resolution bandwidth of test receiver/spectrum analyzer is 1 M₂ and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- According to §15.33 (a)(1), Frequency range of radiated measurement is performed the tenth harmonic.


5.7.4 Measurement Uncertainty

Radiated Emission measurement: Below 1 GHz : 4.32 dB (CL: Approx 95 %, k=2) Above 1 GHz : 4.14 dB (CL: Approx 95 %, *k=2*)



5.7.5 Test Configuration


Radiated emission setup, Below 30 MHz

Radiated emission setup, Below 1 000 MHz

Radiated emission setup, Above 1 GHz

5.7.6 Measurement Result

After having pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.

Above 1 GHz

CH Low (2 402 MHz)

Freq.		ding V/m)	Table	,	Antenn	а	CL	AMP		Result ⊭∛/m)	Lir (dB∤	mit ⊉/m)	Mg (d		Result
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (^{dB} /m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
2.387*	44.58	32.43	180	1.0	V	28.87	2.61	-30.69	45.37	33.22	74	54	28.63	20.78	Compliance
2.387*	39.53	27.68	180	1.0	Н	28.87	2.61	-30.69	40.32	28.47	74	54	33.68	25.53	Compliance

* Restrict band emissions.

CH Middle (2 440 MHz)

Freq.		ading ⊭∛/m)	Table		Antenn	а	CL	AMP		Result ⊬⁄/m)		mit ∞/m)	Mg (d	gn. B)	Result
(GHz	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (^{dB} /m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Compliance
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Compliance

* There were no spurious emissions

CH High (2 480 MHz)

Freq.		iding ∛/m)	Table	,	Antenn	а	CL	AMP		Result ⊭∛/m)		mit ⊮∕/m)	Mg (d		Result
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (^{dB} /m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
2.484	44.13	32.26	180	1.0	V	29.26	2.51	-30.54	45.36	33.49	74	54	28.64	20.51	Compliance
2.484	38.63	25.90	180	1.0	Н	29.26	2.51	-30.54	39.86	27.13	74	54	34.14	26.87	Compliance

* Restrict band emissions.

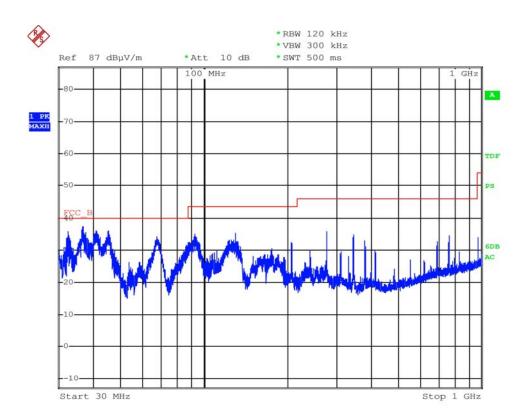
*Note

Above 1 GHz is measured average and peak detector mode on Spectrum analyzer in accordance with FCC Rule15.35

• Limit: 54 dB ///m(Average), 74 dB ///m(Peak), Attenuated more than 20 dB below the permissible value.

• It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to measured.

• For the below 30 MHz and above 2.499 GHz, measured any other signal is not detected on test receiver


• The transmitter radiated spectrum was investigated from 9 kHz to 26.5 GHz.

Freg.	Reading	Table		Antenna		CL	AMP	Meas	Limit	Mgn	Result	
(MHz)	(dB _µ ∛/m)	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	Result (dB <i>µ</i> ∛/m)	(dB <i>⊭</i> ∛/m)	(dB)	Result	
67.70	53.21	130	2.0	Н	5.76	1.30	-41.61	18.65	40.00	21.35	Compliance	
67.70	64.81	130	1.2	V	5.76	1.30	-41.61	30.25	40.00	9.75	Compliance	
92.83	45.23	180	2.0	Н	7.91	1.47	-41.60	13.02	43.52	30.50	Compliance	
92.83	62.43	180	1.2	V	7.91	1.47	-41.60	30.22	43.52	13.30	Compliance	
277.10	59.21	130	1.5	Н	13.50	2.31	-40.92	34.10	46.02	11.92	Compliance	
277.10	50.97	130	1.2	V	13.50	2.31	-40.92	25.86	46.02	20.16	Compliance	
346.35	52.67	110	2.0	Н	15.74	2.50	-40.70	30.21	46.02	15.81	Compliance	
346.35	49.33	110	1.5	V	15.74	2.50	-40.70	26.87	46.02	19.15	Compliance	
415.10	43.97	170	1.8	Н	17.75	2.71	-40.62	23.81	46.02	22.21	Compliance	
415.10	47.16	170	1.5	V	17.75	2.71	-40.62	27.00	46.02	19.02	Compliance	

Below 1 GHz

Freq.(Mt): Measurement frequency, Reading(dBμ//m): Indicated value for test receiver, Table (Deg): Directional degree of Turn table Antenna (Height, Pol, Fctr): Antenna Height, Polarization and Factor, Cbl(dB): Cable loss, Pre AMP(dB): Preamplifier gain(dB) Meas Result (dBμ//m): Reading(dBμ//m)+ Antenna factor.(dB/m)+ CL(dB) - Pre AMP(dB) Limit(dBμ//m): Limit value specified with FCC Rule, Mgn(dB): FCC Limit (dBμ//m) – Meas Result(dBμ//m)

Date: 17.MAY.2017 16:34:32

5.8 Antenna requirement

5.8.1 Standard applicable [FCC §15.203]

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that user a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The manufacturer may design the unit so that broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

5.8.2 Antenna details

Frequency Band	Antenna Type	Gain [dBi]	Results
2.4 GHz	PCB pattern antenna	1.5	Compliance

5.9 AC Power Conducted emissions

5.9.1 Standard Applicable [FCC §15.207(a) / RSS-Gen 8.8]

For intentional radiator that is designed to be connected to the public utility(AC)power line, the radio frequency. Voltage that is conducted back onto the AC power line on any frequencies hopping mode within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line Impedance stabilization network(LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

§15.207 limits for AC line conducted emissions;

Fragueney of Emission(ML)	Conducted	I Limit (dBµV)
Frequency of Emission(M [™])	Quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

* Decreases with the logarithm of the frequency

5.9.2 Test Environment conditions

• Ambient temperature : (24 ~ 25) °C • Relative Humidity : (49 ~ 55) % R.H.

5.9.3 Measurement Procedure

EUT was placed on a non- metallic table height of 0.8 m above the reference ground plane. Cables connected to EUT were fixed to cause maximum emission. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the Maximum signal strength.

5.9.4 Used equipment

Equipment	Model No.	Serial No.	Manufacturer	Next cal date	Cal interval	Used
Test receiver	ESCS30	100111	Rohde & Schwarz	2018. 01. 31	1 year	\bowtie
LISN	ESH2-Z5	100044	R&S	2018. 01. 31	1 year	
LISIN	ESH3-Z5	100147	R&S	2018. 01. 31	1 year	\boxtimes

*Test Program: "ESXS-K1 V2.2"

Measurement uncertainty

Conducted Emission measurement: 4.48 dB (CL: Approx 95 %, k=2)

5.9.5 Measurement Result

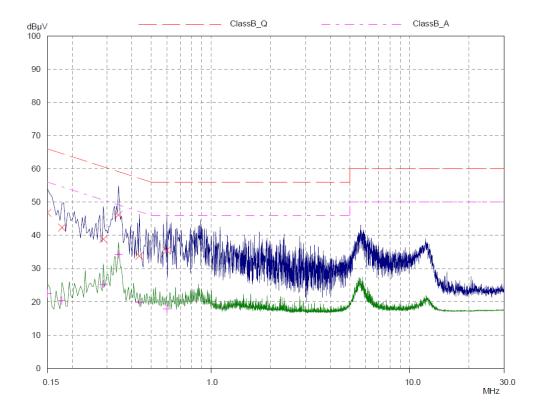
Freq.	Factor		POL		QP		CISPR AV		
	[dB]			Limit	Reading	Result	Limit	Reading	Result
[MHz]	LISN	CABLE +P/L	FUL	[dB <i>µ</i> V]	[dB,⊭V]	[dB <i>µ</i> V]	[dB <i>µ</i> V]	[dB⊭V]	[dB <i>µ</i> V]
0.150	0.11	9.96	Ν	66.00	46.78	46.89	56.00	22.50	22.61
0.170	0.15	9.96	L	64.98	40.09	40.24	54.98	27.90	28.05
0.181	0.14	9.95	L	64.43	48.28	48.42	54.43	28.40	28.54
0.209	0.14	9.95	L	63.26	44.01	44.15	53.26	31.90	32.04
0.287	0.11	9.96	Ν	60.62	38.87	38.98	50.62	25.40	25.51
0.341	0.14	9.96	L	59.17	52.69	52.83	49.17	45.10	45.24
0.541	0.14	9.97	L	56.00	37.89	38.03	46.00	29.50	29.64
0.599	0.12	9.97	Ν	56.00	35.45	35.57	46.00	17.90	18.02

* LISN: LISN insertion Loss, Cable: Cable Loss, P/L:pulse limiter factor

* L: Line. Live, N: Line. Neutral

* Reading: test receiver reading value (with cable loss & pulse limiter factor)

* Result = LISN + Reading


Conducted Emission EUT: Manuf: Op Cond: AC 120 V, 50 Hz	
Manuf: Op Cond: AC 120 V, 50 Hz	
Op Cond: AC 120 V, 50 Hz	
Operator: Lee Test Spec: FCC	
Comment: Live	
Result File: 0037_L.dat : New Measurement	
Scan Settings (1 Range) Frequencies Receiver Settings	
Start Stop Step IF BW Detector M-Time Atten Preamp C)pRge
150kHz 30MHz 3.9063kHz 9kHz PK+AV 10msec 15 dB OFF 6	0dB
Transducer No. Start Stop Name 12 9kHz 30MHz CNEFactor	
Final Measurement: Detectors: X QP / + AV	
Meas Time: 1sec Subranges: 25	
Acc Margin: 50 dB	
dBuV ClassB_Q ClassB_A	
dBμV ClassB_Q ClassB_A 100	
90	
80	
70	
30 AAAA	
	Martin 1
20	The second s
10	
0.15 1.0 10.0	30.0 MHz

PAGE 1

Line. Neutral

Kostec Co	., Ltd.					17	May 2017 15:02			
Conducted	Emiss	ion								
EUT:										
Manuf:										
Op Cond:	nd: AC 120 V, 50 Hz									
Operator:	Operator: Lee									
Test Spec: FCC										
Comment: Neutral										
Result File:	003	7_N.dat : New M	leasurement							
Scan Settings	(1	Range)								
Frequencies						Receiver Se				
Start	Stop		Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge	
150kHz	30M	Hz	3.9063kHz	9kHz	PK+AV	10msec	15 dB	OFF	60dB	
Transducer	No.	Start	Stop		Name					
	12	9kHz	30	MHz	CNEFactor					
Final Measurement:		Detectors:	X QP	/ + AV						
		Meas Time:	1sec 25							
		Subranges:								
		Acc Margin: 50 dl		3						

PAGE 1