FCC TEST REPORT

FCC ID: 2ALQR-AWPB5K

Report No. : SSP24080273-1E

Prepared For : NLU Products, LLC dba BGZ brands

Product Name : 5K Type C & Lightning Portable Power Bank Keychain

Model Name : PAYAAAW00B024ZS

FCC Rule : FCC Part 15 Subpart C

Date of Issue : 2024-09-12

Prepared By: Shenzhen CCUT Quality Technology Co., Ltd.

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 28

Test Report Basic Information

Applicant..... NLU Products, LLC dba BGZ brands

Address of Applicant..... 2801 N Thanksgiving Way Ste 300 Lehi, Lehi, UT, United States

SHENZHEN UGOOD TECHNOLOGY CO.,LIMITED Manufacturer....:

3F, Building 22, Phase II, Lianchuang Technology Park, Bulan Road, Nanwan Street,

Address of Manufacturer.....: Longgang District, Shenzhen, China

Product Name..... 5K Type C & Lightning Portable Power Bank Keychain

Brand Name..... **BGZ** brands

Main Model..... PAYAAAW00B024ZS

Series Models....: P306

FCC Part 15 Subpart C

ANSI C63.4-2014

Test Standard...... ANSI C63.10-2013

Date of Test 2024-08-28 to 2024-09-02

Test Result....: Pass

Authorized Signatory.....: (Lahm Peng)

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 28

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information.	
1.3 Compliance Standards	7
1.4 Test Facilities	7
1.5 List of Measurement Instruments	8
1.6 Measurement Uncertainty	8
2. Summary of Test Results	g
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure	
5.3 Test Data and Results	17
6. Occupied Bandwidth	26
6.1 Standard and Limit	26
6.2 Test Procedure	26
6.3 Test Data and Results	26

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-09-12	Initial Release	Lahm Peng

FCC Test Report Page 4 of 28

1. General Information

1.1 Product Information

Product Name:	5K Type C & Lightning Portable Power Bank Keychain							
Trade Name:	BGZ brands							
Main Model:	PAYAAAW00B024ZS							
Series Models:	P306							
	Type-C Input: 5V/2.1A							
	Type-C Output: 5V/2.1A							
Rated Voltage:	USB- Output: 5V/2.1A							
	TYPE-C Cables Output: 5V/2.0A							
	Lightning Cables Output: 5V/1A							
	Watch Wireless charging: 2.5W							
Power Adapter: -								
Battery:	DC 3.85V, 5000mAh							
Test Sample No:	SSP24080273-1							
Hardware Version:	V1.0							
Software Version: V1.0								
Note 1: The test data is ga	athered from a production sample, provided by the manufacturer.							

Report No: SSP24080273-1E

Note 2: The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification									
Wireless Standard:	WPC								
Operating Frequency:	Watch Wireless charging (Samsung): 110.5kHz ~205kHz								
Operating Prequency.	Watch Wireless charging (Apple): 310kHz ~340kHz								
Modulation:	FSK								
Antenna Gain:	0dBi								
Type of Antenna:	Coil Antenna								
Type of Device:	□ Portable Device □ Modular Device								

FCC Test Report Page 5 of 28

1.2 Test Setup Information

List of Test Mo	odes			
Test Mode		Description	Remark	
TM1	W	Vatch Wireless charging (Sam	isung) 2.5W	Maximum Power
TM2		Watch Wireless charging (Ap	ople) 2.5W	Maximum Power
TM3		Wireless charging 2.5W +0	Charging	AC 120V/60Hz
List and Detail	ls of Auxiliary	Cable		
Description		Length (cm)	Shielded/Unshielded	With/Without Ferrite
-		-	-	-
-		-	-	-
List and Detail	ls of Auxiliary	Equipment		•
Descrip	ption	Manufacturer	Model	Serial Number
Dummy load		YBZ	DL03	-
Adap	ter	UGREEN	CD226	10375
-		-	-	-

Report No: SSP24080273-1E

FCC Test Report Page 6 of 28

1.3 Compliance Standards

Compliance Standards						
ECC Post 15 Color and C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,					
FCC Part 15 Subpart C	Intentional Radiators					
All measurements contained in	this report were conducted with all above standards					
According to standards for te	st methodology					
ECC Dout 15 Culomout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,					
FCC Part 15 Subpart C	Intentional Radiators					
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions					
ANSI C05.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.					
ANCI ((2) 10 2012	American National Standard of Procedures for Compliance Testing of Unlicensed					
ANSI C63.10-2013	Wireless Devices					
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which						
result is lowering the emission,	should be checked to ensure compliance has been maintained.					

Report No: SSP24080273-1E

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.									
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,									
	Guangming District, Shenzhen, Guangdong, China									
CNAS Laboratory No.:	L18863									
A2LA Certificate No.:	6893.01									
FCC Registration No:	583813									
ISED Registration No.:	CN0164									
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing										

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 28

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
		Conducted Emissio	ons		•		
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A		
		Radiated Emission	18				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06		
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06		
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02		
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A		
		Conducted RF Testi	ng				
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06		

Report No: SSP24080273-1E

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty			
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB			
	9kHz ~ 30MHz	±2.88 dB			
Dadioted Emissions	30MHz ∼ 1GHz	±3.32 dB			
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB			
	18GHz ~ 40GHz	±3.66 dB			
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %			

FCC Test Report Page 8 of 28

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209	Radiated Emissions	Passed
FCC Part 15.215(c)	Occupied Bandwidth	Passed

Passed: The EUT complies with the essential requirements in the standard $\,$

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 9 of 28

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP24080273-1E

3.2 Test Result

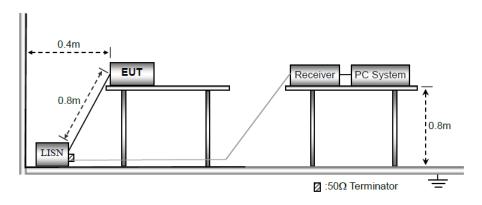
This product has an Coil antenna, fulfill the requirement of this section.

FCC Test Report Page 10 of 28

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:


Frequency of Emission	Conducted emis	ssions (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

- a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.
- b) The following is the setting of the receiver

Attenuation: 10dB

Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 11 of 28

Report No: SSP24080273-1E

- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

Based on all tested mode data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 12 of 28

Test I	Plots and	Data o	of Cor	nduct	ed En	nissi	ons	i																
Teste	d Mode:			ТМЗ	3																			
Test \	/oltage:			AC 1	20V/	60H	Z																	
Test I	Power Line: Neutral																							
Rema	ırk·																							
90.0	dBuV						П											\top						
80																							_	
70																							_	
60																	FC	C Pa	t15 C	E-Cla	ss B_	QP		
50		_															FC	C Pa	t15 C	E-Cla	ss B_	Ve	_	
40	J.					3																	_	
30	~~i	Mm	M	helporgogy	Monde	₩	lphuk	V ANAMAN	NA PARA	uluquuru	7 u]	Wh	rate j	9		L. Mu	11 X	_						
20		~~~	vm	www		.//	My	MANAMARA		~a, FY####	V ₈	`` \ \\ \\\\\	\ <u>\</u>	V V	,	141		.		who would	de state de la constitución de l	والبنيس		peak
10							H				_	'' "\/ 	<u> </u>	<u> </u>	V۷	M	1/1	1/1/1	ww	hack	rolly.	undy	₩	AVG
0																							_	
-10																								
0.	150			0.5	500					(MI	lz)			5.	.000	1							30.00	0
No.	Frequ (MI	uency Hz)		iding BuV)	Fac	ctor B)		Level dBuV)		Limit dBu\		Marı (dE	gin	Detecto	or F	P/F	R	ema	ark					
1	0.2	040	26	.61	9.2	22	3	35.83	\top	63.45	5	-27.	62	QP	†	Р								\neg
2	0.2	040	13	.33	9.2	22	2	22.55		53.45	5	-30.	90	AVG		Р								
3		430	-	.76	9.4		-	37.16	-	56.00	\rightarrow	-18.	\rightarrow	QP	+	Р								_
4 *		430		.38	9.4		-	31.78	_	46.00	\rightarrow	-14.	\rightarrow	AVG	-	Р								
5	_	785	_	.69	9.4		-	33.13	_	56.00	\rightarrow	-22.	\rightarrow	QP	-	P								
6		785	-	.29	9.4		-	21.73	_	46.00	_	-24.	\rightarrow	AVG	\rightarrow	P								
7		2.4539 21.27 9.48 30.75		_	56.00	\rightarrow	-25.	\rightarrow	QP	\rightarrow	P P								_					
9		2.4539 10.79 9.48 20.27 4.9110 18.84 9.57 28.41		_	46.00 56.00	\rightarrow	-25. -27.	\rightarrow	AVG QP	-	P								-					
10	_	110	_	.04	9.5		-	20.4 I 21.68	_	46.00	\rightarrow	-21. -24.	\rightarrow	AVG	\rightarrow	P								\dashv
11		195	_	.09	9.5		-	28.66	_	60.00	\rightarrow	-24. -31.	\rightarrow	QP	\rightarrow	P								-
12	_	195	_	.85	9.5		-	21.42	_	50.00	_	-28.	\rightarrow	AVG	-	' Р								\dashv
									_															

FCC Test Report Page 13 of 28

Test F	Plots and Data o	f Conducte	ed Emissic	ons						
Teste	d Mode:	TM3	TM3							
Test V	/oltage:	AC 1	AC 120V/60Hz							
Test F	Power Line:	Live								
Rema	rk:									
90.0	dBu∀									
80										
70										
									FCC Part15 CE-Class B_QP	
60										
50									FCC Part15 CE-Class B_AV	e
40			3			_				
30	VMMM	WW. 1	1 a 1	Marsamalday		5 7 X				11
30	VVV~~~~	٨, 3		' "	Markon prosobility	M	~~~**	44,004,044,0	Market Market Market Brown of	*2
20	7 9-7	~V~~~	may market Market	Mummhuy	May Livery			1		peak
10								1 Mu		AVG
0										
-10										
O.	150	0.5	00		(MHz)		5.0	00		30.000
	Frequency	Reading	Factor	Level	Limit	Margin				
No.	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Detector	P/F	Remark	
1	0.4380	24.96	9.57	34.53	57.10	-22.57	QP	Р		
2	0.4380	12.19	9.57	21.76	47.10	-25.34	AVG	P		
3 4 *	0.8385	27.25 18.23	9.59 9.59	36.84 27.82	56.00 46.00	-19.16 -18.18	QP AVG	Р		
5	2.6250	25.14	9.68	34.82	56.00	-21.18	QP	Р		
6	2.6250	17.89	9.68	27.57	46.00	-18.43	AVG	P		
7	3.1560	22.20	9.69	31.89	56.00	-24.11	QP	Р		
8	3.1560	12.75	9.69	22.44	46.00	-23.56	AVG	Р		
9	4.7940	16.47	9.75	26.22	56.00	-29.78	QP	Р		
10	4.7940	1.59	9.75	11.34	46.00	-34.66	AVG	Р		
11	21.9885	17.75	10.11	27.86	60.00	-32.14	QP	Р		
12	21.9885	15.26	10.11	25.37	50.00	-24.63	AVG	Р		

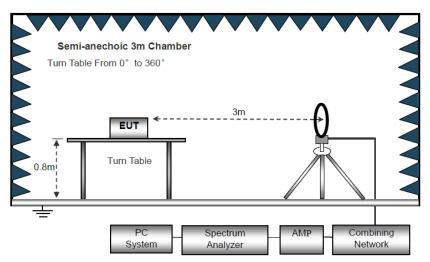
FCC Test Report Page 14 of 28

5. Radiated Emissions

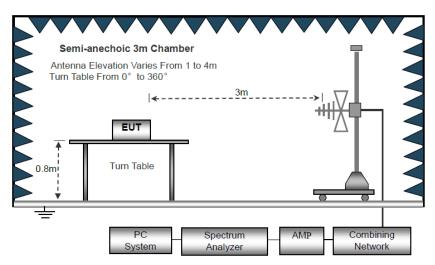
5.1 Standard and Limit

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

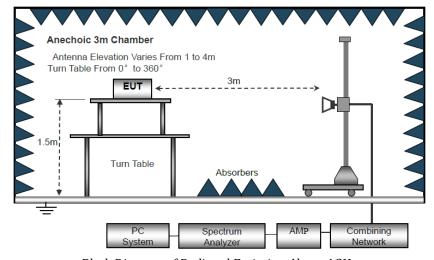
Frequency of Emission	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Note: The more stringent limit applies	at transition frequencies.	


Report No: SSP24080273-1E

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 15 of 28

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 16 of 28

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range below 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP24080273-1E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

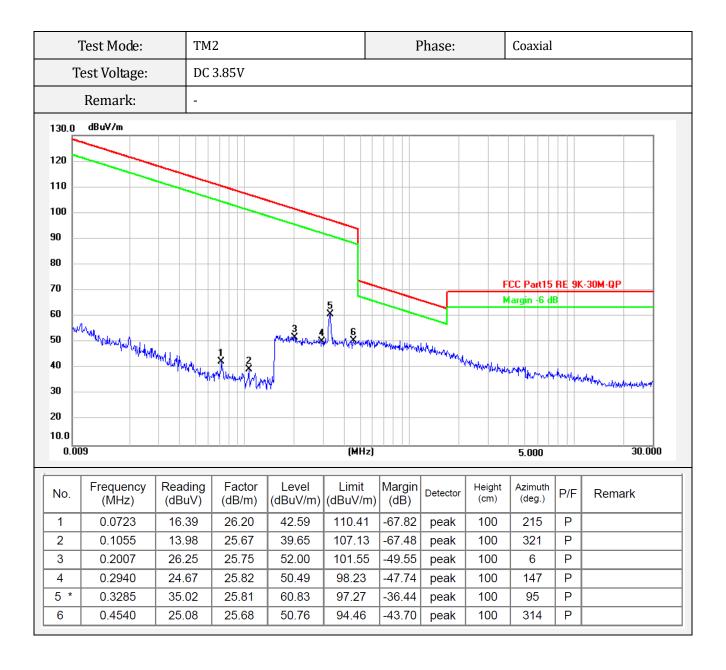
RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

VBW ≥ RBW, Sweep = auto

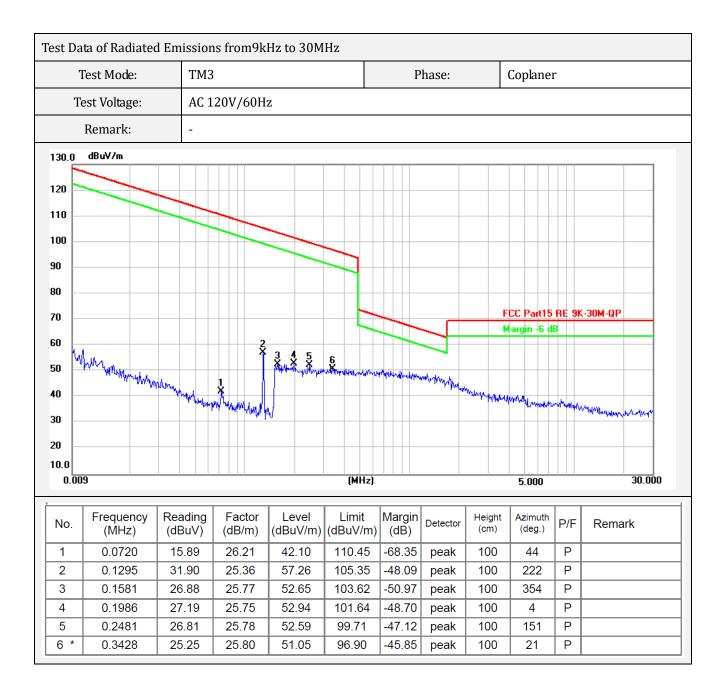
Detector function = peak

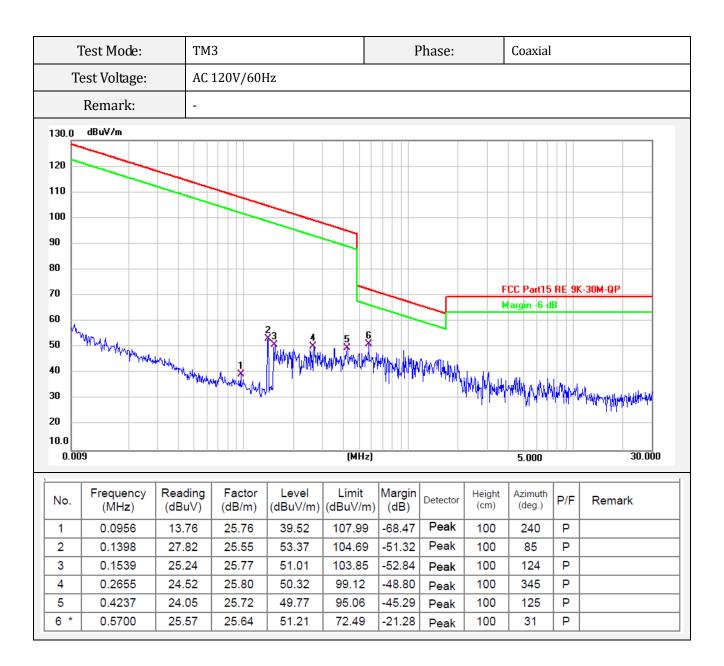
Trace = max hold

- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

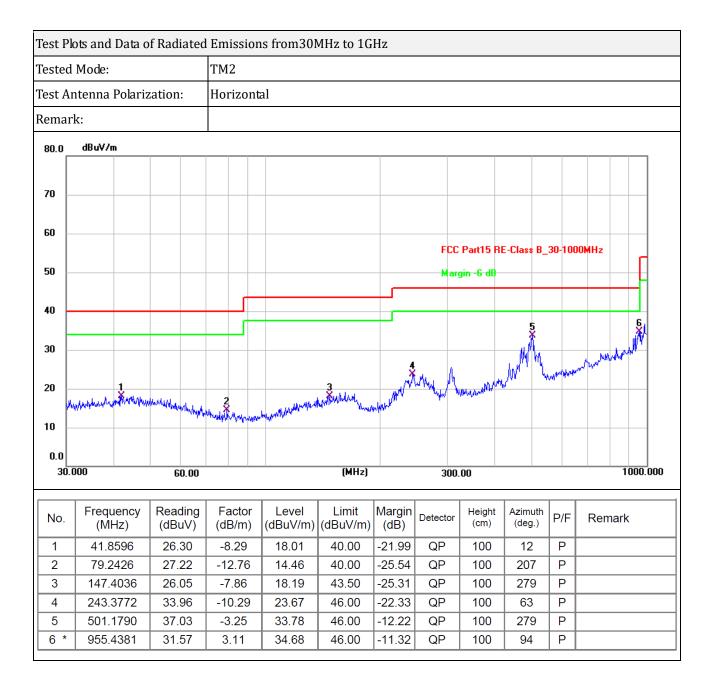

5.3 Test Data and Results

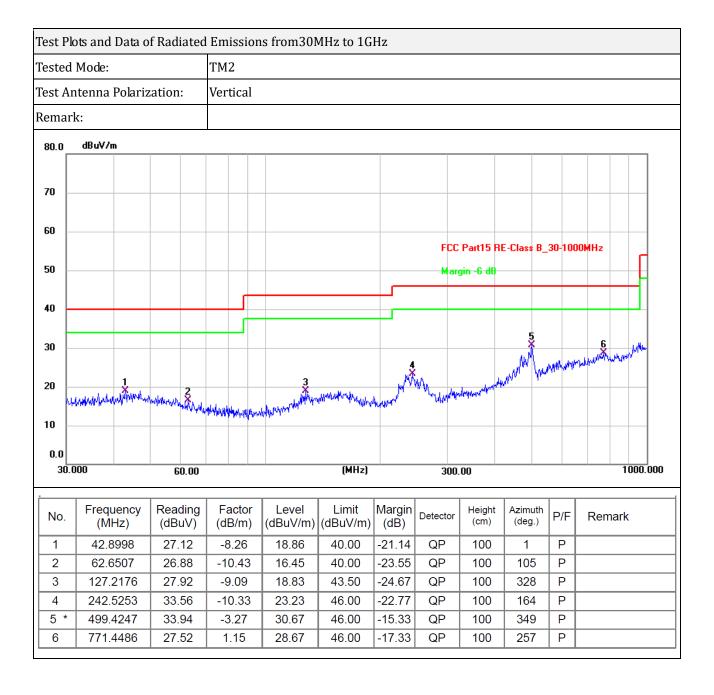
Based on all mode tested data, the EUT complied with the FCC Part 15.209 standard limit for a wireless device, and with the worst case as below:


FCC Test Report Page 17 of 28

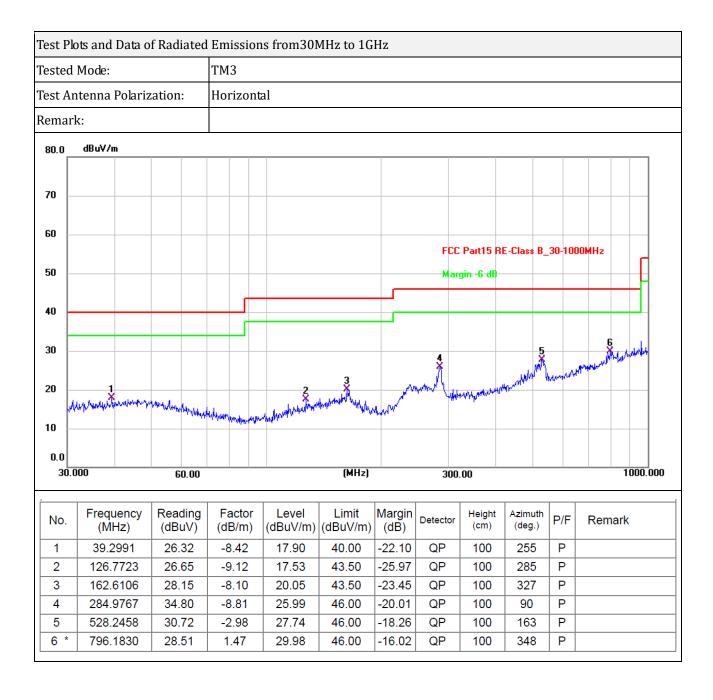

FCC Test Report Page 18 of 28

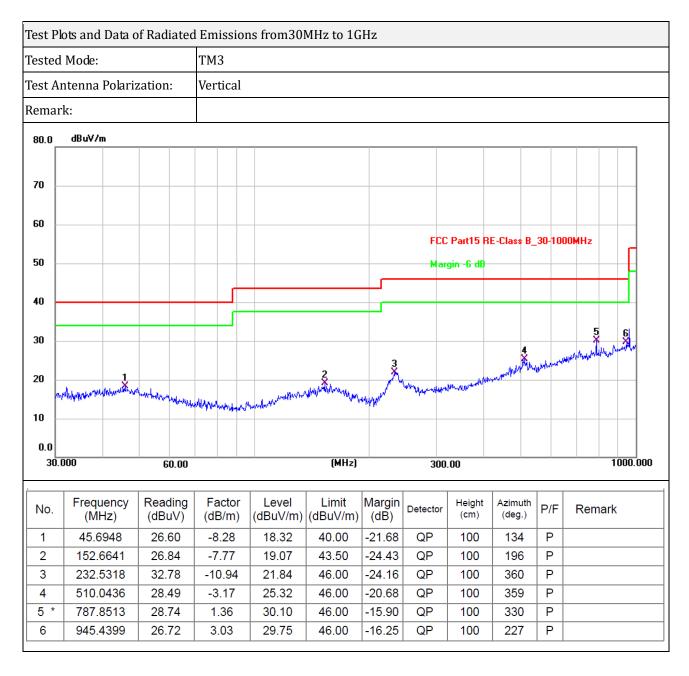
FCC Test Report Page 19 of 28


FCC Test Report Page 20 of 28


Note:

Pre-scan in the all of mode, the worst case in of was recorded. Limit $dBuV/m @3m = Limit \ dBuV/m @300m + 80$ Limit $dBuV/m @3m = Limit \ dBuV/m @30m + 40$ Margin = Reading - Limit.


FCC Test Report Page 21 of 28


FCC Test Report Page 22 of 28

FCC Test Report Page 23 of 28

FCC Test Report Page 24 of 28

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than

Note 3: For 9kHz-30MHz, Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

Note 4: Level = Reading + Factor, Margin = Level - Limit.

FCC Test Report Page 25 of 28

6. Occupied Bandwidth

6.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

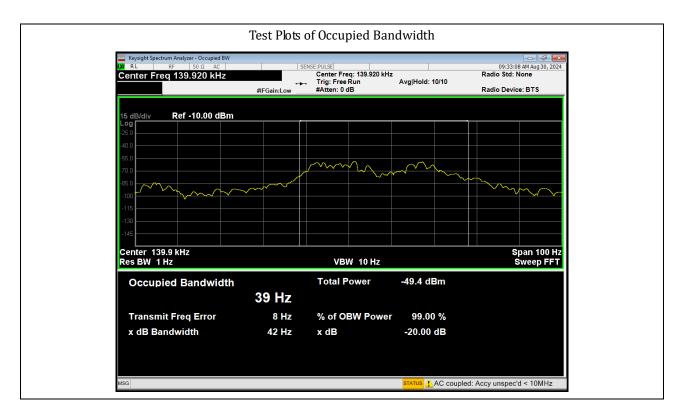

Report No: SSP24080273-1E

6.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 1% of the 20 dB bandwidth, VBW = RBW.
- 4) Set Sweep = Auto, Detector function = peak, Trace = max hold.
- 5) Set a reference level on the measuring instrument equal to the highest peak value.
- 6) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

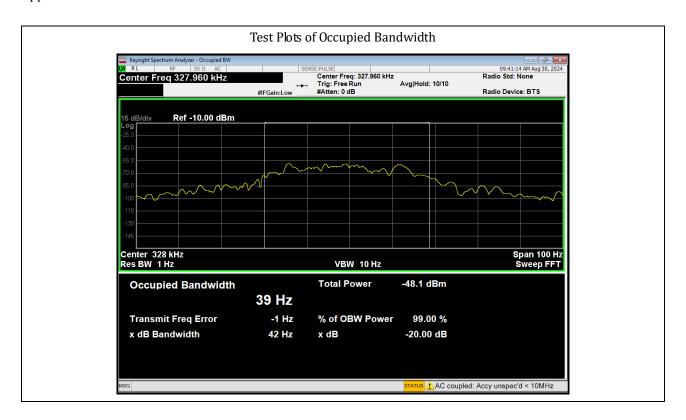
All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.



6.3 Test Data and Results

FCC Test Report Page 26 of 28

Test Frequency	20dB Bandwidth	99% Bandwidth	
139.9kHz	42Hz	39Hz	


Samsung:

FCC Test Report Page 27 of 28

Test Frequency	20dB Bandwidth	99% Bandwidth	
328kHz	42Hz	39Hz	

Apple:

***** END OF REPORT *****

FCC Test Report Page 28 of 28