TEST REPORT

For RF

Report No.: CHTEW22040040 Report Verification:

Project No...... SHT2201040003EW

FCC ID.....: 2ALPH-E07900M10S

Applicant's name.....: Chengdu Ebyte Electronic Technology Co., Ltd.

Address...... Building B5, Mould Industrial Park, 199# Xiqu Ave, West High-

tech Zone, Chengdu, 611731, Sichuan, China

Test item description: wireless module

Trade Mark EBYTE

Model/Type reference..... E07-900M10S

Listed Model(s)

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...... Feb.14, 2022

Date of testing...... Feb.15, 2022- Apr.01, 2022

Date of issue...... Apr.06, 2022

Result...... PASS

Compiled by

(Position+Printed name+Signature): File administrator Fanghui Zhu

Supervised by

(Position+Printed name+Signature): Project Engineer Cheng Xiao

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Jang Miri Zhu Chengxiao Hems Hu

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW22040040 Page: 2 of 31 Issued: 2022-04-06

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>Z.</u>	1E31 DE3CRIFTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	6
<u>4.</u>	TEST CONFIGURATION	7
	TEST CONTIGURATION	•
4.1.	Test frequency list	7
4.2.	Test mode	7
4.3.	Test sample information	7
4.4.	Support unit used in test configuration and system	7
4.5.	Testing environmental condition	8
4.6.	Measurement uncertainty	8
4.7.	Equipment Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna Requirement	11
5.2.	AC Conducted Emission	12
5.3.	Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	17
5.6.	99% Occupied Bandwidth	18
5.7.	Duty Cycle	19
5.8.	Conducted Band edge and Spurious Emission	20
5.9.	Radiated Band edge Emission	21
5.10.	Radiated Spurious Emission	23
<u>6.</u>	TEST SETUP PHOTOS	28
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	30
	ADDENDLY DEDORT	
8.	APPENDIX REPORT	31

Report No.: CHTEW22040040 Page: 3 of 31 Issued: 2022-04-06

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices
- KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-04-06	Original

Report No.: CHTEW22040040 Page: 4 of 31 Issued: 2022-04-06

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result	Test Engineer
5.1	Antenna Requirement	15.203/15.247(c)	PASS	Hailey Chen
5.2	AC Conducted Emission	15.207	PASS	Hailey Chen
5.3	Peak Output Power	15.247(b)(3)	PASS	Hailey Chen
5.4	Power Spectral Density	15.247(e)	PASS	Hailey Chen
5.5	6dB Bandwidth	15.247(a)(2)	PASS	Hailey Chen
5.6	99% Occupied Bandwidth	-	PASS ^{*1}	Hailey Chen
5.7	Duty cycle	-	PASS ^{*1}	Hailey Chen
5.8	Conducted Band Edge and Spurious Emission	15.247(d)/15.205	PASS	Hailey Chen
5.9	Radiated Band Edge Emission	15.205/15.209	PASS	JIANQUAN.WU
5.10	Radiated Spurious Emission	15.247(d)/15.205/15.209	PASS	JIANQUAN.WU

Note:

- The measurement uncertainty is not included in the test result.
- *1: No requirement on standard, only report these test data.

Report No.: CHTEW22040040 Page: 5 of 31 Issued: 2022-04-06

3. **SUMMARY**

3.1. Client Information

Applicant:	Chengdu Ebyte Electronic Technology Co., Ltd.
Address:	Building B5, Mould Industrial Park, 199# Xiqu Ave, West High-tech Zone, Chengdu, 611731, Sichuan, China
Manufacturer:	Chengdu Ebyte Electronic Technology Co., Ltd.
Address:	Building B5, Mould Industrial Park, 199# Xiqu Ave, West High-tech Zone, Chengdu, 611731, Sichuan, China

3.2. Product Description

Main unit information:			
Name of EUT:	wireless module		
Trade Mark:	EBYTE		
Model No.:	E07-900M10S		
Listed Model(s):	-		
Power supply:	DC 5V from USB		
Hardware version:	V1.0		
Software version:	V1.0		

3.3. Radio Specification Description

Modulation:	GFSK
Operation frequency:	904MHz~925MHz
Channel number:	22
Channel separation:	1MHz
Antenna type:	Sucker antenna
Antenna gain:	3.5dBi

Report No.: CHTEW22040040 Page: 6 of 31 Issued: 2022-04-06

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn		
Qualifications	Type Accreditation Number		
Qualifications	FCC	762235	

Report No.: CHTEW22040040 Page: 7 of 31 Issued: 2022-04-06

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

Channel	Frequency (MHz)
CH-L	904
i	
CH-M	915
i	
СН-Н	925

4.2. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT connect to laptop by USB cable. the laptop control RF transmitting.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report..

4.3. Test sample information

Test item	HTW sample no.
RF Conducted test items	Please refer to the description in the appendix report
RF Radiated test items	YPHT22010400003
EMI sample test items	YPHT22010400002

Note:

RF Conducted test items: Peak Output Power, Power Spectral Density,6dB Bandwidth ,99% Occupied

Bandwidth, Duty cycle ,Band Edge and Spurious Emission.

RF Radiated test items: Radiated Band Edge Emission, Radiated Spurious Emission.

EMI test items: AC Conducted Emission

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?				
✓					
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord
1	Dell Inc.	-	Inspiron 13-5368	-	-
2	-	-	-	-	-

Report No.: CHTEW22040040 Page: 8 of 31 Issued: 2022-04-06

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.6. Measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission (150kHz~30MHz)	3.00 dB
Radiated Emission (30MHz~1000MHz	4.36 dB
Radiated Emissions (1GHz~25GHz)	5.10 dB
Peak Output Power	0.77dB
Power Spectral Density	0.77dB
Conducted Spurious Emission	0.77dB
6dB Bandwidth	70Hz for <1GHz 130Hz for >1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW22040040 Page: 9 of 31 Issued: 2022-04-06

4.7. Equipment Used during the Test

•	Conducted E	imission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2021/9/13	2022/9/12
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2021/9/13	2022/9/12
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2021/9/13	2022/9/12
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2021/9/13	2022/9/12
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2021/9/13	2022/9/12
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emi	ssion-6th test si	te				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/9/14	2022/9/13
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2024/04/05
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2024/04/05
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2021/11/5	2022/11/4
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2022/02/25	2023/02/24
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated em	ission-7th test s	ite				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2022/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/9/13	2022/9/12
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/4/27	2023/4/27
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/5	2022/11/4
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	N/A	N/A
•	Test Software	Audix	N/A	E3	N/A	2022/02/28	2023/02/27

Report No.: CHTEW22040040 Page: 10 of 31 Issued: 2022-04-06

•	RF Conducted Method					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2021/9/13	2022/9/12
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2021/9/13	2022/9/12
•	Power Meter	Anritsu	ML249A	N/A	2021/9/13	2022/9/12
0	Radio communication tester	R&S	CMW500	137688-Lv	2021/9/13	2022/9/12

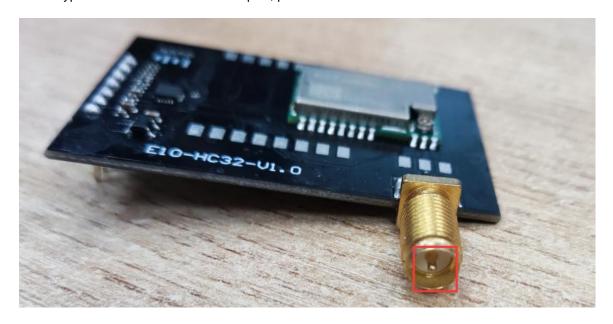
Report No.: CHTEW22040040 Page: 11 of 31 Issued: 2022-04-06

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

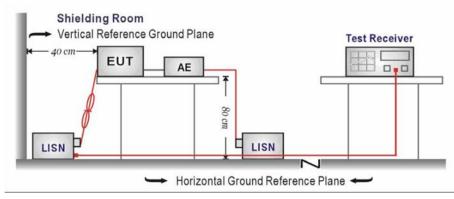
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULT

The antenna type is a non-standard antenna port, please see as follow:

Report No.: CHTEW22040040 Page: 12 of 31 Issued: 2022-04-06

5.2. AC Conducted Emission

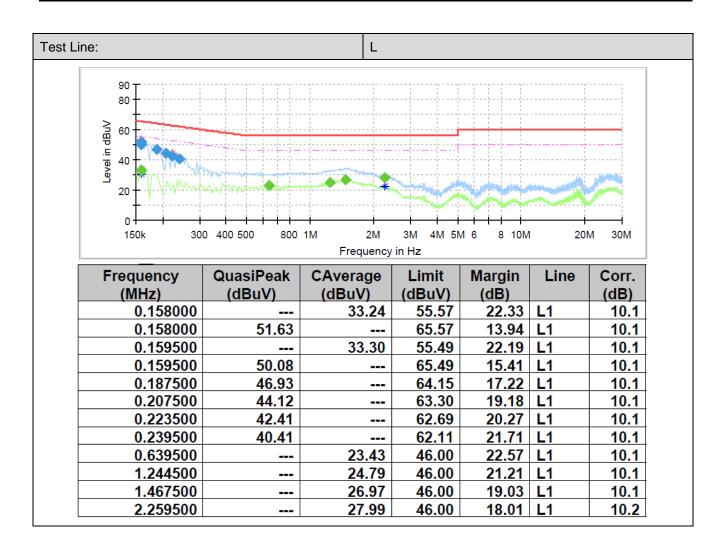

LIMIT

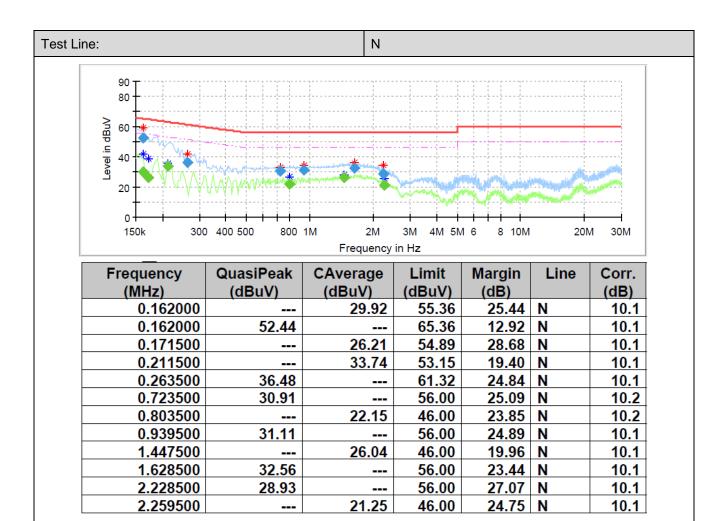
FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fragues ou range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

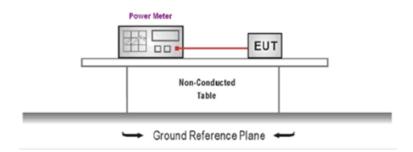

TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT


Report No.: CHTEW22040040 Page: 15 of 31 Issued: 2022-04-06

5.3. Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE:

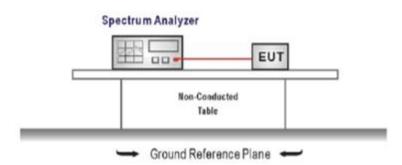
Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix A on the appendix report

Report No.: CHTEW22040040 Page: 16 of 31 Issued: 2022-04-06


5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- 2. Configure the spectrum analyzer as shown below:

Center frequency=DTS channel center frequency

Span =1.5 times the DTS bandwidth

RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW

Sweep time = auto couple

Detector = peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

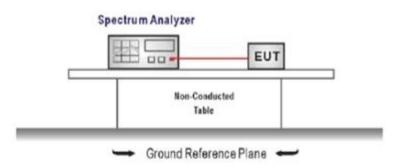
Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix B on the appendix report

Report No.: CHTEW22040040 Page: 17 of 31 Issued: 2022-04-06


5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

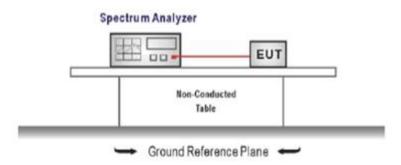
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix C on the appendix report


Report No.: CHTEW22040040 Page: 18 of 31 Issued: 2022-04-06

5.6. 99% Occupied Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).

Center Frequency =channel center frequency

Span≥1.5 x OBW

 $RBW = 1\%\sim5\%OBW$

VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

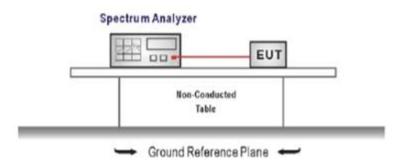
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix D on the appendix report


Report No.: CHTEW22040040 Page: 19 of 31 Issued: 2022-04-06

5.7. Duty Cycle

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

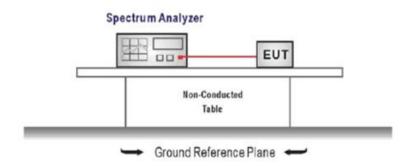
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW
 Sweep = as necessary to capture the entire dwell time per hopping channel,
 Detector function = peak, Trigger mode
- 4. Measure and record the duty cycle data

TEST MODE:

Please refer to the clause 4.2

TEST Data

Please refer to appendix E on the appendix report


Report No.: CHTEW22040040 Page: 20 of 31 Issued: 2022-04-06

5.8. Conducted Band edge and Spurious Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

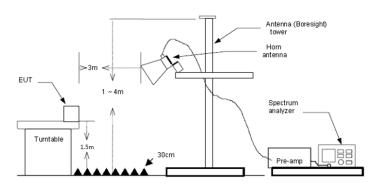
Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix F on the appendix report

Report No.: CHTEW22040040 Page: 21 of 31 Issued: 2022-04-06


5.9. Radiated Band edge Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

Note:

- Level= Reading + Factor; Factor = Antenna Factor + Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).

Report No.: CHTEW22040040 Page: 22 of 31 Issued: 2022-04-06

Test cha	annel:	CH-L		Polarit	:y		Horizonta	al	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	902.00	12.54	22.90	10.87	0.00	46.31	77.54	-31.23	Peak
2	904.21	63.76	22.91	10.87	0.00	97.54			
Test cha	annel:	CH-L		Polarit	:y		Vertical		
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	902.00	14.58	22.90	10.87	0.00	48.35	78.82	-30.47	Peak
2	904.21	65.04	22.91	10.87	0.00	98.82			

Test cha	annel:	СН-Н		Polari	ty		Horizon	tal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	925.18	64.88	22.95	10.93	0.00	98.76			
2	928.00	13.62	22.96	10.94	0.00	47.52	78.76	-31.24	Peak
Test cha	annel:	СН-Н		Polari	ty		Vertical		
Test cha	Frequency	CH-H Reading dBuV/m	Antenna dB	Polari Cable dB	Preamp dB	Level dBuV/m	Vertical Limit dBuV/m	Over limit	Remark
	Frequency	Reading	A ROLL OF THE RESIDENCE OF THE PARTY OF THE	Cable	Preamp	The second second second second second	Limit	0ver	Remark

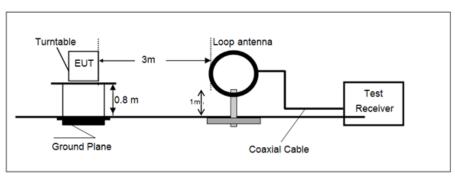
NOTE: The limit is calculated by 20dB down from fundamental peak

Report No.: CHTEW22040040 Page: 23 of 31 Issued: 2022-04-06

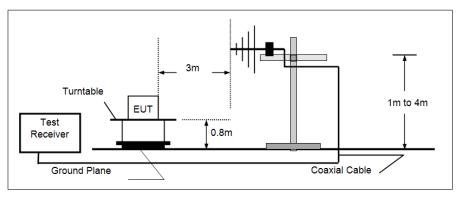
5.10. Radiated Spurious Emission

LIMIT

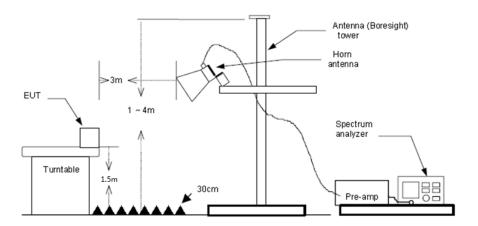
FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3) = Limit dBuV/m @300m +80, Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3) = Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

TEST CONFIGURATION


→ 9 kHz ~ 30 MHz

30 MHz ~ 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement: use duty cycle correction factor method (DCCF) Averager level = Peak level + DCCF

TEST MODE:

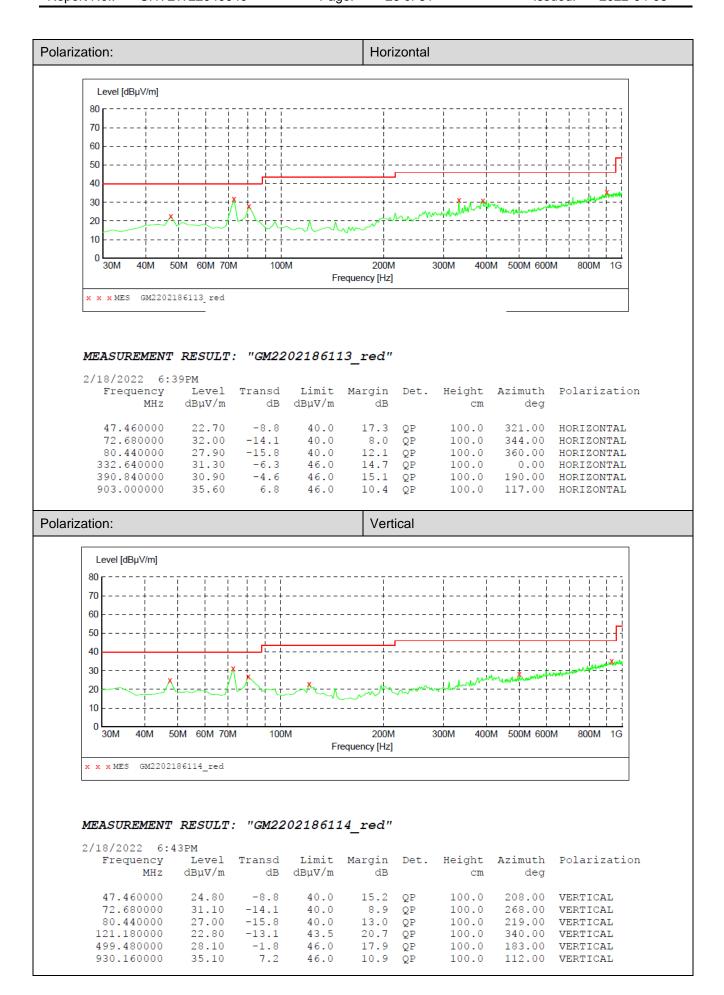
Please refer to the clause 4.2

TEST RESULT

Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- Over Limit = Level— Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.

Report No.: CHTEW22040040 Page: 25 of 31 Issued: 2022-04-06


TEST DATA FOR 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

TEST DATA FOR 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH-L which it was worst case, so only show the worst case's data on this report.

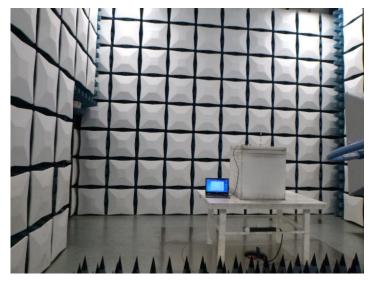
Report No.: CHTEW22040040 Page: 26 of 31 Issued: 2022-04-06

Report No.: CHTEW22040040 Page: 27 of 31 Issued: 2022-04-06

TEST DATA FOR 1 GHz ~ 25 GHz

Test channe	I	CH-L			Polar	ity		Horizo	ntal
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	1659.57	49.23	25.10	4.56	37.20	41.69	74.00	-32.31	Peak
2	2657.76	48.81	27.75	5.87	37.01	45.42	74.00	-28.58	Peak
3	2995.54	49.76	28.70	6.20	37.47	47.19	74.00	-26.81	Peak
4	5420.74	40.25	31.70	9.36	35.37	45.94	74.00	-28.06	Peak
Test channe	I	CH-L			Polar	ity		Vertica	al
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	1326.51	50.48	26.16	4.07	36.36	44.35	74.00	-29.65	Peak
2	1805.01	47.40	25.42	4.76	37.08	40.50	74.00	-33.50	Peak
3	2987.92	51.90	28.70	6.19	37.47	49.32	74.00	-24.68	Peak
4	5420.74	38.66	31.70	9.36	35.37	44.35	74.00	-29.65	Peak

Test channe	I	СН-М		Polarity Horizontal				ontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	1326.51	46.22	26.16	4.07	36.36	40.09	74.00	-33.91	Peak
2	1593.34	48.88	25.41	4.46	37.11	41.64	74.00	-32.36	Peak
3	2987.92	50.66	28.70	6.19	37.47	48.08	74.00	-25.92	Peak
4	5490.18	39.51	31.86	9.34	35.33	45.38	74.00	-28.62	Peak
Test channe	ı	CH-M			Polar	ity		Vertic	al
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1329.89	47.24	26.18	4.07	36.37	41.12	74.00	-32.88	Peak
1				The state of the s	27 10	40.28	74.00	-33.72	Peak
1 2	1663.80	47.81	25.10	4.56	37.19	40.20	74.00	-33.12	reak
	1663.80 2987.92	47.81 52.62	25.10 28.70	6.19	37.19	50.04	74.00	-23.96	Peak

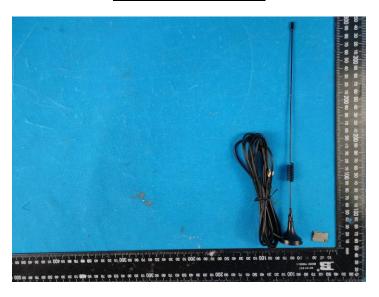

Test channel		СН-Н		Polarity				Horizontal		
Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	0ver	Remark	
	MHz	dBuV/m	dB	dB	dB	dBuV/m	dBuV/m	limit		
1	1998.48	46.05	26.09	5.01	37.07	40.08	74.00	-33.92	Peak	
2	2657.76	45.01	27.75	5.87	37.01	41.62	74.00	-32.38	Peak	
3	2995.54	53.49	28.70	6.20	37.47	50.92	74.00	-23.08	Peak	
4	5546.36	37.56	31.81	9.38	35.25	43.50	74.00	-30.50	Peak	
		CILLI			D. I.			Vertica		
Test channe	el	CH-H			Polar	ity		vertica	11	
Test channe		Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark	
	Frequency MHz		Antenna dB	Cable dB		-	Limit dBuV/m	10.00		
	Frequency	Reading			Preamp	Level		0ver		
Mark	Frequency MHz	Reading dBuV/m	dB	dB	Preamp dB	Level dBuV/m	dBuV/m	Over limit	Remark	
Mark 1	Frequency MHz 1326.51	Reading dBuV/m 46.53	dB 26.16	dB 4.07	Preamp dB 36.36	Level dBuV/m 40.40	dBuV/m 74.00	Over limit -33.60	Remark Peak	

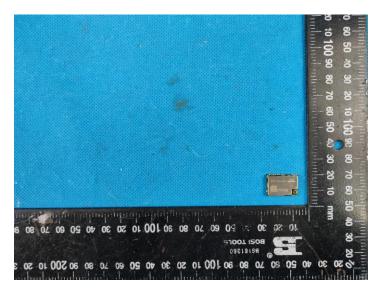
Report No.: CHTEW22040040 Page: 28 of 31 Issued: 2022-04-06

6. TEST SETUP PHOTOS

Radiated Emission

Report No.: CHTEW22040040 Page: 29 of 31 Issued: 2022-04-06

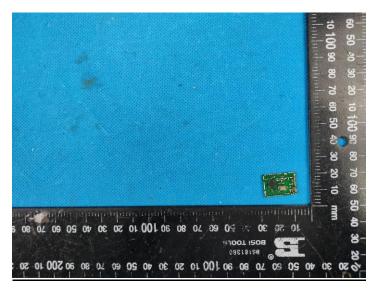

AC Conducted Emission



Report No.: CHTEW22040040 Page: 30 of 31 Issued: 2022-04-06

7. EXTERANAL AND INTERNAL PHOTOS

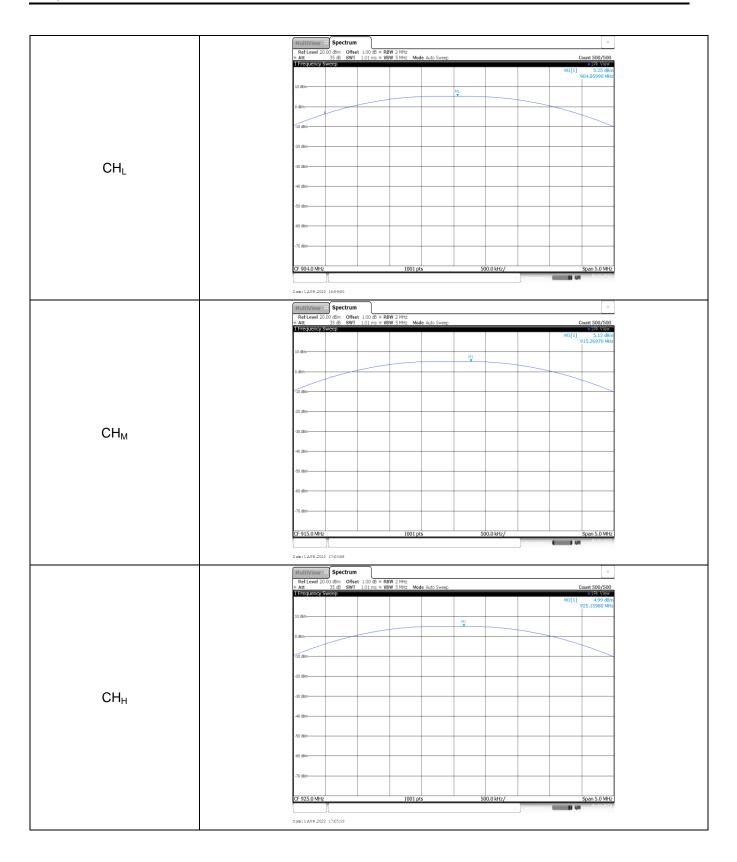
EXTERANAL PHOTOS



Report No.: CHTEW22040040 Page: 31 of 31 Issued: 2022-04-06

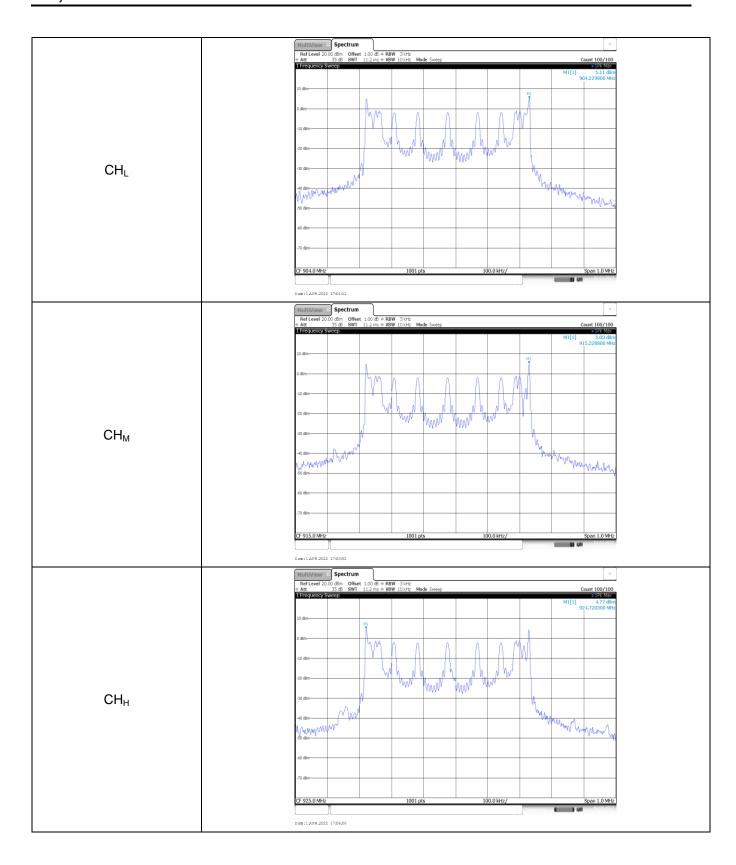
INTERNAL PHOTOS

8. APPENDIX REPORT

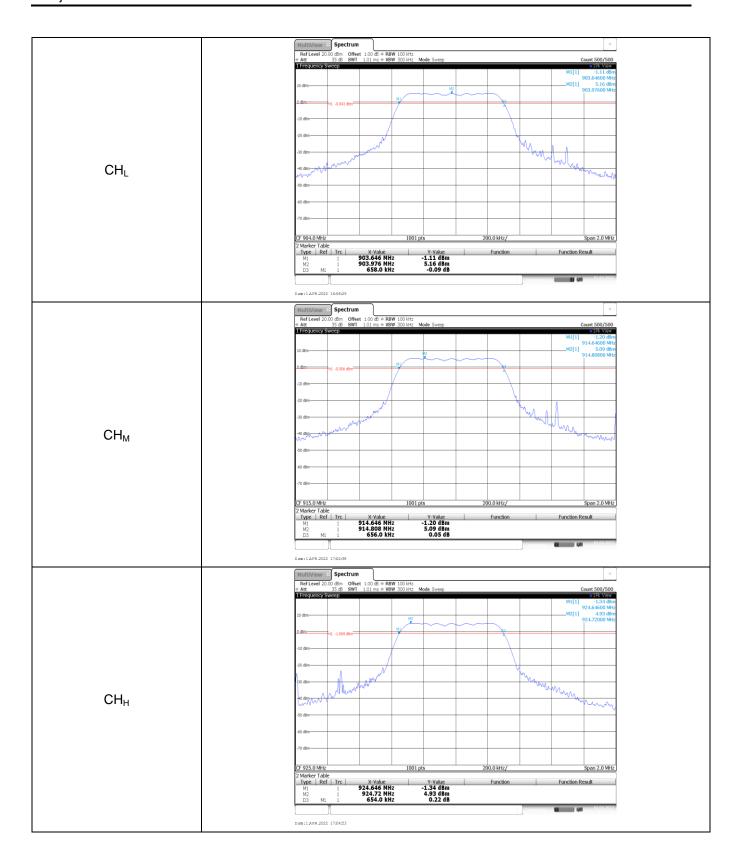

APPENDIX REPORT

Project No.	SHT2201040003EW				
Test sample No.	YPHT22010400004 Model No. E07-900M10S				
Start test date	2022-04-01	Finish date	2022-04-02		
Temperature	24.6℃	Humidity	35%		
Test Engineer	Hailey Chen	Auditor	Xiaodong Zheo		

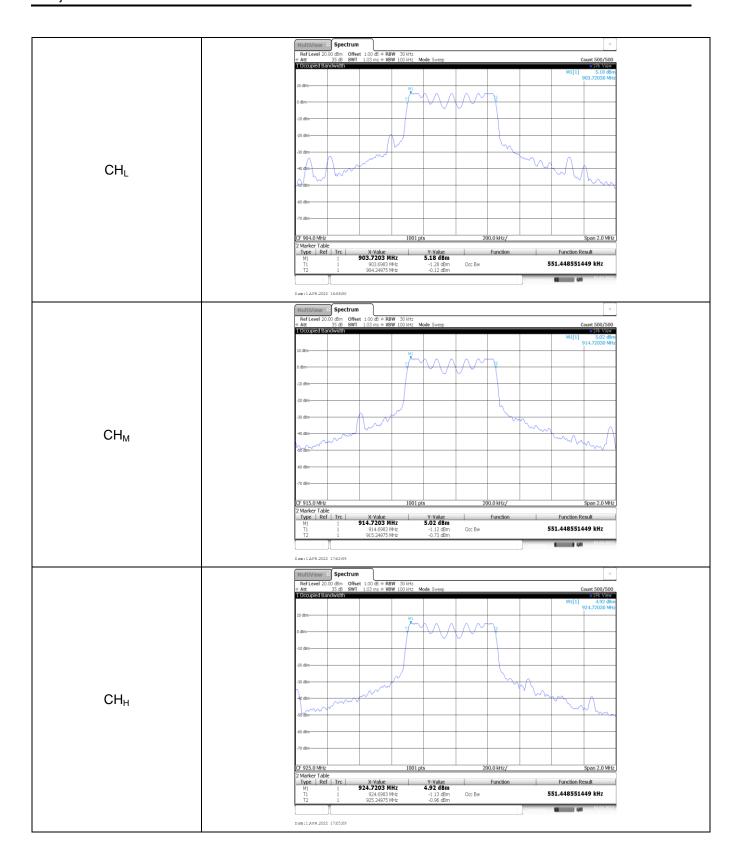
Appendix clause	Test item	Result
А	Peak Output Power	PASS
В	Power Spectral Density	PASS
С	6 dB Bandwidth	PASS
D	99% Occupied Bandwidth	PASS
E	Duty cycle	PASS
F	Band edge and Spurious Emissions (conducted)	PASS


Appendix A: Peak Output Power

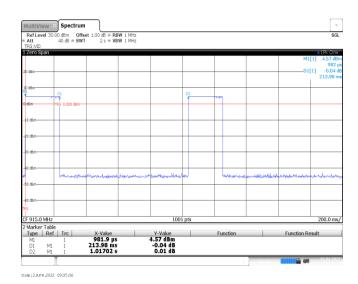
Channel	Output power (dBm)	Average Output power (dBm)	Limit (dBm)	Result
CH _L	5.25	5.20		
CH _M	5.12	5.11	≤ 30.00	Pass
CH _H	4.99	4.97		


Appendix B: Power Spectral Density

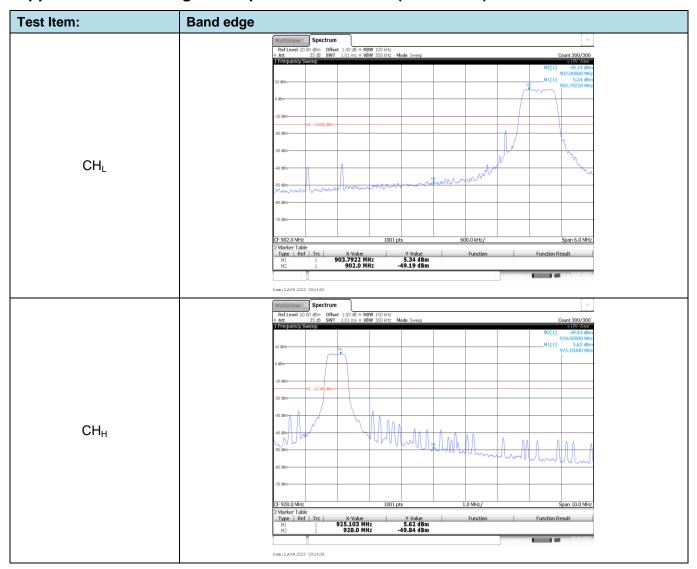
Channel	Power Spectral Density(dBm/3KHz)	Limit (dBm/3KHz)	Result
CH _L	5.11		
CH _M	5.03	≤8.00	Pass
CH _H	4.77		

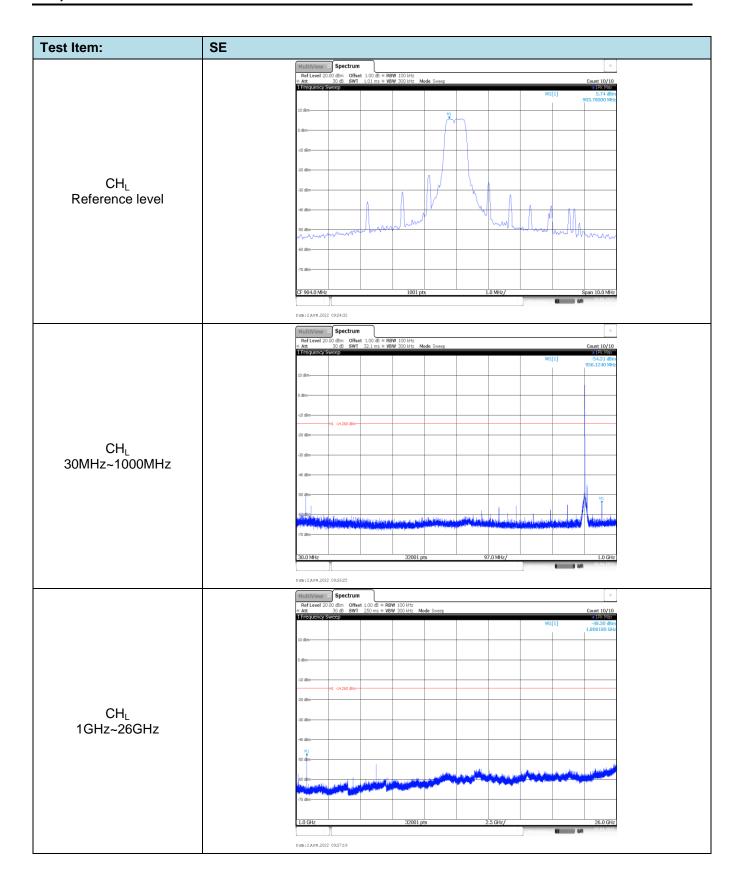

Appendix C: 6dB bandwidth

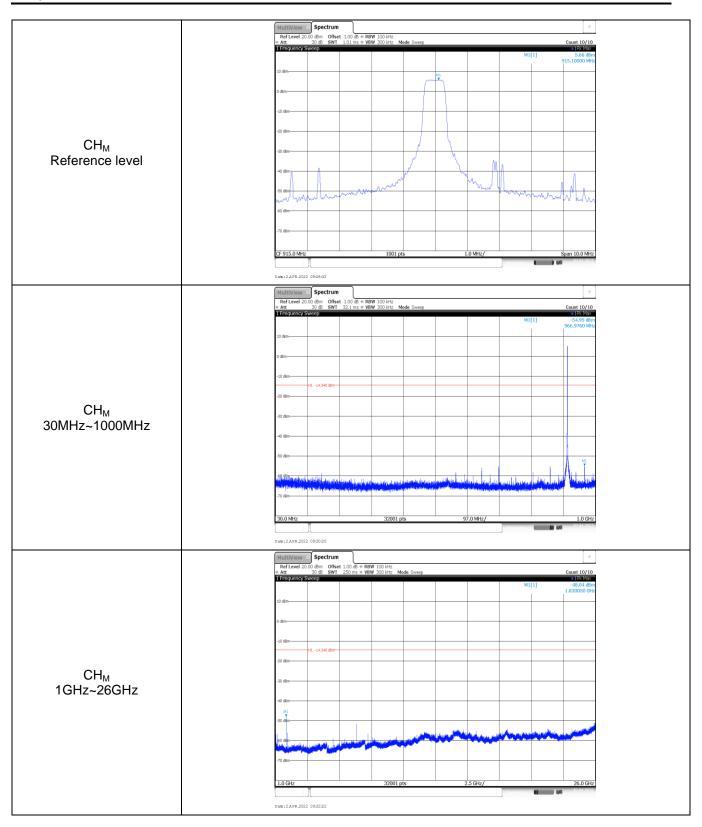
Channel	Channel 6dB Bandwidth(kHz)		Result
CH _L	658.00		
CH _M	656.00	≥500	Pass
CH _H	654.00		

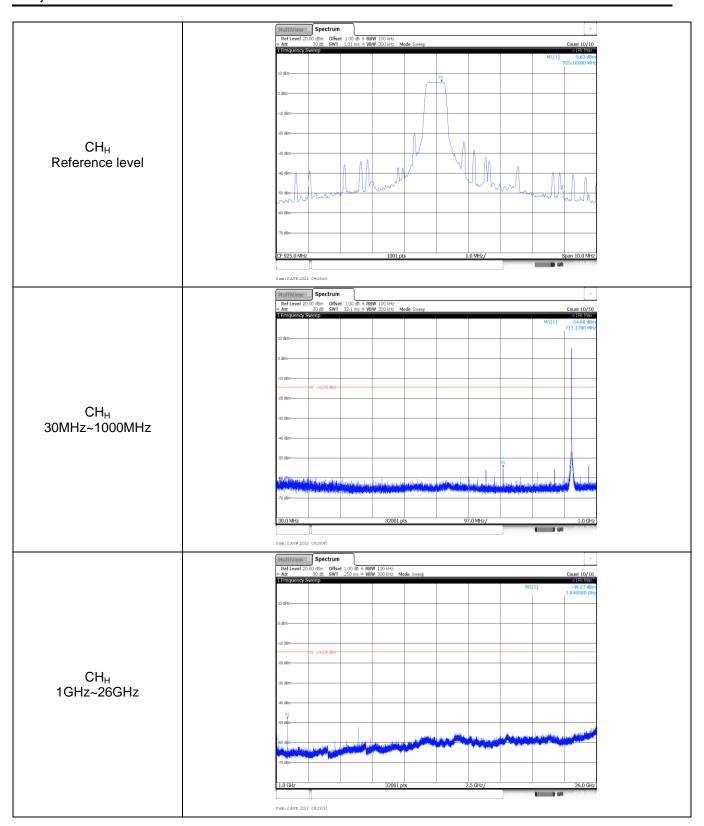

Appendix D: 99% Occupied Bandwidth

Channel	99% Occupied Bandwidth(MHz)	Limit (kHz)	Result
CH _L	0.55		
CH _M	0.55	-	Pass
CH _H	0.55		




Appendix E: Duty cycle


Test Frequency (MHz)	T _{on time} for single burst (ms)	T _{period} (ms)	Duty cycle	1/T _{on time} (kHz)
915	213.98	1017.02	21.0%	0.005



Appendix F: Band edge and Spurious Emissions (conducted)

-----End of Report-----