	CTC I advanced
Bundesnetzagentur TEST I BNetzA-CAB-02/21-102 Test report no.:	REPORT 1-2437/21-01-05
Testing laboratory	Applicant
CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>https://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>	ANDREAS STIHL AG & Co. KG Andreas-Stihl-Straße 4 71336 Waiblingen / GERMANY Phone: +49 7151 26 2751 Contact: Christian Huwig e-mail: <u>christian.huwig@stihl.de</u>
Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.	Manufacturer ANDREAS STIHL AG & Co. KG Andreas-Stihl-Straße 4 71336 Waiblingen / GERMANY
Test st	andard/s

i est standard/s						
FCC - Title 47 CFR Part 22	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services					
FCC - Title 47 CFR Part 24	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services					
For further applied test standards please refer to section 3 of this test report.						

	Test Item				
Kind of test item:	Robotic Lawn Mower				
Model name:	iMOW® 5 EVO, iMOW® 6 EVO, iMOW® 7 EVO				
FCC ID:	2ALP8IA01				
ISED certification number:	23431-IA01E				
Frequency:	GSM 850 MHz and GSM 1900 MHz				
Technology tested:	GSM				
Antenna:	Integrated antenna				
Power supply:	36 V DC by battery				
Temperature range:	0°C to 40°C				

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino
Lab Manager
Radio Communications

Test performed:

René Oelmann Lab Manager Radio Communications

1	Table of contents2					
2	General information	3				
	 2.1 Notes and disclaimer 2.2 Application details 2.3 Test laboratories sub-contracted 	3 				
3	Test standard/s, references and accreditations	4				
4	Reporting statements of conformity – decision rule	5				
5	Test environment	6				
6	Test item	6				
	6.1 General description6.2 Additional information	6				
7	Description of the test setup	7				
	 7.1 Shielded semi anechoic chamber 7.2 Shielded fully anechoic chamber 7.3 Radiated measurements > 18 GHz 	8 9 10				
8	Sequence of testing	11				
	 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz 8.4 Sequence of testing radiated spurious above 18 GHz 	11 12 				
9	Measurement uncertainty	15				
10	Summary of measurement results	16				
	10.1 GSM 850 10.2 PCS 1900	16 16				
11	Results GSM 850	17				
	11.1RF output power11.2Spurious emissions radiated	17 19				
12	Results PCS 1900	25				
	12.1RF output power12.2Spurious emissions radiated	25 27				
13	Observations	33				
14	Glossary	34				
15	Document history	35				
16	Accreditation Certificate – D-PL-12076-01-04					
17	Accreditation Certificate – D-PL-12076-01-05	37				

2 **General information**

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 **Application details**

Date of receipt of order: 2021-11-04 Date of receipt of test item: 2022-07-04 Start of test:* 2022-07-04 End of test:* 2022-08-08 -/-

Person(s) present during the test:

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 22	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
FCC - Title 47 CFR Part 24	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services
RSS - 132 Issue 3	January 2013	Spectrum Management and Telecommunications Radio Standards Specification - Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 6	January 2018	Spectrum Management and Telecommunications Policy - Radio Standards Specifications, 2 GHz Personal Communication Services
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.26-2015	-/- -/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard for Compliance Testing of Transmitters Used in Licensed Badio Services
Power Meas License Systems: KDB 971168 D01	v03r01	Measurement Guidance for Certification of Licensed Digital Transmitters
Power Meas License Systems: KDB 971168 D01 Accreditation	v03r01 Description	Measurement Guidance for Certification of Licensed Digital Transmitters

D-PL-12076-01-05

Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAKKS Deutsche Aktrediterungsstelle D-PI-12076-01-05

ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

		T_{nom}	+21 °C during room temperature tests			
Temperature	:	T _{max}	40 °C during high temperature tests			
		T_{min}	0 °C during low temperature tests			
Relative humidity content	:		42 %			
Barometric pressure	:		1020 hpa			
		Vnom	36.0 V DC by battery			
Power supply :		V_{max}	No tests under extreme conditions performed.			
		V_{min}	No tests under extreme conditions performed.			

6 Test item

General description 6.1

Kind of test item :		Robotic Lawn Mower	
Model name :	:	iMOW® 5 EVO, iMOW® 6 EVO, iMOW® 7 EVO	
HMN :		-/-	
PMN :		iMOW® 5 EVO, iMOW® 6 EVO, iMOW® 7 EVO	
HVIN :		iMOW® 5 EVO, iMOW® 6 EVO, iMOW® 7 EVO	
FVIN :		-/-	
S/N serial number :		445131121	
		Signal-PCB: IA01-430-1403-B R8	
		Power-PCB: IA01-430-1404-B R14	
Hardware status :	:	Cellular-PCB: IA01-430-1406-B R8	
		GNSS-PCB: IA01-430-1407-B R9	
		Docking-PCB: IA01-430-1400-B R11	
Software status :	:	IA01-400-3800-A R7	
Firmware status :		IA01-400-3800-A R7	
Frequency band :		GSM 850 MHz and GSM 1900 MHz	
Type of radio transmission :		modulated corrier	
Use of frequency spectrum :			
Type of modulation :		GMSK; 8-PSK	
Antenna :		Integrated antenna	
Power supply :		36 V DC by battery	
Temperature range :		0°C to 40°C	

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-2437/21-01-01_AnnexA 1-2437/21-01-01_AnnexB 1-2437/21-01-01_AnnexD

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- periodic self verification ev
- long-term stability recognized Ve
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- limited calibration EΚ
- zw cyclical maintenance (external cyclical maintenance)
- internal cyclical maintenance izw
- blocked for accredited testing g
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	А	Analyzer-Reference-System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKli	29.12.2021	28.12.2023
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface-Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKl!	30.09.2021	29.09.2023
8	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
9	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
10	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	08.12.2021	07.12.2022
11	A	Universal Radio Communication Tester	CMU200	R&S	103992	300003231	vlKl!	10.12.2020	09.12.2022

CTC | advanced

member of RWTÜV group

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μ W)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1		Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	31.07.2023
2		Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	vIKI!	12.03.2021	11.03.2023
3		Universal Radio Communication Tester	CMU200	R&S	106826	300003346	NK!	-/-	-/-
4		Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
5		Band Reject Filter	WRCG1850/1910- 1835/1925-40/8SS	Wainwright	23	400000149	ne	-/-	-/-
6		Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
7		Band Reject Filter	WRCG824/849- 810/863-60/9SS	Wainwright	6	300003791	ne	-/-	-/-
8		Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22050	300004482	ev	-/-	-/-
9		4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
10		NEXIO EMV- Software	BAT EMC V3.21.0.32	EMCO		300004682	ne	-/-	-/-
11		Anechoic chamber		TDK		300003726	ne	-/-	-/-
12		EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	15.12.2021	31.12.2022

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKl!	-/-	-/-
3	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	25.01.2022	24.01.2023
4	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
6	A	Universal Radio Communication Tester	CMU200	R&S	103992	300003231	vIKI!	10.12.2020	09.12.2022

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

Measurement uncertainty 9

Measurement uncertainty							
Test case	Uncertainty						
RF output power conducted	±1 dB						
RF output power radiated	± 3 dB						
Frequency stability	± 20 Hz						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted	± 3 dB						
Block edge compliance	± 3 dB						
Occupied bandwidth	± RBW						

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 22, 24 RSS 132, 133	See table!	2022-10-25	Tests according customer demand!

10.1 GSM 850

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	X				-/-
Frequency Stability	Nominal and Extreme	Nominal and Extreme				X	-/-
Spurious Emissions Radiated	Nominal	Nominal	X				-/-
Spurious Emissions Conducted	Nominal	Nominal				\boxtimes	-/-
Block Edge Compliance	Nominal	Nominal				\boxtimes	-/-
Occupied Bandwidth	Nominal	Nominal				\boxtimes	-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10.2 PCS 1900

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	X				-/-
Frequency Stability	Nominal and Extreme	Nominal and Extreme				\boxtimes	-/-
Spurious Emissions Radiated	Nominal	Nominal	X				-/-
Spurious Emissions Conducted	Nominal	Nominal				X	-/-
Block Edge Compliance	Nominal	Nominal				X	-/-
Occupied Bandwidth	Nominal	Nominal				\boxtimes	-/-

<u>Note:</u> C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 **Results GSM 850**

All GSM-band measurements are done in GSM mode only (circuit switched). All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

11.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and ERP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters				
Detector:	Sample / Peak			
Resolution bandwidth:	1 MHz			
Used equipment:	See chapter 7.1 – A & 7.2 – A			
Measurement uncertainty:	See chapter 9			

Limits:

FCC	ISED
+38.4	5 dBm
In measuring transmissions in this band using an averag	e power technique, the peak-to-average ratio (PAR) of the
transmission may	not exceed 13 dB.

<u>Results:</u>

Output Power (radiated) GMSK mode					
Frequency (MHz)	Average Output Power (dBm) - ERP				
824.2	26.8				
836.4	25.2				
848.8	24.7				

Output Power (radiated) 8-PSK mode					
Frequency (MHz)	Average Output Power (dBm) - ERP				
824.2	21.3				
836.4	20.0				
848.8	19.4				

11.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. Measurements made up to 12.75 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the GSM-850 band.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	2 s			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span:	100 MHz Steps			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.1 – A; 7.2 - A			
Measurement uncertainty:	See chapter 9			

Limits:

FCC	ISED			
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

Results GPRS & EGPRS:

Radiated emissions measurements were made only at the center carrier frequency of the GSM-850 band (836.4 MHz). The measurements shows the cabinet radiation in transmit mode. The antenna port can be terminated with 50 Ω .

Spurious emission level (dBm)								
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-/-	2	1672.8	-24.3	2	1697.6	-/-
3	2472.6	-/-	3	2509.2	-21.7	3	2546.4	-/-
4	3296.8	-/-	4	3345.6	-33.4	4	3395.2	-/-
5	4121.0	-/-	5	4182.0	-/-	5	4244.0	-/-
6	4945.2	-/-	6	5018.4	-/-	6	5092.8	-/-
7	5769.4	-/-	7	5854.8	-/-	7	5941.6	-/-
8	6593.6	-/-	8	6691.2	-/-	8	6790.4	-/-
9	7417.8	-/-	9	7527.6	-/-	9	7639.2	-/-
10	8242.0	-/-	10	8364.0	-/-	10	8488.0	-/-

Test report no.: 1-2437/21-01-05

Plots: GMSK

Plot 2: Channel 189 (30 MHz - 1 GHz)

Plot 3: Channel 189 (1 MHz – 9 GHz)

Test report no.: 1-2437/21-01-05

Plots: 8 PSK

Plot 2: Channel 189 (30 MHz - 1 GHz)

Plot 3: Channel 189 (1 MHz – 9 GHz)

12 Results PCS 1900

All GSM-band measurements are done in GSM mode only (circuit switched). All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

12.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and ERP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters				
Detector:	Sample / Peak			
Resolution bandwidth:	1 MHz			
Used equipment:	See chapter 7.2 – A			
Measurement uncertainty:	See chapter 9			

Limits:

FCC	ISED	
+33.00 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.		

<u>Results:</u>

Output Power (radiated) GMSK mode		
Frequency (MHz) Average Output Power (dBm) - EIRP		
1850.2	32.5	
1880.0	32.2	
1909.8	31.6	

Output Power (radiated) 8-PSK mode		
Frequency (MHz) Average Output Power (dBm) - EIRP		
1850.2	26.2	
1880.0	26.0	
1909.8	25.7	

12.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. Measurement made up to 25 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the PCS1900 band.

Measurement:

Measurement parameters		
Detector:	Peak	
Sweep time:	2 sec.	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	100 MHz Steps	
Trace mode:	Max Hold	
Used equipment:	See chapter 7.2 – A	
Measurement uncertainty:	See chapter 9	

Limits:

FCC	ISED		
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)			
-13 dBm			

Results GPRS & EGPRS:

Radiated emissions measurements were made only at the center carrier frequencies of the PCS1900 band (1880.0 MHz) to show the compliance with cabinet radiation limits.

<u>Results:</u>

Spurious emission level (dBm)								
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]
2	3700.4	-/-	2	3760.0	-37.6	2	3819.6	-/-
3	5550.6	-/-	3	5640.0	-37.7	3	5729.4	-/-
4	7400.8	-/-	4	7520.0	-/-	4	7639.2	-/-
5	9251.0	-/-	5	9400.0	-/-	5	9549.0	-/-
6	11101.2	-/-	6	11280.0	-/-	6	11458.8	-/-
7	12951.4	-/-	7	13160.0	-/-	7	13368.6	-/-
8	14801.6	-/-	8	15040.0	-/-	8	15278.4	-/-
9	16651.8	-/-	9	16920.0	-/-	9	17188.2	-/-
10	18502.0	-/-	10	18800.0	-/-	10	19098.0	-/-

Test report no.: 1-2437/21-01-05

Plots: GMSK

Plot 2: Channel 661 (30 MHz – 1 GHz)

Plot 3: Channel 661 (1 GHz – 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 4: Channel 661 (18 GHz - 20 GHz)

Date: 8.AUG.2022 06:16:04

Test report no.: 1-2437/21-01-05

Plots: 8 PSK

Plot 2: Channel 661 (30 MHz - 1 GHz)

Plot 3: Channel 661 (1 GHz – 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Date: 8.AUG.2022 06:18:37

13 Observations

No observations except those reported with the single test cases have been made.

Glossary 14

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-10-25

16 Accreditation Certificate – D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation Image: Comparison of the Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertriktehemer Straße 6-10 66112 Seachrücken	Deutsche Akkreditierungsstelle GmbH Office Berlin Spitelmarit 10 10117 Berlin G0327 Frankfurt am Main Gffice Braunschweig Bundesallee 100 38116 Braunschweig
is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	The publication of extracts of the accorditation certificate is subject to the prior written approval by Deutsche Addreditierungsstelle GmbH (DAXAS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accorditation also extends to fields beyond the scope of accreditation attested by DAXAS. The accreditation as granted pursuant to the Acct on the Accreditation Body (AdAStelleeG) of 31 July 2009 (redera) Luc Gazette []. 2:253 and the Regulation (EIC) No 755/2006 of the furopean Parliament and of the Gouncil of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Unclus 2128 of 9 July 2008, p. 30). DAXAS is
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pl-12076-011. comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 08.06.2020 The certificate together with its annex reflects the stotus at the time of the date of issue. The current stotus of the scope of accreditation can be detected and accreditation can be detected and the stotes of the scope of accreditation can be detected and accreditate bodies of powershe Aktreditionugstelle Canbat. These certificate together with its annex reflects the stotus at the time of the date of issue. The current stotus of the scope of accreditate bodies of powershe Aktreditionugstelle Canbat. These constructions with a current value of accreditate bodies of powershe Aktreditionugstelle Canbat.	a signatory to the Multilateral Agreements for Mutual Receptition of the European co-operation for Accreditation (EA), International Accreditation for formul (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.ilac.org ILAC: www.ilac.org ILAC: www.ilac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

17 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Surgea Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesalee 100 38116 Braunschweig Sill Berlin Office Allee 100 2017 Serlin Sill Berlin
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01.05 Frankfurt am Main, 09.06.2020 The certificate together with its onnex reflects the status at the time of the date of asse. The current status of the scope of accreditation can be found in the database of according bodies of Doutice Akkentitionungstatile Gmoid. http://www.datik.ac/ne/content/bccredited-bodies-datiks Bereins workst	accreditation attested by UAKAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkAStellaG) of 31 July 2009 (Faderal La & Gazette 1, 2423) and the Regulation (EC) No 765/2008 of the European International to the mathematic of products (Official Journal of the European International Laboratory Accreditation a signatory to the Nutliataral Agreements for Nutual Recegnition of the European Cooperation for Accreditation (EA), international Accreditation to These agreements recognise each other's accreditations. The up-to-date state of mambership can be retrieved from the following websites: EA: www.european-accreditation.org LAC: www.lar.org IAC: www.lar.org IAC: www.lar.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf