FCC Test Report

Report No.:AGC09966200406FE02

FCC ID : 2ALP3X2

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Smart phone

BRAND NAME : kodak

MODEL NAME : X2

APPLICANT : Industria Fuegina de Relojeria Electronica S.A.

DATE OF ISSUE : Jun. 18, 2020

STANDARD(S) : FCC Part 22H & 24E Rules

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 71

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun. 18, 2020	Valid	Initial Release

TABLE OF CONTENTS

1	.VERIFICATION OF COMPLIANCE	5
2	GENERAL INFORMATION	6
	2.1 PRODUCT DESCRIPTION	6
	2.2RELATED SUBMITTAL(S) / GRANT (S)	7
	2.3 TEST METHODOLOGY	8
	2.4 TEST FACILITY	9
	2.6 SPECIAL ACCESSORIES	11
	2.7 EQUIPMENT MODIFICATIONS	11
3	SYSTEM TEST CONFIGURATION	. 12
	3.1 EUT CONFIGURATION	. 12
	3.2 EUT EXERCISE	. 12
	3.3 CONFIGURATION OF EUT SYSTEM	. 12
4	. SUMMARY OF TEST RESULTS	. 13
5	DESCRIPTION OF TEST MODES	. 14
6	OUTPUT POWER	. 15
	6.1 CONDUCTED OUTPUT POWER	. 15
	6.2 RADIATED OUTPUT POWER	. 21
	6.2.1 MEASUREMENT METHOD	. 21
	6.2.2 PROVISIONS APPLICABLE	. 22
	6.3. PEAK-TO-AVERAGE RATIO	
	6.3.1 MEASUREMENT METHOD	. 25
	6.3.2 PROVISIONS APPLICABLE	. 25
	6.3.3 MEASUREMENT RESULT	. 26
7	OCCUPIED BANDWIDTH	. 27
	7.1 MEASUREMENT METHOD	. 27
	7.2 PROVISIONS APPLICABLE	. 27
	7.3 MEASUREMENT RESULT	. 28
8	BAND EDGE	. 34
	8.1 MEASUREMENT METHOD	. 34
	8.2 PROVISIONS APPLICABLE	. 34
	8.3 MEASUREMENT RESULT	. 35
9	. SPURIOUS EMISSION	. 37
	9.1 CONDUCTED SPURIOUS EMISSION	. 38
	9.2 RADIATED SPURIOUS EMISSION	. 55
	9.2.2 TEST SETUP	. 56
1	0. FREQUENCY STABILITY	. 60
	10.1 MEASUREMENT METHOD	. 60

Report No.: AGC09966200406FE02 Page 4 of 71

Α	APPENDIX A: PHOTOGRAPHS OF TEST SETUP	. 71	
	10.3 MEASUREMENT RESULT	. 62	
	10.2 PROVISIONS APPLICABLE	. 61	

Page 5 of 71

1. VERIFICATION OF COMPLIANCE

Applicant	INDUSTRIA FUEGUINA DE RELOJERIA ELECTRONICA SA	
Address	SARMIENTO 2920,9420, RIO GRANDE, Argentina	
Manufacturer	Luzhou Maisui Smart Technology Co., Ltd.	
Address	No.19, Section 5, Jiugu Avenue, Luzhou high-tech Zone, Sichuan Province, China	
Factory	Industria Fuegina de Relojeria Electronica S.A.	
Address	Sarmiento 2920, CP 9420), Rio Grande, Tierra del Fuego, Argentina	
Product Designation Smart phone		
Brand Name	kodak	
Test Model	X2	
Date of test	May 22, 2020~Jun. 18, 2020	
Deviation	No any deviation from the test method.	
Condition of Test Sample	Normal	

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance(Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA-603-E-2016. The sample tested as described in this report is in compliance with the FCC Rules Part 22H and 24E. The test results of this report relate only to the tested sample identified in this report.

Prepared By	Calin Liu	
	Calvin Liu (Project Engineer)	Jun. 18, 2020
Reviewed By	Max Zhang	
	Max Zhang (Reviewer)	Jun. 18, 2020
Approved By	Lorrost U	
	Forrest Lei Authorized Officer	Jun. 18, 2020

Page 6 of 71

2. GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	Mara Phones X1		
	⊠GPRS 850 ⊠PCS1900 (U.S. Bands)		
	⊠GSM 900 ⊠DCS 1800 (Non-U.S. Bands)		
Frequency Bands:	⊠UMTS FDD Band II □UMTS FDD Band IV		
	⊠UMTS FDD Band V (U.S. Bands)		
	☐UMTS FDD Band I ☐UMTS FDD Band VIII (Non-U.S. Bands)		
Hardware Version	E957_MAIN_PCB_V1.0		
Software Version	TE9572_KODAK_62_Q0_V0.1.6.1_S200507		
Antenna Type	PIFA Antenna		
Antonno goin	GSM850:-0.36dBi; PCS1900: 0.44dBi		
Antenna gain	WCDMA850: -0.30dBi; WCDMA1900:0.16dBi		
Power Supply: DC 3.8V by Built-in Li-ion Battery			
Battery parameter: DC 3.8V 3900mAh			
Dual Card:	GSM /WCDMA Card Slot		
GPRS Class	12		
Extreme Vol. Limits:	. Limits: DC3.23V to 4.35V (Normal: DC 3.8V)		
Extreme Temp. Tolerance -10°C to +40°C			
*** Note: 1. The High Voltage DC4.35 V and Low Voltage DC3.23V were declared by manufacturer			
2. The EUT couldn't be operating normally with higher or lower voltage.			

^{***} **Note:**1.The maximum power levels are GSM for MCS-4: GMSK link, and RMC 12.2kbps mode for WCDMA band II, WCDMA band V only these modes were used for all tests.

^{2.} We found out the test mode with the highest power level after we analyze all the data rates. So we chose worst cases a representative.

Page 7 of 71

GSM/WCDMA Slot 1:

	Maximum ERP/EIRP	Max. Average
	(dBm)	Burst Power (dBm)
GSM 850	31.17	32.06
PCS 1900	28.99	29.82
UMTS BAND V	20.74	22.35
UMTS BAND II	20.97	22.36

GSM/WCDMA Slot 2:

	Maximum ERP/EIRP	Max. Average
	(dBm)	Burst Power (dBm)
GSM 850	30.52	31.41
PCS 1900	28.13	28.87

Page 8 of 71

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID**: **2ALP3X2**, filing to comply with the FCC Part 22H&24E requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-E-2016, and KDB 971168 D01 Power Means License Digital Systems V03R01.

Report No.: AGC09966200406FE02 Page 9 of 71

2.4 TEST FACILITY

Test Site Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping	
Location	Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,China	
Designation Number	CN1259	
FCC Test Firm Registration Number	975832	
A2LA Cert. No.	5054.02	
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA	

ALL TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	May 15, 2020	May 14, 2022
LISN	R&S	ESH2-Z5	100086	Aug. 26, 2019	Aug. 25, 2020
TEST RECEIVER	R&S	ESCI	10096	May 15, 2020	May 14, 2022
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.18, 2019	Dec.17, 2020
EXA Signal Analyzer	Aglient	N9020B	MY56101792	Dec.18, 2019	Dec.17, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2019	Sep. 20, 2021
preamplifier	ChengYi	EMC184045SE	980508	Sep. 23, 2019	Sep. 22, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 17, 2019	May. 16, 2021
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.12, 2019	Jun.11, 2020
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.10, 2020	Jun.09, 2021
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.20, 2019	Sep.19, 2020
SIGNAL ANALYZER	Agilent	N9020A	MY52090123	Sep. 09, 2019	Sep. 08, 2020
USB Wideband Power Sensor	Agilent	U2021XA	MY54110007	Sep. 09, 2019	Sep. 08, 2020
Universal Radio Communication Tester	R&S	CMU200	120237	July 13, 2019	July 12, 2020
Universal Radio Communication Tester	Agilent	8960	GB46200384	July 11,2019	July 10,2020

Power Splitter	Agilent	11636A	34	Jun.12, 2019	Jun.11, 2020
Attenuator	TAMA GWA	UFA-01	3286	Oct. 15, 2019	Oct. 14, 2020
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170		Sep. 21, 2019	Sep. 20, 2021
Horn Ant	ETS	QWH_SL_18_4		Sep. 21, 2019	Sep. 20, 2021
(18G-40GHz)	LIO	0_K_SG		Зер. 21, 2019	Зер. 20, 2021
Power Splitter	Agilent	11636A	1	Sep.18, 2019	Sep.17, 2020
CMU200	R&S	120237	/	July 13, 2019	July 12, 2020
Artificial Mains Network ENV216	R&S	101242	/	July 11,2019	July 10, 2020
Filter Bank Notch 1(880-915MHz)	MICRO-TRONICS	010	/	Feb. 25, 2020	Feb. 24, 2021
Filter Bank Notch 2 (1710-1785MHz)	MICRO-TRONICS	009	/	Feb. 25, 2020	Feb. 24, 2021
Filter Bank Notch 3 (1920-1980MHz)	MICRO-TRONICS	008	/	Feb. 25, 2020	Feb. 24, 2021

Page 11 of 71

2.6 SPECIAL ACCESSORIES

The battery wassupplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 12 of 71

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUTconfiguration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

3.3 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Remark
1	Smart phone	X2	2ALP3X2	EUT
2	Adapter	FJ-SW266B50502000A	Input: AC 100-240V, 50/60Hz, 0.4A Output: DC 5V, 2000mA	AE
3	Battery	L63464	DC3.8V 3900mAh	AE
4	USB Cable	N/A	N/A	AE
5	Earphone	N/A	N/A	AE

^{***}Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

Page 13 of 71

4. SUMMARY OF TEST RESULTS

Item Number	Item Description		FCC Rules	Result	
		Conducted	2.1046		
1	Output Power	Output Power	2.1040	Dana	
'	Output Power	Radiated	22.042(a) (a) / 24.222 (a)/ 27.50(d)(4)	Pass	
		Output Power	22.913(a) (2) / 24.232 (c)/ 27.50(d)(4)		
2	Peak-to-Average	Peak-to-Average	24 222(d)	Doos	
2	Ratio	Ratio	24.232(d)	Pass	
		Conducted			
3	Spurious	Spurious Emission	2.4054/22.047(a)/24.229(a)/.27.52(b)	Dana	
3	Emission	Radiated	2.1051/22.917(a)/24.238(a)/ 27.53(h)	Pass	
		Spurious Emission			
4	Frequency Stability		2.1053/22.917(a)/24.238(a)/27.53(h)	Pass	
5	Occupie	d Bandwidth	2.1049	Pass	
6	Ban	nd Edge	2.1051/22.917(a)/24.238(a)/ 27.53(h)	Pass	

Page 14 of 71

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200)to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSM and PCS frequency band.

***Note: GSM/EGPRS 850, GSM/EGPRS 1900, WCDMA/HSPA band II, WCDMA/HSPA band V,

WCDMA/HSPA band IV, mode have been tested during the test.

The worst condition was recorded in the test report if no other modes test data.

Page 15 of 71

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for other modulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes(GSM/EGPRS 850,

GSM/EGPRS 1900, WCDMA/HSPA band II, WCDMA/HSPA band V)at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

GSM 850:

Mode	Frequency (MHz)	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	824.2	32.06	-9	23.06
GSM 850	836.6	31.98	-9	22.98
	848.8	31.92	-9	22.92
CDDC 050	824.2	32.02	-9	23.02
GPRS 850	836.6	31.94	-9	22.94
(1 Slot)	848.8	31.90	-9	22.90
CDDC 050	824.2	28.76	-6	22.76
GPRS 850	836.6	28.89	-6	22.89
(2 Slot)	848.8	28.91	-6	22.91
0000 050	824.2	26.74	-4.26	22.48
GPRS 850	836.6	26.90	-4.26	22.64
(3 Slot)	848.8	26.88	-4.26	22.62
0000 050	824.2	25.91	-3	22.91
GPRS 850	836.6	25.88	-3	22.88
(4 Slot)	848.8	25.76	-3	22.76

Mode	Channel	Frequency	Avg.Burst Power
Mode		(MHz)	(dBm)
EDGE	128	824.2	25.25
(1 Slot)	190	836.6	25.26
(1 3101)	251	848.8	25.24
EDCE	128	824.2	24.33
EDGE (2 Slot)	190	836.6	24.28
	251	848.8	24.47
EDGE	128	824.2	21.69
	190	836.6	21.74
(3 Slot)	251	848.8	21.56
EDGE (4.01-1)	128	824.2	19.74
	190	836.6	19.36
(4 Slot)	251	848.8	19.85

Report No.: AGC09966200406FE02 Page 17 of 71

PCS 1900:

Mode	Frequency (MHz)	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	1850.2	29.59	-9	20.59
GSM1900	1880	29.73	-9	20.73
	1909.8	29.82	-9	20.82
CDDC4000	1850.2	29.57	-9	20.57
GPRS1900	1880	29.71	-9	20.71
(1 Slot)	1909.8	29.79	-9	20.79
ODDO 4000	1850.2	26.85	-6	20.85
GPRS 1900	1880	26.96	-6	20.96
(2 Slot)	1909.8	26.75	-6	20.75
CDDC 4000	1850.2	25.14	-4.26	20.88
GPRS 1900	1880	25.36	-4.26	21.10
(3 Slot)	1909.8	25.24	-4.26	20.98
0000 4000	1850.2	23.33	-3	20.33
GPRS 1900	1880	23.27	-3	20.27
(4 Slot)	1909.8	23.17	-3	20.17

Mada	Channel	Frequency	Avg.Burst Power
Mode		(MHz)	(dBm)
EDGE	512	1850.2	27.51
(1 Slot)	661	1880	27.54
(1 3101)	810	1909.8	27.36
EDCE	512	1850.2	25.45
EDGE (2 Slot)	661	1880	25.61
	810	1909.8	25.78
FDOF	512	1850.2	23.28
EDGE (3 Slot)	661	1880	23.17
(3 3101)	810	1909.8	23.34
EDGE	512	1850.2	21.25
	661	1880	21.31
(4 Slot)	810	1909.8	21.18

Report No.: AGC09966200406FE02 Page 18 of 71

UMTS BAND V

Mode	Frequency (MHz)	Reference power	Avg.Burst Power
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	826.4	24	22.17
WCDMA 850 RMC	836.4	24	22.31
•	846.6	24	22.35
14/00444.050	826.4	24	22.20
WCDMA850 AMR	836.4	24	22.19
	846.6	24	22.17
HSDPA -	826.4	24	21.23
Subtest 1	836.4	24	21.34
Sublest 1	846.6	24	21.40
HSDPA -	826.4	24	20.58
Subtest 2	836.4	24	20.58
Sublest 2	846.6	24	20.58
HSDPA -	826.4	24	20.46
Subtest 3	836.4	24	20.62
Sublest 5	846.6	24	20.54
HSDPA -	826.4	24	20.44
Subtest 4	836.4	24	20.65
Sublest 4	846.6	24	20.49
HSUPA -	826.4	24	19.01
Subtest 1	836.4	24	19.14
Sublest 1	846.6	24	19.17
HSUPA -	826.4	24	19.12
Subtest 2	836.4	24	19.21
Sublest 2	846.6	24	19.27
HSUPA -	826.4	24	20.01
Subtest 3	836.4	24	20.11
Sublest 5	846.6	24	20.23
HSUPA -	826.4	24	18.71
Subtest 4	836.4	24	18.74
Oublest 4	846.6	24	18.79
HSUPA -	826.4	24	18.29
Subtest 5	836.4	24	19.97
Sublest 5	846.6	24	18.56

Report No.: AGC09966200406FE02 Page 19 of 71

UMTS BAND II

Mode	Frequency	Reference power	Avg.Burst Power
iviode	(MHz)	, 10.0.0.00 power	Avg.buist Fower
	1852.4	24	21.00
WCDMA 1900 RMC	1880	24	20.74
TOVIO	1907.6	24	22.36
	1852.4	24	21.11
WCDMA1900 AMR	1880	24	21.56
/ dvii (1907.6	24	21.27
LICDDA	1852.4	24	21.60
HSDPA	1880	24	21.49
Subtest 1	1907.6	24	21.44
LICDDA	1852.4	24	20.93
HSDPA	1880	24	20.77
Subtest 2	1907.6	24	20.73
110004	1852.4	24	20.94
HSDPA	1880	24	20.81
Subtest 3	1907.6	24	20.80
	1852.4	24	20.88
HSDPA	1880	24	20.69
Subtest 4	1907.6	24	20.67
	1852.4	24	19.39
HSUPA	1880	24	19.27
Subtest 1	1907.6	24	19.16
	1852.4	24	19.47
HSUPA	1880	24	19.31
Subtest 2	1907.6	24	19.25
	1852.4	24	20.40
HSUPA	1880	24	20.28
Subtest 3	1907.6	24	20.16
110110.6	1852.4	24	19.05
HSUPA	1880	24	18.92
Subtest 4	1907.6	24	18.86
	1852.4	24	20.36
HSUPA	1880	24	18.63
Subtest 5	1907.6	24	18.36

Page 20 of 71

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH	I,DPCCH	
HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)

Note: CM=1 for β c/ β d=12/15, β hs/ β c=24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done. However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Page 21 of 71

6.2 RADIATED OUTPUT POWER 6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-E-2016 were applied.

- 1. Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signal operating below 1GHz are performed using dipole antennas. Measurements on signals operating above 1GHz are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT operating at its maximum duty cycle, at maximum power, and at the approximate frequencies.
- 2. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 3. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 Pr. TheARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 4. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 5. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 6. The EUT is then put into continuously transmitting mode at its maximum power level.
- 7. Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 8. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 9. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi...

Page 22 of 71

6.2.2 PROVISIONS APPLICABLE

Mode	FCC Part Section(s)	Nominal Peak Power
GSM/EGPRS 850	22.913(a)(2)	<=38.45dBm (7W). ERP
GSM/EGPRS 1900	24.232(c)	<=33dBm (2W). EIRP
UMTS BAND II	24.232(c)	<=33dBm (2W),EIRP
UMTS BAND V	22.913(a)(2)	<=38.45dBm (7W).ERP

Report No.: AGC09966200406FE02 Page 23 of 71

6.2.3 MEASUREMENT RESULT

	Radiated Power (ERP) for GSM/EGPRS 850					
		Result				
Mode	Frequency	Max. Peak ERP	Polarization	Conclusion		
		(dBm)	Of Max. ERP			
	824.2	31.02	Horizontal	Pass		
	836.6	31.17	Horizontal	Pass		
GSM -	848.8	31.05	Horizontal	Pass		
GSIVI	824.2	30.76	Vertical	Pass		
	836.6	30.57	Vertical	Pass		
	848.8	30.63	Vertical	Pass		
	824.2	26.85	Horizontal	Pass		
	836.6	26.79	Horizontal	Pass		
ECDDS	848.8	26.69	Horizontal	Pass		
EGPRS	824.2	24.44	Vertical	Pass		
	836.6	24.34	Vertical	Pass		
	848.8	24.48	Vertical	Pass		

	Radiated Power (E.I.R.P) for GSM/EGPRS 1900				
		Result			
Mode	Frequency	Max. Peak	Polarization	Conclusion	
		E.I.R.P.(dBm)	Of Max. E.I.R.P.		
	1850.2	28.79	Horizontal	Pass	
	1880.0	28.35	Horizontal	Pass	
CCM	1909.8	28.99	Horizontal	Pass	
GSM	1850.2	26.15	Vertical	Pass	
	1880.0	26.24	Vertical	Pass	
	1909.8	26.13	Vertical	Pass	
	1850.2	24.12	Horizontal	Pass	
	1880.0	24.11	Horizontal	Pass	
FODDO	1909.8	24.03	Horizontal	Pass	
EGPRS	1850.2	21.87	Vertical	Pass	
	1880.0	21.88	Vertical	Pass	
	1909.8	21.96	Vertical	Pass	

Report No.: AGC09966200406FE02 Page 24 of 71

	Radiated Power (E.I.R.P) for UMTS band II					
		Result				
Mode	Frequency	Max. Peak E.I.R.P	Polarization	Conclusion		
		(dBm)	Of Max. E.I.R.P			
	1852.4	20.74	Horizontal	Pass		
	1880	20.66	Horizontal	Pass		
UMTS	1907.6	20.58	Horizontal	Pass		
UNITS	1852.4	19.34	Vertical	Pass		
	1880	19.27	Vertical	Pass		
	1907.6	19.42	Vertical	Pass		

Radiated Power (ERP) for UMTS band V						
Mode	Frequency	Max. Peak ERP (dBm)	Polarization	Conclusion		
			Of Max. ERP			
	826.4	20.89	Horizontal	Pass		
	836.4	20.94	Horizontal	Pass		
UMTS	846.6	20.97	Horizontal	Pass		
UIVITS	826.4	19.85	Vertical	Pass		
	836.4	19.76	Vertical	Pass		
	846.6	19.68	Vertical	Pass		

Note: Above is the worst mode data.

Page 25 of 71

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report No.: AGC09966200406FE02 Page 26 of 71

6.3.3 MEASUREMENT RESULT

Modes	GSM850(GSM)		
Channel	128	190	251
Chamie	(Low)	(Mid)	(High)
Frequency	824.2	836.6	848.8
(MHz)	024.2	030.0	040.0
Peak-To-Average Ratio (dB)/GSM	1.58	1.69	1.58

Modes	PCS1900 (GSM)		
Channel	512	661	810
Channel	(Low)	(Mid)	(High)
Frequency	1850.2	4000	4000.0
(MHz)	1050.2	1880	1909.8
Peak-To-Average Ratio (dB)/GSM	2.25	2.61	2.07

Modes	UMTS BAND II			
Channel	9262	9400	9538	
Chamer	(Low)	(Mid)	(High)	
Frequency	1852.4	4000	4007.6	
(MHz)	1052.4	1880	1907.6	
Peak-To-Average Ratio (dB)	1.88	1.92	1.79	

Modes	UMTS BAND V			
Channel	4132	4182	4233	
Channel	(Low)	(Mid)	(High)	
Frequency	926.4	926.4	946.6	
(MHz)	826.4	836.4	846.6	
Peak-To-Average Ratio (dB)	3.02	3.25	3.11	

Page 27 of 71

7. OCCUPIED BANDWIDTH

7.1 MEASUREMENT METHOD

1. The Occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper Frequency limits, the mean power radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

2. RBW=1~5% of the expected OBW, VBW>=3 x RBW, Detector=Peak, Trace mode=max hold, Sweep=auto couple, and the trace was allowed to stabilize.

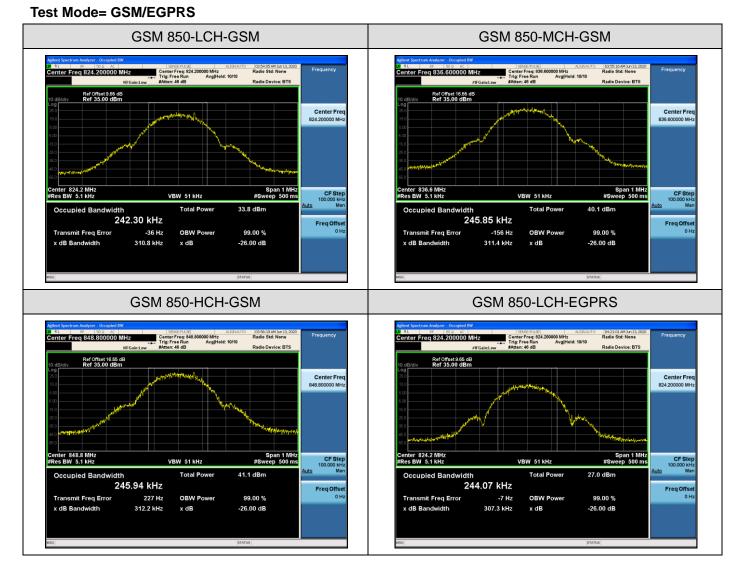
7.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

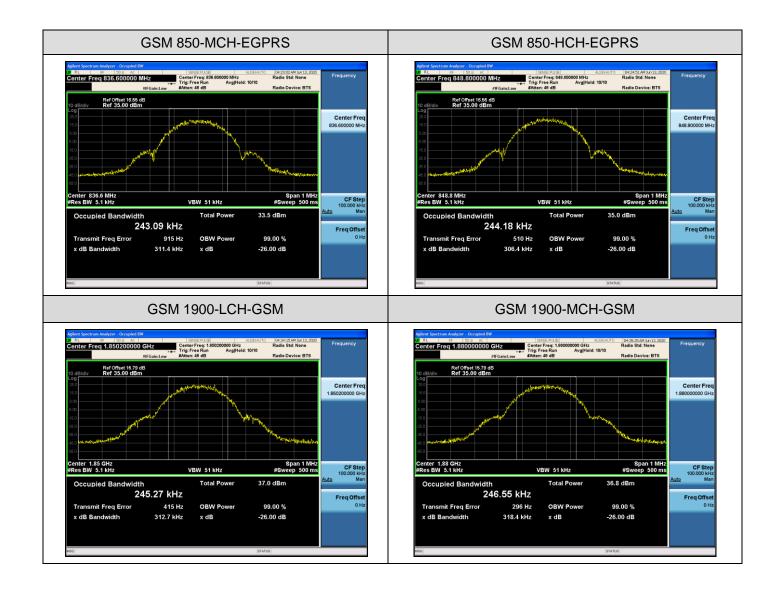
Report No.: AGC09966200406FE02 Page 28 of 71

Page 28 of 7

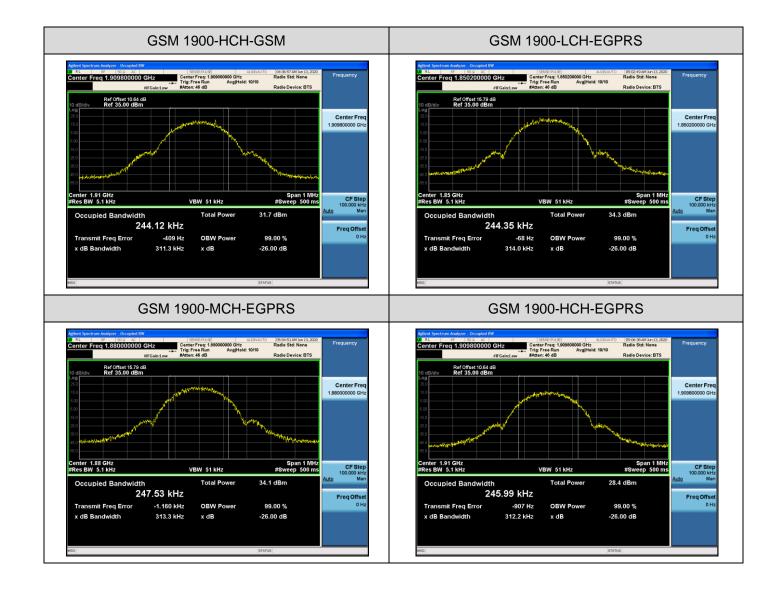
7.3 MEASUREMENT RESULT


Test Results

Test	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
Band	Mode	Channel	(KHZ)	(KHZ)	verdict
GSM 850		LCH	242.3	311	PASS
	GSM	MCH	245.8	311	PASS
		HCH	245.9	312	PASS
		LCH	244.1	307	PASS
	EGPRS	MCH	243.1	311	PASS
		HCH	244.2	306	PASS


Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	verdict
		LCH	245.3	313	PASS
	GSM	MCH	246.5	318	PASS
PCS 1900		HCH	244.1	311	PASS
		LCH	244.4	314	PASS
	EGPRS	MCH	247.5	313	PASS
		HCH	246.0	312	PASS

Page 29 of 71


For **GSM** Test Band=GSM 850/PCS1900

Report No.: AGC09966200406FE02 Page 30 of 71

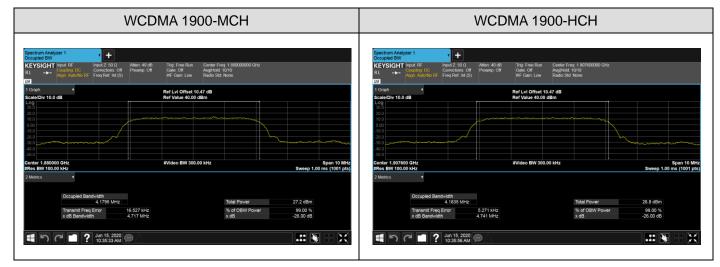
Report No.: AGC09966200406FE02 Page 31 of 71

Report No.: AGC09966200406FE02 Page 32 of 71


Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
WCDMA 850		LCH	4166.1	4684	PASS
	UMTS	MCH	4169.7	4699	PASS
		HCH	4164.5	4709	PASS

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
WCDMA 1900		LCH	4172.0	4727	PASS
	UMTS	MCH	4179.5	4717	PASS
		HCH	4183.5	4741	PASS


For WCDMA


Test Band=WCDMA850/WCDMA1900

Test Mode=UMTS

Report No.: AGC09966200406FE02 Page 33 of 71

Page 34 of 71

8. BAND EDGE

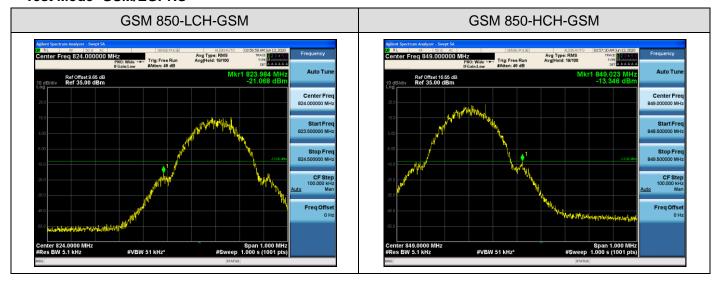
8.1 MEASUREMENT METHOD

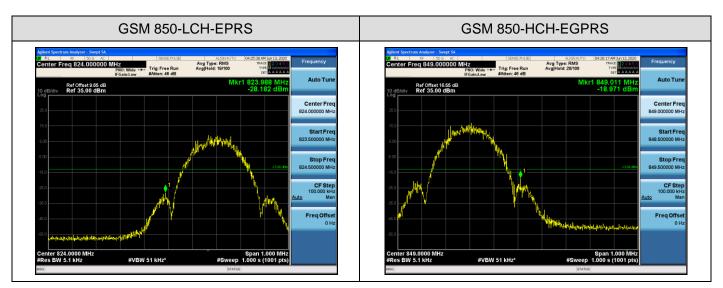
- 1. All out of band emissions are measured with an analyzer spectrum connected to the antenna terminal of the EUT while the EUT at its maximum duty cycle, at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration
- 2. The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
- 4. Span was set large enough so as to capture all out of band emissions near the band edge.
- 5. RBW>1% of the emission bandwidth, VBW >= $3 \times RBW$, Detector=RMS, Number of points>= $2 \times Span/RBW$, Trace mode=max hold, Sweep time=auto couple, and the trace was allowed to stabilize

8.2 PROVISIONS APPLICABLE

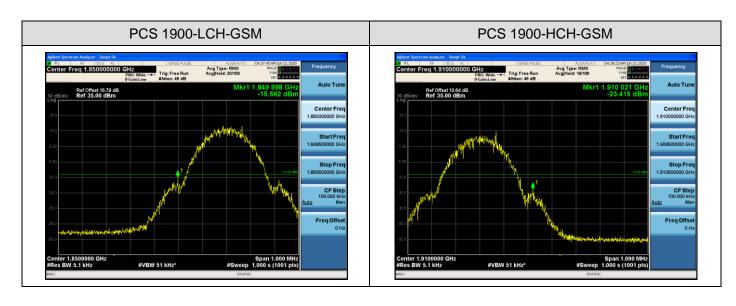
As Specified in FCC rules of 22.917(a) < 24.238(a)and KDB 971168 D1 V03R01.

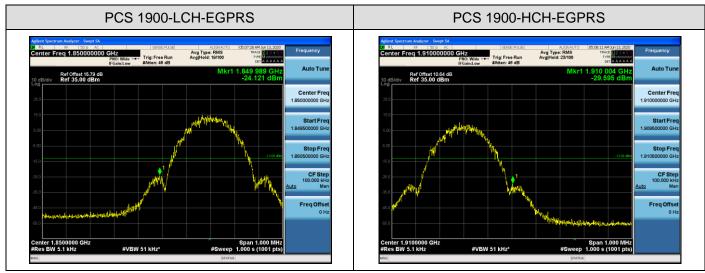
Page 35 of 71


8.3 MEASUREMENT RESULT

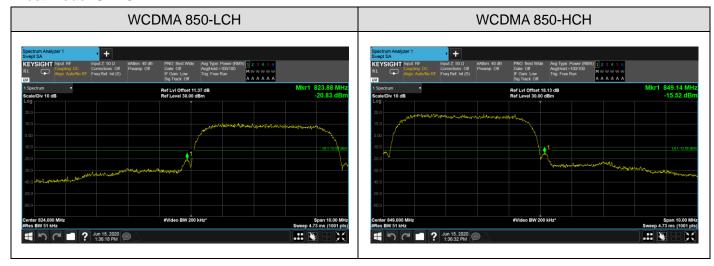

Test Results

For GSM


Test Band=GSM 850/PCS 1900


Test Mode=GSM/EGPRS

Report No.: AGC09966200406FE02 Page 36 of 71



Report No.: AGC09966200406FE02 Page 37 of 71

For WCDMA

Test Band=WCDMA850/WCDMA1900

Test Mode=UMTS

Page 38 of 71

9. SPURIOUS EMISSION

9.1 CONDUCTED SPURIOUS EMISSION

9.1.1MEASUREMENT METHOD

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. The level of the carrier and the various conducted spurious and harmonic frequency is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration.
- 2. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 9 GHz.
- 3. Determine EUT transmit frequencies: the following typical channelswere chosen to conducted emissions testing.

Report No.: AGC09966200406FE02 Page 39 of 71

Typical Channels for testing of GSM 850		
Channel	Frequency (MHz)	
128	824.2	
190	836.6	
251	848.8	

Typical Channels for testing of PCS 1900		
Channel	Frequency (MHz)	
512	1850.2	
661	1880.0	
810	1909.8	

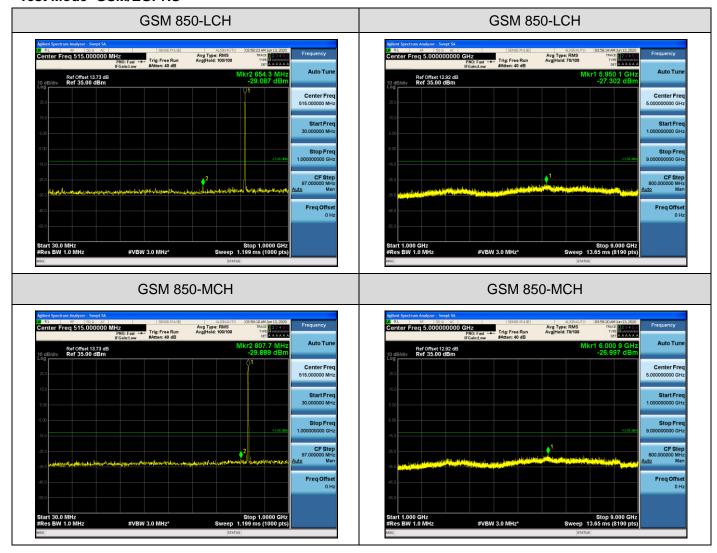
Typical Channels for testing of UMTS band II		
Channel	Frequency (MHz)	
9262	1852.4	
9400	1880	
9538	1907.6	

Typical Channels for testing of UMTS band V	
Channel	Frequency (MHz)
4132	826.4
4182	836.4
4233	846.6

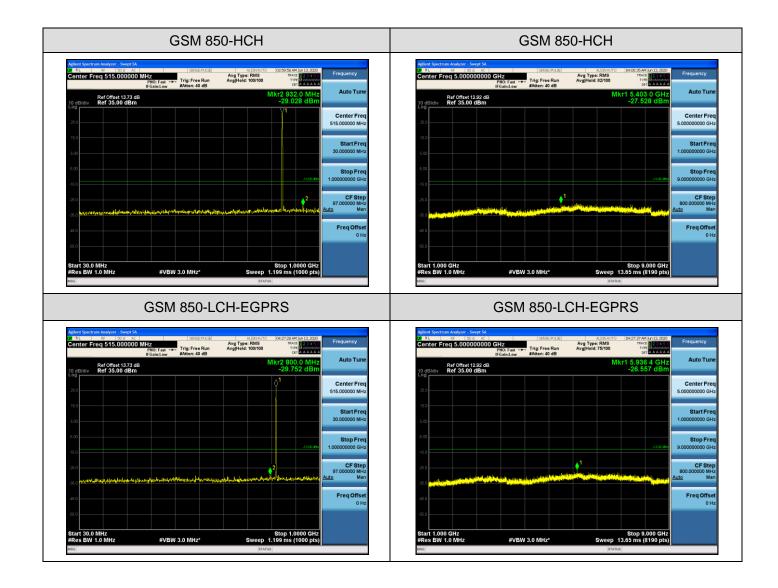
Page 40 of 71

9.1.2 PROVISIONS APPLICABLE

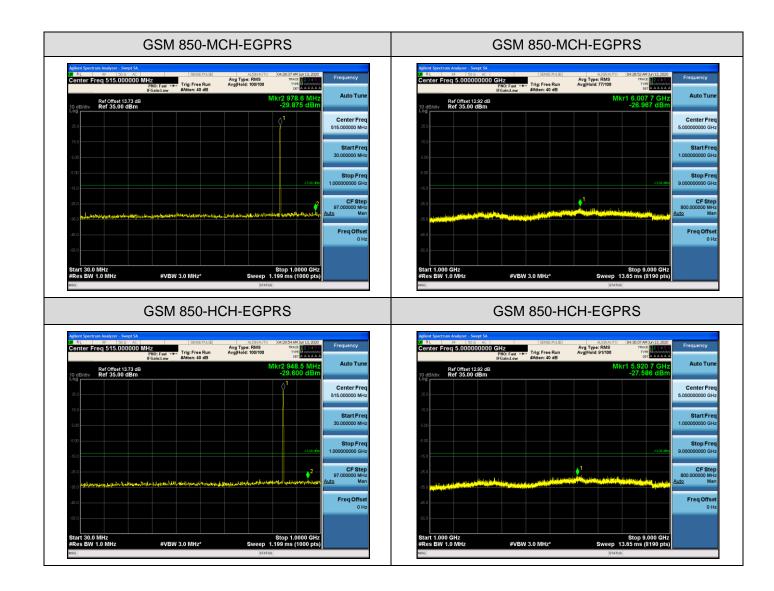
On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

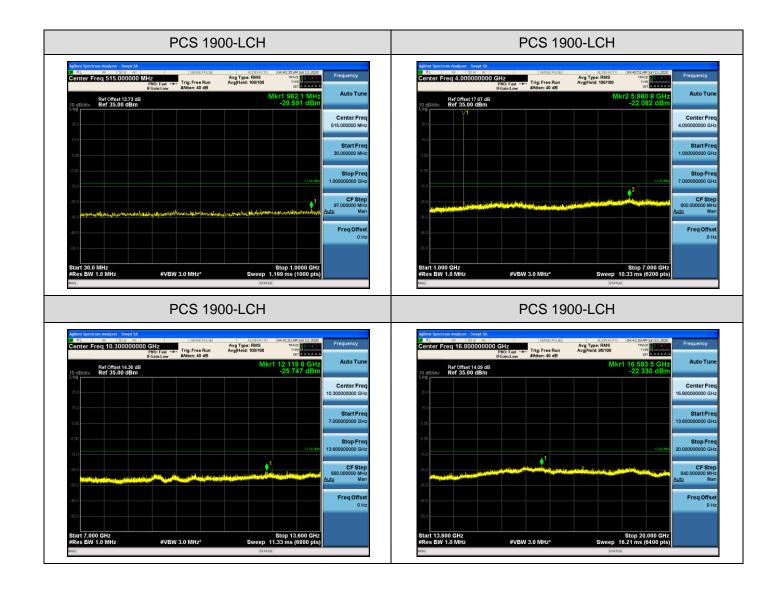

Page 41 of 71

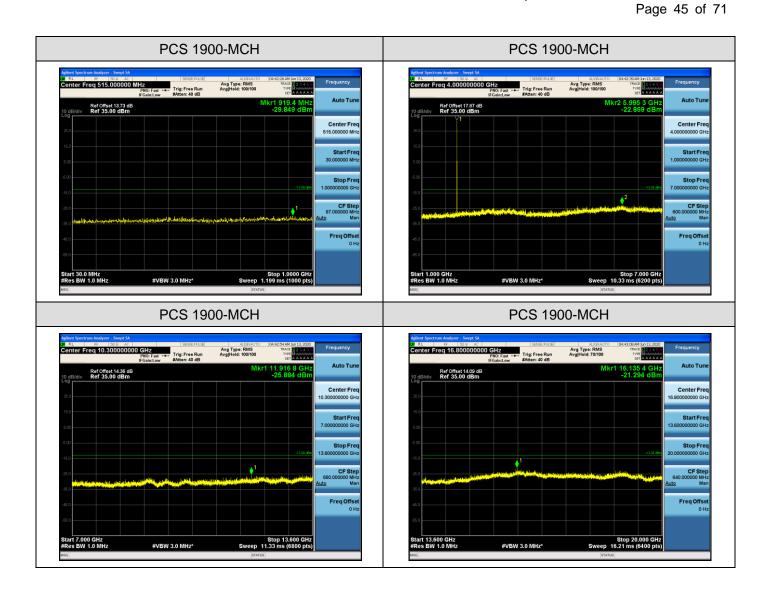
9.1.3MEASUREMENT RESULT

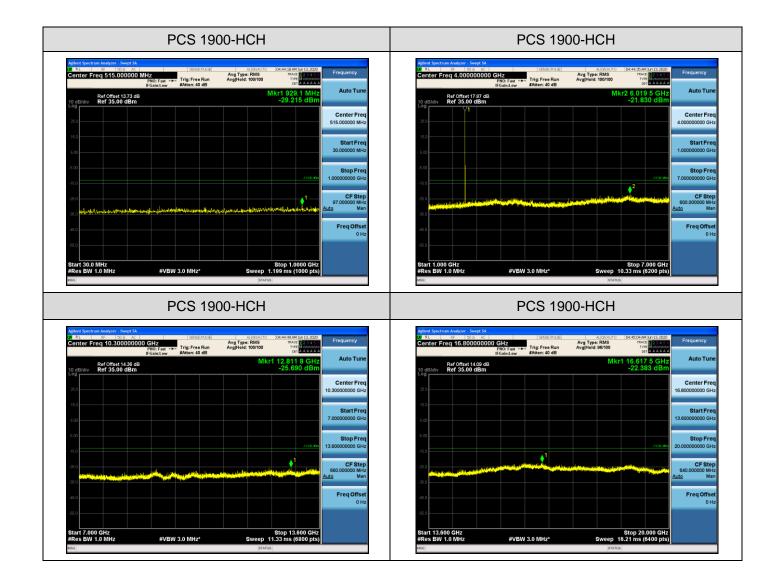

Test Results

Test Band=GSM 850/PCS1900

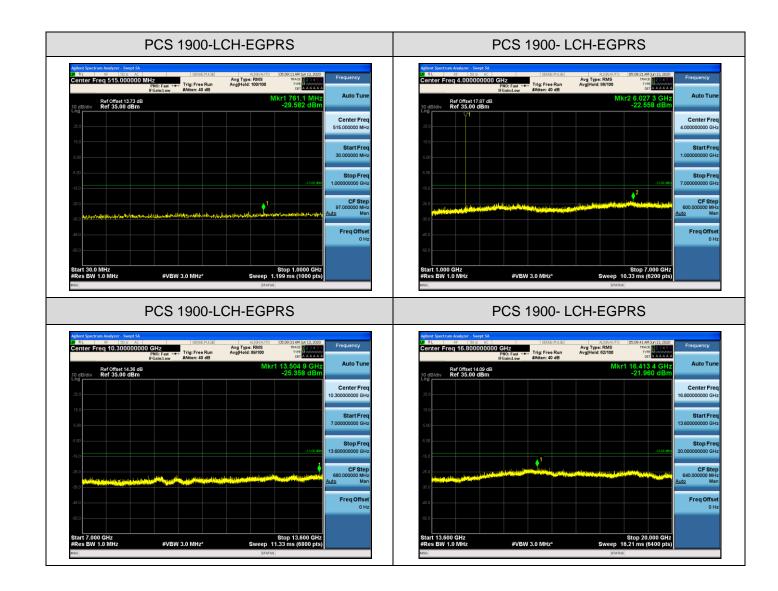

Test Mode=GSM/EGPRS

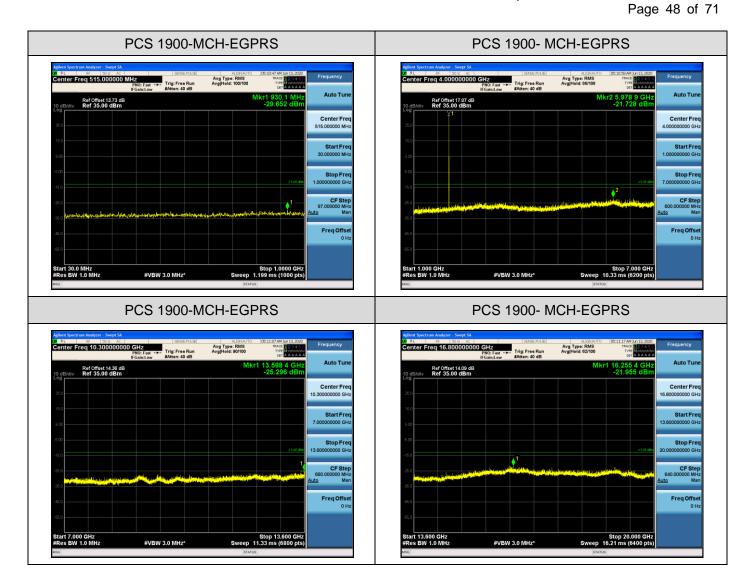



Report No.: AGC09966200406FE02 Page 42 of 71



Report No.: AGC09966200406FE02 Page 43 of 71





Report No.: AGC09966200406FE02 Page 47 of 71

