FCC Test Report

Report No.: AGC09966200406FE08

FCC ID : 2ALP3X2

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: Smart phone

BRAND NAME : kodak

MODEL NAME : X2

APPLICANT : Industria Fuegina de Relojeria Electronica S.A.

DATE OF ISSUE : Jun. 18, 2020

STANDARD(S) : FCC Part 15.247

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 55

REPORT REVISE RECORD

Report Version	Report Version Revise Time Iss		Valid Version	Notes
V1.0	/	Jun. 18, 2020	Valid	Initial Release

Page 3 of 55

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE		5
2.GENERAL INFORMATION		6
2.1PRODUCT DESCRIPTION		6
2.2. TABLE OF CARRIER FREQUENCYS		6
2.3 RELATED SUBMITTAL(S)/GRANT(S)		7
2.4TEST METHODOLOGY		7
2.5 SPECIAL ACCESSORIES		7
2.6 EQUIPMENT MODIFICATIONS		7
3. MEASUREMENT UNCERTAINTY		8
4. DESCRIPTION OF TEST MODES		9
5. SYSTEM TEST CONFIGURATION		. 10
5.1 CONFIGURATION OF TESTED SYSTEM		. 10
5.2 EQUIPMENT USED IN TESTED SYSTEM		. 10
5.3. SUMMARY OF TEST RESULTS		. 10
6. TEST FACILITY		. 11
7. PEAK OUTPUT POWER		. 12
7.1. MEASUREMENT PROCEDURE		. 12
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFI	GURATION)	. 12
7.3. LIMITS AND MEASUREMENT RESULT		. 13
8. 6 DB BANDWIDTH		. 17
8.1. MEASUREMENT PROCEDURE		. 17
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFI	GURATION)	. 17
8.3. LIMITS AND MEASUREMENT RESULTS		. 17
9. CONDUCTED SPURIOUS EMISSION		. 21
9.1. MEASUREMENT PROCEDURE		. 21
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFI	GURATION)	. 21
9.3. MEASUREMENT EQUIPMENT USED		. 21
9.4. LIMITS AND MEASUREMENT RESULT		. 21
10. MAXIMUM CONDUCTED OUTPUT POWER SPI	ECTRAL DENSITY	. 30
10.1 MEASUREMENT PROCEDURE		. 30
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONF	IGURATION)	. 30
10.3 MEASUREMENT EQUIPMENT USED		. 30
10.4 LIMITS AND MEASUREMENT RESULT		. 30
11. RADIATED EMISSION		. 34

Page 4 of 55

11.1. MEASUREMENT PROCEDURE	34
11.2. TEST SETUP	35
11.3. LIMITS AND MEASUREMENT RESULT	36
11.4. TEST RESULT	36
12. FCC LINE CONDUCTED EMISSION TEST	50
12.1. LIMITS OF LINE CONDUCTED EMISSION TEST	50
12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	50
12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	51
12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	51
12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	52
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	54

Page 5 of 55

1. VERIFICATION OF COMPLIANCE

Applicant	INDUSTRIA FUEGUINA DE RELOJERIA ELECTRONICA SA		
Address	SARMIENTO 2920,9420, RIO GRANDE, Argentina		
Manufacturer	Luzhou Maisui Smart Technology Co., Ltd.		
Address	No.19, Section 5, Jiugu Avenue, Luzhou high-tech Zone, Sichuan Province,China		
Factory	Industria Fuegina de Relojeria Electronica S.A.		
Address	Sarmiento 2920, CP 9420), Rio Grande, Tierra del Fuego, Argentina		
Product Designation	Smart phone		
Brand Name	kodak		
Test Model	X2		
Date of test	May 22, 2020~Jun. 18, 2020		
Deviation	No any deviation from the test method		
Condition of Test Sample	Normal		
Test Result	Pass		
Report Template	AGCRT-US-BLE/RF		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

Prepared By	Calin Lin	
	Calvin Liu (Project Engineer)	Jun. 18, 2020
Reviewed By	Max Zhang	
•	Max Zhang (Reviewer)	Jun. 18, 2020
Approved By	forrest les	
•	Forrest Lei Authorized Officer	Jun. 18, 2020

Page 6 of 55

2.GENERAL INFORMATION

2.1PRODUCT DESCRIPTION

The EUT is designed as a "Smart phone". It is designed by way of utilizing the GFSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz		
RF Output Power	1M:-3.105dBm(Max)		
Ki Output i Owei	2M: -3.246dBm(Max)		
Bluetooth Version	V5.0		
Madulation	BR □GFSK, EDR □π /4-DQPSK, □8DPSK		
Modulation	BLE ⊠GFSK 1Mbps ⊠GFSK 2Mbps		
Number of channels	40 Channel		
Antenna Designation	PIFA Antenna(Comply with requirements of the FCC part 15.203)		
Antenna Gain	1.10dBi		
Hardware Version	E957_MAIN_PCB_V1.0		
Software Version	TE9572_KODAK_62_Q0_V0.1.6.1_S200507		
Power Supply	DC 3.8V by Built-in Li-ion Battery		

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency	
	0	2402MHZ	
	1	2404MHZ	
2400~2483.5MHZ	:	·	
	38	2478 MHZ	
	39	2480 MHZ	

Page 7 of 55

2.3 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for **FCC ID: 2ALP3X2** filing to comply with the FCC Part 15.247 requirements.

2.4TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant. d

Page 8 of 55

3. MEASUREMENT UNCERTAINTY

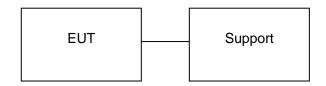
The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, Uc = ±0.8dB
- Uncertainty of RF power density, conducted, Uc = ±2.6dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ±2 %

Page 9 of 55

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel TX (RATE 1M)
2	Middle channel TX (RATE 1M)
3	High channel TX (RATE 1M)
4	Low channel TX (RATE 2M)
5	Middle channel TX (RATE 2M)
6	High channel TX (RATE 2M)


Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

Page 10 of 55

5. SYSTEM TEST CONFIGURATION

5.1 CONFIGURATION OF TESTED SYSTEM

5.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment Model No.		ID or Specification	Remark
1	Smart phone	X2	2ALP3X2	EUT
2	Adapter	FJ-SW266B50502000A	Input: AC 100-240V, 50/60Hz, 0.4A Output: DC 5V, 2000mA	AE
3	3 Battery L63464		DC3.8V 3900mAh	AE
4	4 USB Cable N/A		N/A	AE
5	5 Earphone N/A		N/A	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(3)	Peak Output Power	Compliant
15.247 (a)(2)	6 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.247 (e)	Maximum Conducted Output Power Density	Compliant
15.209	Radiated Emission	Compliant
15.207	Conducted Emission	Compliant

Page 11 of 55

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Com Fuhai Street, Bao'an District, Shenzhen, Guangdong, China			
Designation Number	CN1259		
FCC Test Firm Registration Number	975832		
A2LA Cert. No.	5054.02		
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA		

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

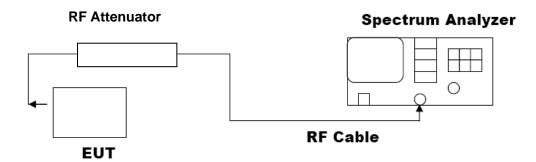
1201 24011 1112111 01 0011200122 21111001011 1201						
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due	
TEST RECEIVER	R&S	ESPI	101206	May 15, 2020	May 14, 2022	
LISN	R&S	ESH2-Z5	100086	Aug. 26, 2019	Aug. 25, 2020	
Test software	R&S	ES-K1(Ver.V1. 71)	N/A	N/A	N/A	

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	May 15, 2020	May 14, 2022
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 12, 2019	Dec. 11, 2020
2.4GHz Fliter	EM Electronics	2400-2500MHz	N/A	Feb. 23, 2020	Feb. 22, 2022
Attenuator	ZHINAN	E-002	N/A	Sep. 09, 2019	Sep. 08, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 09, 2019	Sep. 08, 2021
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	May 22, 2020	May 21, 2022
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 17, 2019	May. 16, 2021
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 15, 2019	Oct. 14, 2020
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 09, 2019	Jan. 08, 2021
Test software	FARA	EZ-EMC (Ver RA-03A)	N/A	N/A	N/A

Page 12 of 55

7. PEAK OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW≥DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

Page 13 of 55

7.3. LIMITS AND MEASUREMENT RESULT

1M

PEAK OUTPUT POWER MEASUREMENT RESULT					
	FOR GFSK MOUDULATION				
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail		
2.402	-4.380	30	Pass		
2.440	-3.105	30	Pass		
2.480	-4.648	30	Pass		

CH19

Page 15 of 55

2M

PEAK OUTPUT POWER MEASUREMENT RESULT				
	FOR GFSK MOUDULAT	TON		
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail	
2.402	-4.436	30	Pass	
2.440	-3.246	30	Pass	
2.480	-4.747	30	Pass	

CH19

Page 17 of 55

8. 6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

8.3. LIMITS AND MEASUREMENT RESULTS

1M

LIMITS AND MEASUREMENT RESULT				
Ampliachia Limita	Applicable Limits			
Applicable Limits	Test Data (kHz)		Criteria	
>500KHZ	Low Channel	669.8	PASS	
	Middle Channel	671.7	PASS	
	High Channel	669.9	PASS	

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Page 18 of 55

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 19 of 55

2M

LIMITS AND MEASUREMENT RESULT				
Applicable Limite	Applicable Limits			
Applicable Limits	Test Da	ta (kHz)	Criteria	
>500KHZ	Low Channel	1176	PASS	
	Middle Channel	1169	PASS	
	High Channel	1165	PASS	

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Page 20 of 55

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 21 of 55

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

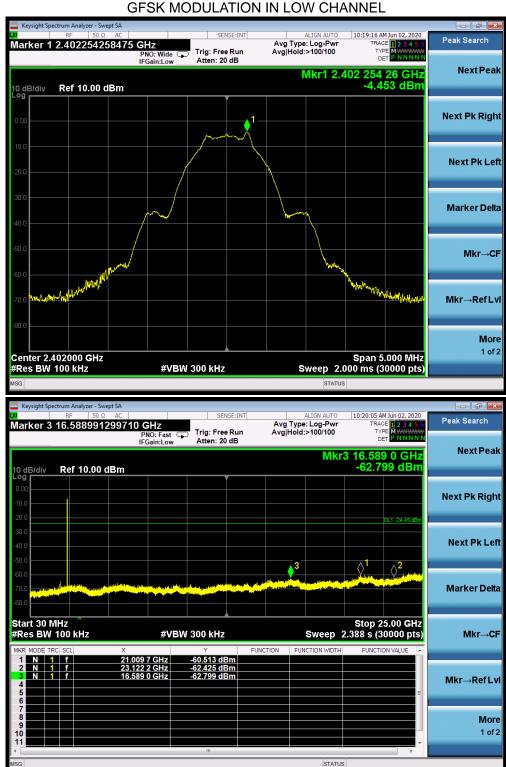
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

9.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT			
A	Measurement Result		
Applicable Limits	Test Data	Criteria	
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS	

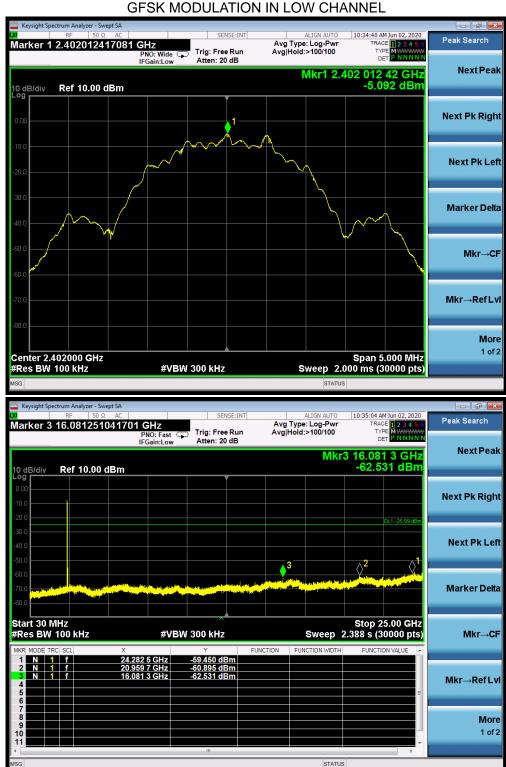
Page 22 of 55

1M
TEST RESULT FOR ENTIRE FREQUENCY RANGE

Page 23 of 55

GFSK MODULATION IN MIDDLE CHANNEL

Page 24 of 55


GFSK MODULATION IN HIGH CHANNEL

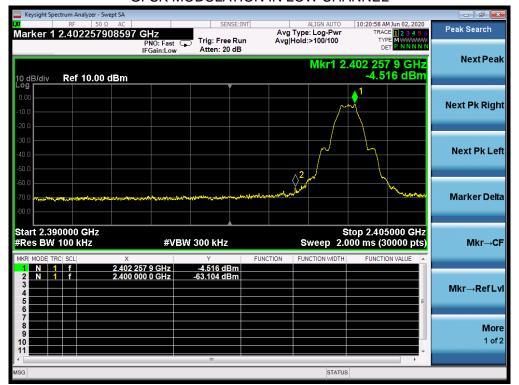
Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.

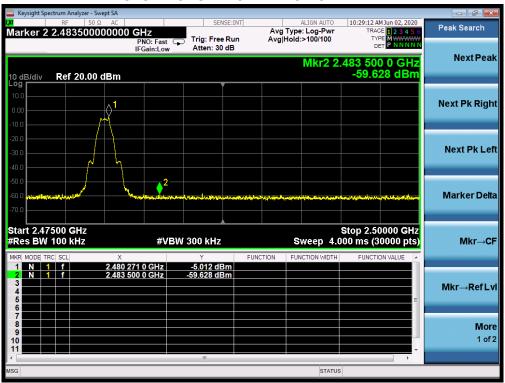
Page 25 of 55

2M
TEST RESULT FOR ENTIRE FREQUENCY RANGE

GFSK MODULATION IN MIDDLE CHANNEL

Page 27 of 55

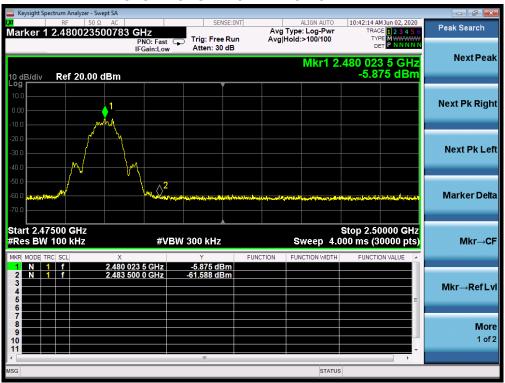

GFSK MODULATION IN HIGH CHANNEL


Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.

Page 28 of 55

1M
TEST RESULT FOR BAND EDGE
GFSK MODULATION IN LOW CHANNEL

GFSK MODULATION IN HIGH CHANNEL



Page 29 of 55

2M
TEST RESULT FOR BAND EDGE
GFSK MODULATION IN LOW CHANNEL

GFSK MODULATION IN HIGH CHANNEL

Page 30 of 55

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

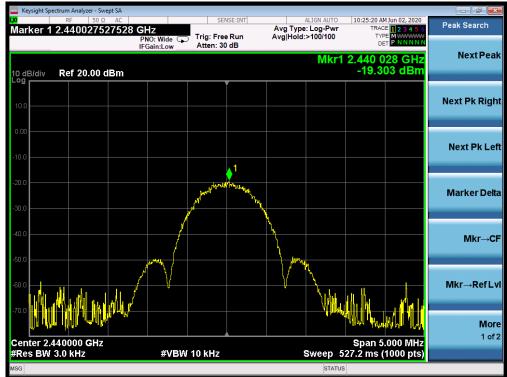
Refer To Section 7.2.

10.3 MEASUREMENT EQUIPMENT USED

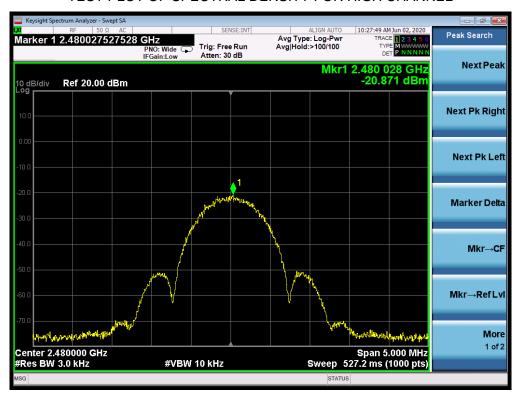
Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

1M


Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-20.486	8	Pass
Middle Channel	-19.303	8	Pass
High Channel	-20.871	8	Pass

TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



Page 31 of 55

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

Page 32 of 55

2M

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-23.027	8	Pass
Middle Channel	-21.838	8	Pass
High Channel	-23.387	8	Pass

TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

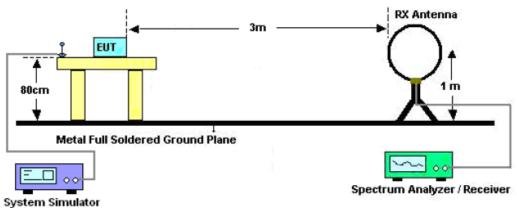
Page 33 of 55

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

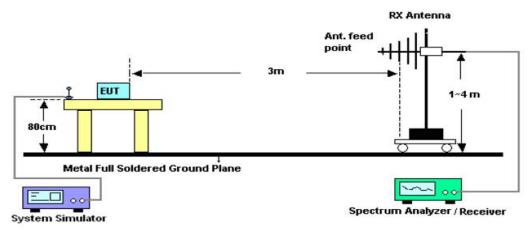
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

Page 34 of 55

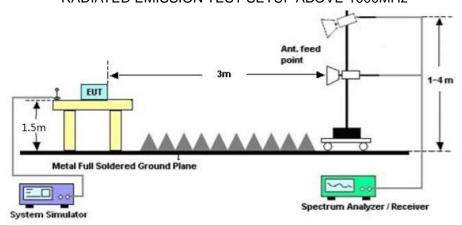
11. RADIATED EMISSION


11.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


Page 35 of 55

11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 36 of 55

11.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

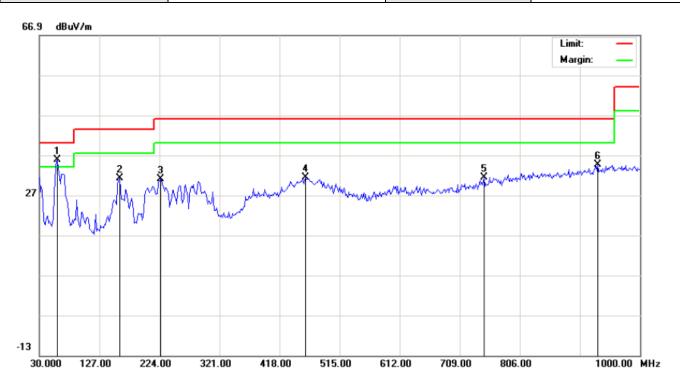
11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

Page 37 of 55

RADIATED EMISSION BELOW 1GHZ


EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		156.0999	11.11	19.20	30.31	43.50	-13.19	peak			
2		211.0666	14.55	16.71	31.26	43.50	-12.24	peak			
3	*	479.4332	9.38	24.58	33.96	46.00	-12.04	peak			
4		576.4333	6.32	26.49	32.81	46.00	-13.19	peak			
5		812.4666	2.87	30.57	33.44	46.00	-12.56	peak			
6		966.0499	2.31	32.27	34.58	54.00	-19.42	peak		·	

Page 38 of 55

EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	59.1000	16.85	18.95	35.80	40.00	-4.20	peak			
2		159.3333	12.03	19.19	31.22	43.50	-12.28	peak			
3		225.6167	13.35	17.64	30.99	46.00	-15.01	peak			
4		460.0333	7.12	24.19	31.31	46.00	-14.69	peak			
5		747.8000	2.26	29.23	31.49	46.00	-14.51	peak			
6		932.1000	2.59	31.98	34.57	46.00	-11.43	peak			

RESULT: PASS

Note:

- 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.
- 2. All test modes had been tested. The mode 1 is the worst case and recorded in the report.

Page 39 of 55

RADIATED EMISSION ABOVE 1GHZ

EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.011	49.49	0.08	49.57	74.00	-24.43	peak
4804.011	41.33	0.08	41.41	54.00	-12.59	AVG
7206.022	47.31	2.21	49.52	74.00	-24.48	peak
7206.022	39.54	2.21	41.75	54.00	-12.25	AVG
emark:						
actor = Anter	nna Factor + Cable	e Loss – Pre-	amplifier			

EUT	Smart phone	Model Name	Smart phone
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.011	50.13	0.08	50.21	74.00	-23.79	peak
4804.011	40.74	0.08	40.82	54.00	-13.18	AVG
7206.022	48.15	2.21	50.36	74.00	-23.64	peak
7206.022	38.45	2.21	40.66	54.00	-13.34	AVG
emark:						

Page 40 of 55

EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type				
4880.005	48.96	0.14	49.10	74.00	-24.90	peak				
4880.005	42.81	0.14	42.95	54.00	-11.05	AVG				
7320.140	47.36	2.36	49.72	74.00	-24.28	peak				
7320.140	40.15	2.36	42.51	54.00	-11.49	AVG				
Remark:	emark:									
Factor = Anter	nna Factor + Cabl	e Loss – Pre-	amplifier.			·				

EUT	Smart phone	Model Name	Smart phone
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4880.050	49.69	0.14	49.83	74.00	-24.17	peak
4880.050	43.11	0.14	43.25	54.00	-10.75	AVG
7320.080	47.36	2.36	49.72	74.00	-24.28	peak
7320.080	41.12	2.36	43.48	54.00	-10.52	AVG
Remark:						
-actor = Anter	nna Factor + Cable	Loss – Pre-	amplifier.			

Page 41 of 55

EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.012	51.23	0.22	51.45	74.00	-22.55	peak
4960.012	40.28	0.22	40.50	54.00	-13.50	AVG
7440.027	49.31	2.64	51.95	74.00	-22.05	peak
7440.027	37.45	2.64	40.09	54.00	-13.91	AVG
lemark:						

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

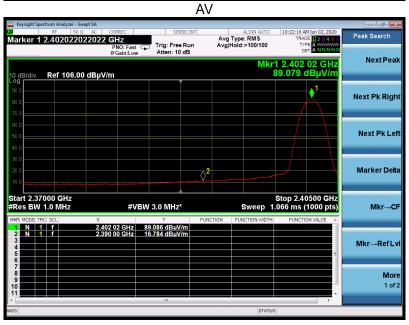
EUT	Smart phone	Model Name	Smart phone
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.013	49.78	0.22	50.00	74	-24.00	peak
4960.013	41.69	0.22	41.91	54	-12.09	AVG
7440.027	47.14	2.64	49.78	74	-24.22	peak
7440.027	38.39	2.64	41.03	54	-12.97	AVG
Remark:						
actor = Antenna Factor + Cable Loss – Pre-amplifier.						

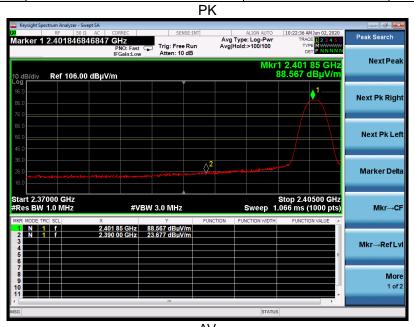
RESULT: PASS

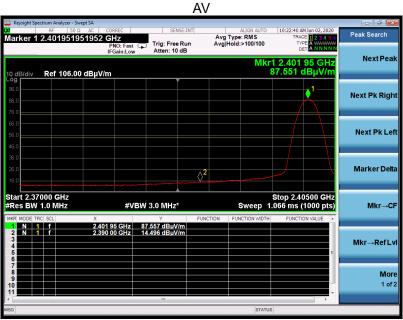
Note:

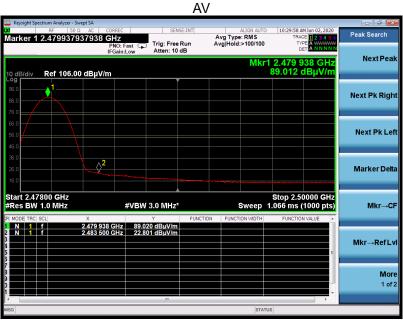
- 1. Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report.
- 2. Factor = Antenna Factor + Cable loss Amplifier gain, Over=Measure-Limit.

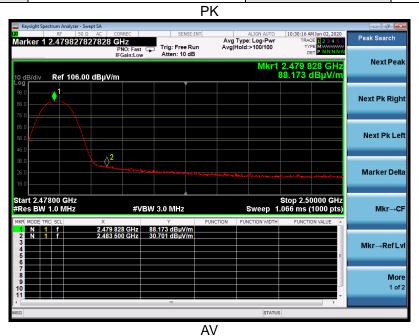

 The "Factor" value can be calculated automatically by software of measurement system.
- 3. BLE mode is the worst mode when the rate is 1M, only reflects the data of this mode

Page 42 of 55


1M
TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

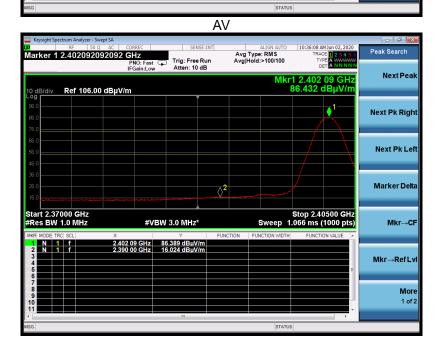

	1201 112021 1 011 1120 1110 1120 1120 1				
EUT	Smart phone	Model Name	X2		
Temperature	25° C	Relative Humidity	53%		
Pressure	960hPa	Test Voltage	Normal Voltage		
Test Mode	Mode 1	Antenna	Horizontal		


EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical



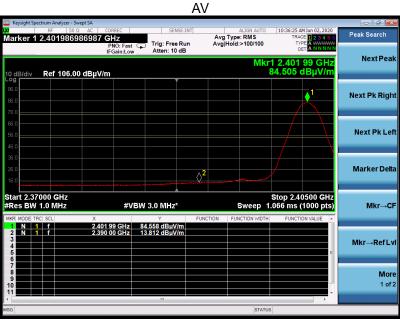
EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

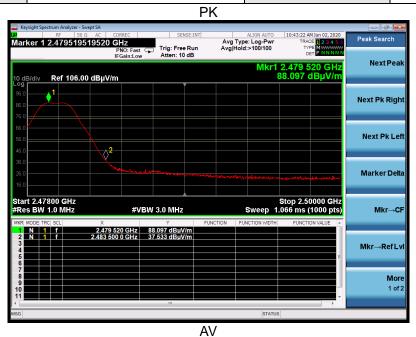

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

Page 46 of 55

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS


EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal


EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical


EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Horizontal

Page 49 of 55

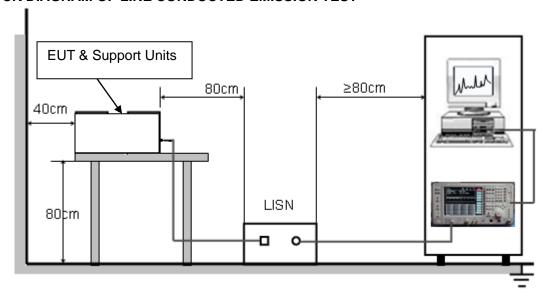
EUT	Smart phone	Model Name	X2
Temperature	25° C	Relative Humidity	53%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Vertical

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

Page 50 of 55

12. FCC LINE CONDUCTED EMISSION TEST


12.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Frequency	Maximum RF Line Voltage				
	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

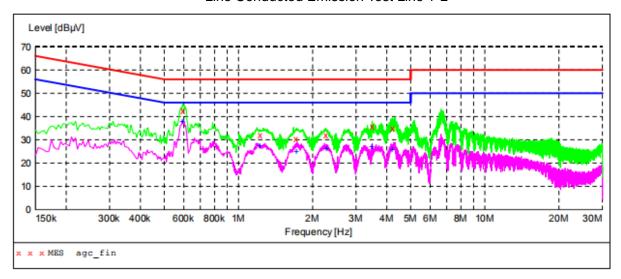
Page 51 of 55

12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a Smart phone op system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by PC which received AC120V/60Hz power by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

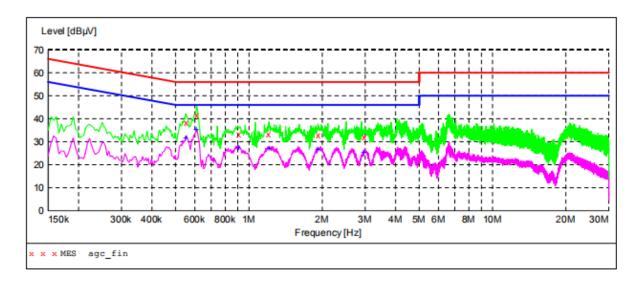
- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

Page 52 of 55

12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT: "agc fin"


202	0/5/29 10	:58						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.594000	42.40	10.3	56	13.6	QP	L1	GND
	1.230000	32.10	10.3	56	23.9	QP	L1	GND
	1.718000	30.40	10.3	56	25.6	QP	L1	GND
	2.274000	32.10	10.3	56	23.9	QP	L1	GND
	3.490000	35.70	10.4	56	20.3	QP	L1	GND
	4.222000	35.00	10.4	56	21.0	QP	L1	GND

MEASUREMENT RESULT: "agc_fin2"

2	020/5/29 10:	58						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.594000	37.70	10.3	46	8.3	AV	L1	GND
	1.218000	27.40	10.3	46	18.6	AV	L1	GND
	1.718000	25.10	10.3	46	20.9	AV	L1	GND
	2.274000	26.10	10.3	46	19.9	AV	L1	GND
	3.490000	27.10	10.4	46	18.9	AV	L1	GND
	4.222000	25.70	10.4	46	20.3	AV	L1	GND

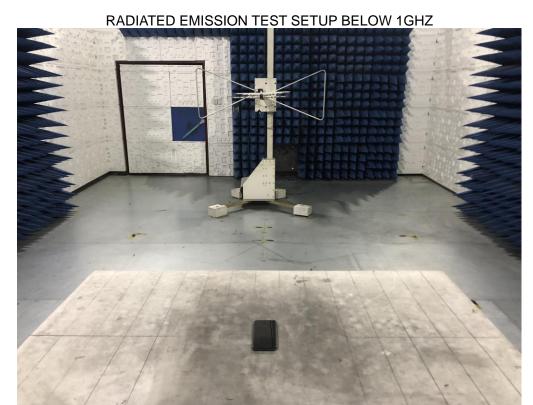
Page 53 of 55

Line Conducted Emission Test Line 2-N

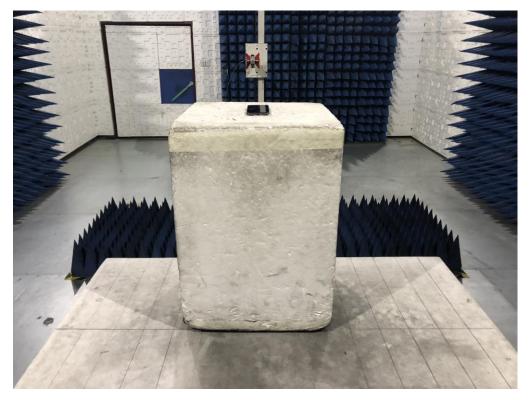
MEASUREMENT RESULT: "agc_fin"

2020/5/29	10:30						
Frequenc	cy Level	Transd	Limit	Margin	Detector	Line	PE
M	Hz dBuV	/ dB	dΒμV	dB			
0.5540	00 38.40	10.3	56	17.6	QP	N	GND
0.6100	00 41.70	10.3	56	14.3	QP	N	GND
0.9140	00 33.30	10.3	56	22.7	QP	N	GND
1.2100	00 33.20	10.3	56	22.8	QP	N	GND
1.93400	00 32.90	10.3	56	23.1	QP	N	GND
2.9860	00 31.90	10.4	56	24.1	QP	N	GND

MEASUREMENT RESULT: "agc_fin2"

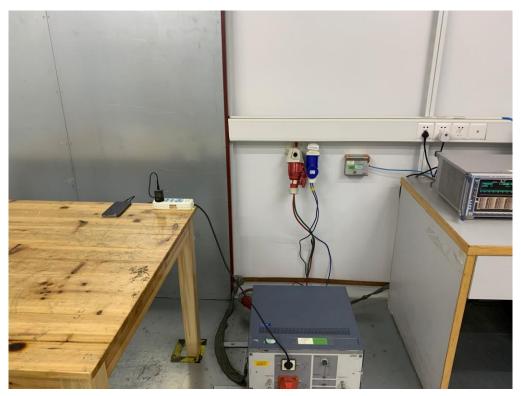

2020/5/29 10:30								
Frequen	cy Level	Transd	Limit	Margin	Detector	Line	PE	
M	Hz dBµV	dB	dΒμV	dB				
0.5540	00 31.80	10.3	46	14.2	AV	N	GND	
0.6100	00 35.20	10.3	46	10.8	AV	N	GND	
0.9100	00 27.50	10.3	46	18.5	AV	N	GND	
1.2100	00 27.10	10.3	46	18.9	AV	N	GND	
1.9260	00 26.80	10.3	46	19.2	AV	N	GND	
2.9660	00 25.50	10.4	46	20.5	AV	N	GND	

RESULT: PASS


Note: All the test modes had been tested, the mode 1 was the worst case. Only the data of the worst case would be record in this test report.

Page 54 of 55

APPENDIX A: PHOTOGRAPHS OF TEST SETUP



RADIATED EMISSION TEST SETUP ABOVE 1GHZ

Report No.: AGC09966200406FE08 Page 55 of 55

CONDUCTED EMISSION TEST SETUP

----END OF REPORT----