

MPE Calculation

Applicant:	Aiphone Co., Ltd
Address:	2-18, Jinno-cho, Atsuta-ku, Nagoya, Aichi, Japan
Product:	Wireless Video Intercom - Outdoor Camera unit
FCC ID:	2ALNEWLDAE1
Model No.:	WL-DA.E1
Reference RF report #	KSZ2018060101J

According to subpart 15.319(c)(e) and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1,500	/	/	f/1500	30		
1,500–100,000	1	1	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm²);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

DECT

Maximum peak output power at antenna input terminal (dBm):	18.84
Maximum peak output power at antenna input terminal (mW):	76.56
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	0
Maximum Antenna Gain (numeric):	1
The worst case is power density at predication frequency at 20 cm (mW/cm²):	0.0152
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.0

 $0.0152 \text{ (mW/cm}^2) < 1 \text{ (mW/cm}^2)$

Result: Compliant

TUV SUD China, Shenzhen Branch

Reviewed by:

John Zhi/EMC Section Manager

Date: 2018-08-31

Johnshi

Prepared by:

Alan Xiong/EMC Project Engineer

Date:2018-08-31

Alem Xzong