

RADIO TEST REPORT

Test Report No. 14277402H-A-R1

Customer	AIPHONE CO., LTD.
Description of EUT	Residential/Tenant station
Model Number of EUT	GT-1C7W-L V2 (Tested model) GT-1C7W V2 (Variant Model)
FCC ID	2ALNEGT1C7WV2
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied (Refer to SECTION 3)
Issue Date	October 6, 2022
Remarks	-

Remarks -	
Representative Test Engineer	Approved By
1. Nishida	T. Shimada
Takumi Nishida Engineer	Takumi Shimada Engineer
	IAC-MRA ACCREDITED
_	CERTIFICATE 5107.02
	yed is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 20.0

Test Report No. : 14277402H-A-R1
Page : 2 of 55

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.

 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the applicant for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14277402H-A

This report is a revised version of 14277402H-A. 14277402H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14277402H-A-R1	June 28, 2022	-
(Original)			
1	14277402H-A-R1	October 6, 2022	Correction of the urethane platform size for below 1 GHz in SECTION 6; From 0.5 m by 1.0 m to 1.0 m by 1.5 m
1	14277402H-A-R1	October 6, 2022	Addition of Integration method description in Detector: AV for SECTION 6.

Test Report No. Page

: 14277402H-A-R1

: 3 of 55

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard	
AC	Alternating Current IEC		International Electrotechnical Commission	
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers	
AM	Amplitude Modulation	IF	Intermediate Frequency	
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference	
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada	
Ant, ANT	Antenna	ISO	International Organization for Standardization	
AP	Access Point	JAB	Japan Accreditation Board	
ASK	Amplitude Shift Keying	LAN	Local Area Network	
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System	
AV	Average	MCS	Modulation and Coding Scheme	
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement	
BR	Bluetooth Basic Rate	N/A	Not Applicable	
BT	Bluetooth	NIST	National Institute of Standards and Technology	
BT LE	Bluetooth Low Energy	NS	No signal detect.	
BW	BandWidth	NSA	Normalized Site Attenuation	
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program	
CCK	Complementary Code Keying	OBW	Occupied Band Width	
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing	
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter	
CW	Continuous Wave	PCB	Printed Circuit Board	
DBPSK	Differential BPSK	PER	Packet Error Rate	
DC	Direct Current	PHY	Physical Layer	
D-factor	Distance factor	PK	Peak	
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise	
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence	
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density	
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation	
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak	
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying	
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width	
EN	European Norm	RDS	Radio Data System	
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment	
EU	European Union	RF	Radio Frequency	
EUT	Equipment Under Test	RMS	Root Mean Square	
Fac.	Factor	RSS	Radio Standards Specifications	
FCC	Federal Communications Commission	Rx	Receiving	
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer	
FM	Frequency Modulation	SG	Signal Generator	
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio	
FSK	Frequency Shift Keying	TR	Test Receiver	
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting	
GNSS	Global Navigation Satellite System	VBW	Video BandWidth	
GPS	Global Positioning System	Vert.	Vertical	
Hori.	Horizontal	WLAN	Wireless LAN	

: 14277402H-A-R1 : 4 of 55

CONTENTS PAGE SECTION 1: Equipment Under Test (EUT)......5 **SECTION 2: SECTION 3: SECTION 4:** Operation of EUT during testing9 **SECTION 5:** Conducted Emission......13 **SECTION 6: SECTION 7:** APPENDIX 1: Maximum Peak Output Power 23 Test Instruments......49 **APPENDIX 2:** Photographs of Test Setup51 **APPENDIX 3:**

Test Report No. : 14277402H-A-R1
Page : 5 of 55

SECTION 1: Customer Information

Company Name	AIPHONE CO., LTD.
Address	2-18 Jinno-cho, Atsuta-ku, Nagoya, Aichi 456-8666, Japan
Telephone Number	+81-52-681-8721
Contact Person	Tomohito Abe

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Residential/Tenant station			
Model Number	GT-1C7W-L V2 (Tested model)			
	GT-1C7W V2 (Variant Model)			
Serial Number	Refer to SECTION 4.2			
Condition	Production prototype			
	(Not for Sale: This sample is equivalent to mass-produced items.)			
Modification	No Modification by the test lab			
Receipt Date	May 9 and 15, 2022			
Test Date	May 9 to 23, 2022			

2.2 Product Description

General Specification

Rating	DC 24 V (Residential/Tenant station) AC 100 V to 240 V, 50 / 60 Hz (AC Adapter)
Operating temperature	0 deg. C to 40 deg. C

Radio Specification

WLAN (IEEE802.11b/11g/11n-20)

Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2462 MHz
Type of Modulation	DSSS, OFDM
Antenna Type	Dipole antenna*
Antenna Gain	3.1 dBi (Antenna A) / 3.0 dBi (Antenna B)

^{*}Dipole antenna has two types: Antenna A and Antenna B. Those antennas do not transmit simultaneously.

Variant model

This tested model (GT-1C7W-L V2) has a variant model: GT-1C7W V2.

The difference of these models is follows

The difference of these models is follows:					
	GT-1C7W-L V2	GT-1C7W V2			
	(Tested Model)	(Variant Model)			
Hearing Coil	Presence	Absence			

They are completely identical in Radio characteristics.

Test Report No. : 14277402H-A-R1 Page : 6 of 55

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	FCC Part 15 final revised on April 1, 2022 and effective May 2, 2022
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

^{*} Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013	FCC: Section 15.207	17.71 dB, 0.37150 MHz,	Complied	-
	6. Standard test methods		Phase L, AV	a)	
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)		b)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum Peak	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Output Power	15.247	15.247(b)(3)		c)	
	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247			d)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)	1		
Spurious Emission	FCC: KDB 558074 D01	FCC: Section15.247(d)	1.3 dB	Complied#	Conducted
Restricted Band	15.247		2390.0 MHz, AV, Horizontal	e), f)	
Edges	Meas Guidance v05r02				(below 30 MHz)/
	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			Radiated
		RSS-Gen 8.9			(above 30 MHz)
		RSS-Gen 8.10			*1)

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

- a) Refer to APPENDIX 1 (data of Conducted Emission)
- b) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)
- c) Refer to APPENDIX 1 (data of Maximum Peak Output Power)
- d) Refer to APPENDIX 1 (data of Power Density)
- e) Refer to APPENDIX 1 (data of Conducted Spurious Emission)
- f) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. : 14277402H-A-R1 Page : 7 of 55

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Conducted emission

Using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.7 dB
	0.15 MHz to 30 MHz	3.3 dB

Radiated emission

Measurement	Frequency range	Uncertainty (+/-)	
distance			
3 m	9 kHz to 30 MHz		3.2 dB
10 m			3.0 dB
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	5.0 dB
	200 MHz to 1000 MHz	Horizontal	5.1 dB
		Vertical	6.2 dB
10 m	30 MHz to 200 MHz	MHz to 200 MHz Horizontal	
		Vertical	4.8 dB
	200 MHz to 1000 MHz	Horizontal	5.0 dB
		Vertical	5.0 dB
3 m	1 GHz to 6 GHz		4.9 dB
	6 GHz to 18 GHz		5.2 dB
1 m	10 GHz to 26.5 GHz		5.4 dB
	26.5 GHz to 40 GHz		5.4 dB
10 m	1 GHz to 18 GHz		5.4 dB

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

Test Report No. : 14277402H-A-R1 Page : 8 of 55

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	<u> </u> -	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. : 14277402H-A-R1 Page : 9 of 55

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

Mode	Remarks*
IEEE 802.11b (11b)	11 Mbps, PN9
IEEE 802.11g (11g)	54 Mbps, PN9
IEEE 802.11n (11n-20)	MCS 6 (Long GI), PN9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel).

Power Setting: 11b: 18 dBm (1 ch to 11 ch)

11g: 16 dBm (1 ch to 11 ch) 11n-20: 15 dBm (1 ch to 11 ch)

Software: Tera Term Version: 4.106

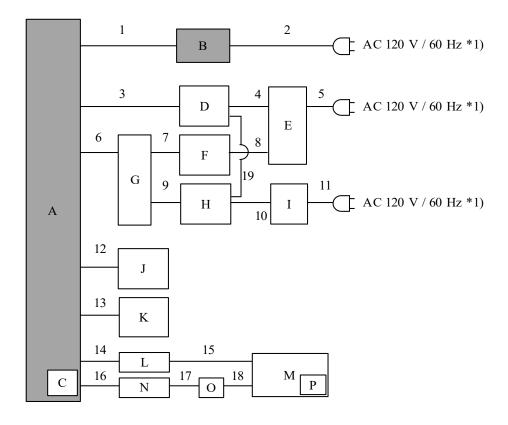
(Date: 2021.05 31, Storage location: Driven by connected PC)

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The Details Of Operating Mode(s)

Test Item	Operating Mode	Tested Antenna	Tested Frequency
Conducted Emission,	Tx 11g *1)	Antenna B	2437 MHz
Radiated Spurious Emission (Below 1 GHz),			
Conducted Spurious Emission			
99% Occupied Bandwidth,	Tx 11b	Antenna B	2412 MHz
6dB Bandwidth,			2437 MHz
Maximum Peak Output Power,			2462 MHz
Radiated Spurious Emission (Above 1 GHz),	Tx 11g	Antenna B	2412 MHz
Power Density			2437 MHz
			2462 MHz
	Tx 11n-20	Antenna B	2412 MHz
			2437 MHz
			2462 MHz


^{*}Power of the EUT was set by the software as follows;

^{*}This setting of software is the worst case.

Test Report No. : 14277402H-A-R1
Page : 10 of 55

4.2 Configuration and Peripherals

[Conducted Emission and Radiated Emission test]

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

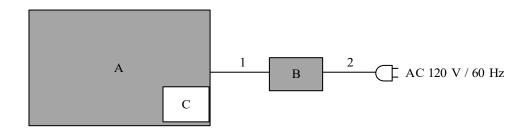
*1) The test was performed on this port.

As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
A	Residential/Tenant station	GT-1C7W-L V2	J456-GTSI-031	AIPHONE CO., LTD.	EUT
В	AC Adaptor	PS-2420	J465-230	AIPHONE CO., LTD.	EUT
С	Micro SD	V10	J465-006	BUFFALO	-
D	Video BASS Control Unit	GT-VBC	J465-160	AIPHONE CO., LTD.	-
Е	AC Adaptor	PS-2420	J465-223	AIPHONE CO., LTD.	-
F	Audio BASS Control Unit	GT-BC	J465-152	AIPHONE CO., LTD.	-
G	Jig	DP1	-	-	-
Н	Integrated collective entrance machine	GT-DMB-LVN	J465-172	AIPHONE CO., LTD.	-
I	AC Adaptor	PS-2420	J465-224	AIPHONE CO., LTD.	-
J	Doorbell SW	-	-	-	-
K	Emergency alert SW	-	-	-	-
L	Jig	DP2	-	-	-
M	Option LED Jig	-	-	-	-
N	Relay Jig	GT-RY	J465-203	AIPHONE CO., LTD.	-
О	Jig	DP3	-	-	-
P	Battery	6LF22	-	Panasonic	-

: 14277402H-A-R1 Test Report No. : 11 of 55 Page


List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.9	Unshielded	Unshielded	-
2	AC Cable	1.0 for CE*	Unshielded	Unshielded	-
		1.8 for RE*			
3	Signal Cable	2.0	Unshielded	Unshielded	-
4	DC Cable	1.0	Unshielded	Unshielded	-
5	AC Cable	1.8	Unshielded	Unshielded	-
6	Signal Cable	2.0	Unshielded	Unshielded	-
7	Signal Cable	0.5	Unshielded	Unshielded	-
8	DC Cable	1.0	Unshielded	Unshielded	-
9	Signal Cable	2.0	Unshielded	Unshielded	-
10	DC Cable	1.0	Unshielded	Unshielded	-
11	AC Cable	1.8	Unshielded	Unshielded	-
12	Signal Cable	1.0	Unshielded	Unshielded	-
13	Signal Cable	1.0	Unshielded	Unshielded	-
14	Signal Cable	0.1	Unshielded	Unshielded	-
15	Signal Cable	1.0	Unshielded	Unshielded	-
16	Signal Cable	0.1	Unshielded	Unshielded	-
17	Signal Cable	0.1	Unshielded	Unshielded	-
18	Signal Cable	1.0	Unshielded	Unshielded	-
19	Signal Cable	1.0	Unshielded	Unshielded	-

^{*}CE: Conducted Emission, RE: Radiated Emission

Test Report No. : 14277402H-A-R1 Page : 12 of 55

[Antenna Terminal Conducted]

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
A	Residential/Tenant station	GT-1C7W-L V2	J456-GTSI-030	AIPHONE CO., LTD.	EUT
В	AC Adaptor	PS-2420	J465-230	AIPHONE CO., LTD.	EUT
С	Micro SD	V10	J465-015	BUFFALO	-

List of Cables Used

No.	Name	Length (m)	Shield		Remarks		
			Cable	Connector			
1	DC Cable	1.9	Unshielded	Unshielded	-		
2	AC Cable	1.8	Unshielded	Unshielded	-		

Test Report No. : 14277402H-A-R1
Page : 13 of 55

SECTION 5: Conducted Emission

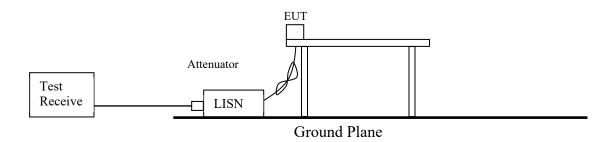
Test Procedure and Conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber. The EUT was connected to a LISN (AMN).


An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement Range : 0.15 MHz to 30 MHz

Test Data : APPENDIX
Test Result : Pass

Figure 1: Test Setup

Test Report No. : 14277402H-A-R1 Page : 14 of 55

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

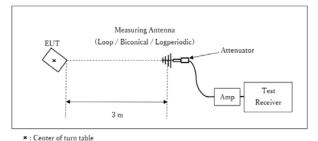
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Test Report No. : 14277402H-A-R1 Page : 15 of 55

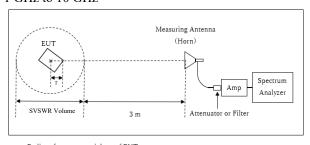
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20~dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC 15.205 / Table 6 of RSS-Gen 8.10 (ISED).


Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	
			Integration Method:	
			11.13.3.4	
			RBW: 100 kHz	
			VBW: 300 kHz	
			Span: 2 MHz	
			Band Power: 1 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			Duty factor was added to	
			the results.	

^{*1)} Average Power Measurement was performed based on ANSI C63.10-2013.

Test Report No. : 14277402H-A-R1
Page : 16 of 55

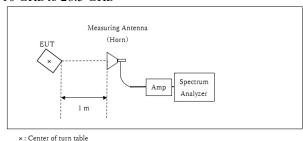

Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m

1 GHz to 10 GHz

SVSWR Volume: 1.5 m


(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

Distance Factor: $20 \times \log (3.65 \text{ m} / 3.0 \text{ m}) = 1.71 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.65 m

r = 0.1 m

- \boldsymbol{r} : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.
- This EUT has two modes which Metal frame is attached or not. The worst case was confirmed with and without Metal frame attached, as a result, the test without Metal frame attached was the worst case. Therefore the test without Metal frame attached was performed only.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX

Test Result : Pass

Test Report No. : 14277402H-A-R1 Page : 17 of 55

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument Used
				time			
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth *1)	emission skirts	of OBW	of RBW				
Maximum Peak	-	-	-	Auto	Peak/	-	Power Meter
Output Power					Average *2)		(Sensor: 50 MHz BW)
Peak Power Density	1.5 times the	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
	6dB Bandwidth						*3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4) *5)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX

Test Result : Pass

^{*2)} Reference data

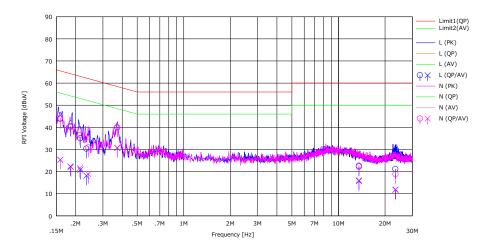
^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. : 14277402H-A-R1 Page : 18 of 55


APPENDIX 1: Test Data

Conducted Emission

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Date May 23, 2022
Temperature / Humidity 22 deg. C / 52 % RH
Engineer Yuichiro Yamazaki
Mode Tx 11g 2437 MHz

Limit: FCC_Part 15 Subpart C(15.207)

	F	Rea	ding	LISN	LOSS	Res	ults	Lir	nit	Mai	rgin		
No.	Freq.	(QP)	(AV)	LISIN	LUSS	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15910	30.60	12.10	0.05	13.19	43.84	25.34	65.51	55.51	21.67	30.17	L	
2	0.18510	27.20	9.10	0.05	13.20	40.45	22.35	64.25	54.25	23.80	31.90	L	
3	0.21445	21.80	7.60	0.05	13.20	35.05	20.85	63.03	53.03	27.98	32.18	L	
4	0.23475	17.10	4.90	0.05	13.20	30.35	18.15	62,28	52.28	31.93	34.13	L	
5	0.37150	26.70	17.50	0.04	13.22	39.96	30.76	58.47	48.47	18.51	17.71	L	
6	13.56000	8.20	1.70	0.29	13.77	22.26	15.76	60.00	50.00	37.74	34.24	L	
7	23.33640	6.70	-2.70	0.47	13.99	21.16	11.76	60.00	50.00	38.84	38.24	L	
8	0.15910	30.90	12.10	0.05	13.19	44.14	25.34	65.51	55.51	21.37	30.17	N	
9	0.18635	26.80	8.80	0.05	13.20	40.05	22.05	64.20	54.20	24.15	32.15	N	
10	0.21295	23.20	8.40	0.05	13.20	36.45	21.65	63.09	53.09	26.64	31.44	N	
11	0.24130	17.60	5.60	0.05	13.20	30.85	18.85	62,05	52.05	31.20	33.20	N	
12	0.37200	26.60	17.40	0.04	13.22	39.86	30.66	58.46	48.46	18.60	17.80	N	
13	13.56000	8.60	2.00	0.27	13.77	22.64	16.04	60.00	50.00	37.36	33.96	N	
14	23.40000	4.40	-2.50	0.41	13.99	18.80	11.90	60.00	50.00	41.20	38.10	N	
			ļ										

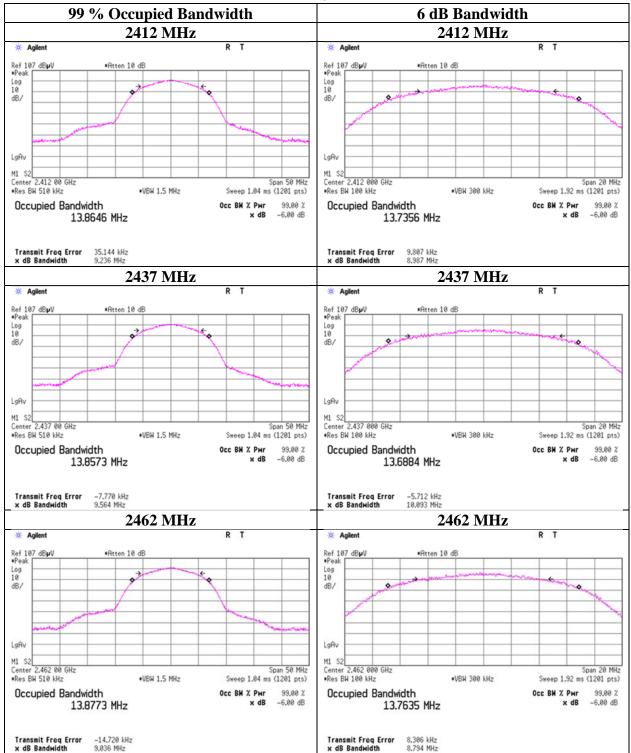
CHART: WITH FACTOR Peak hold data. CALCULATION: RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.

Test Report No. : 14277402H-A-R1 Page : 19 of 55

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

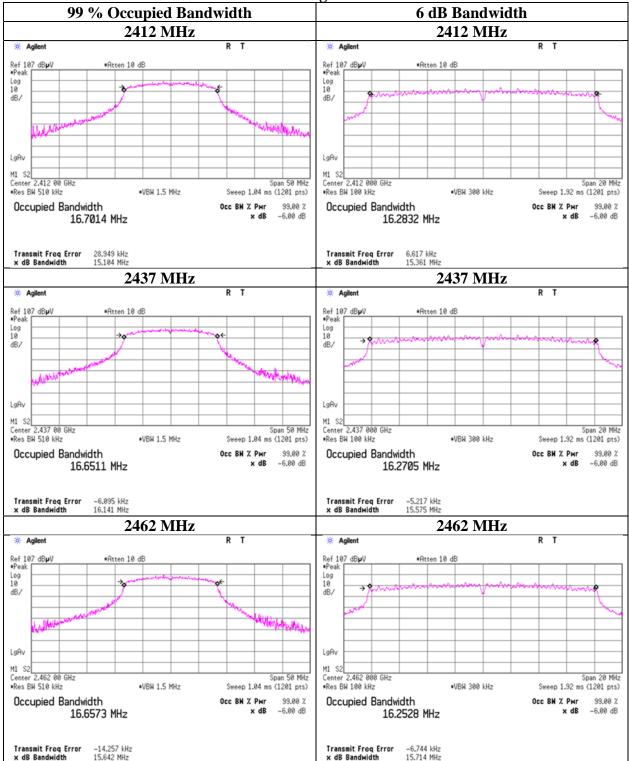
Date May 18, 2022
Temperature / Humidity Engineer 23 deg. C / 50 % RH
Takumi Nishida


Mode Tx

26.1	-	00.0/.0 : 1	(ID D	T: :. C
Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for
		Bandwidth		6 dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	13864.6	8.987	> 0.5000
	2437	13857.3	10.093	> 0.5000
	2462	13877.3	8.794	> 0.5000
11g	2412	16701.4	15.361	> 0.5000
	2437	16651.1	15.575	> 0.5000
	2462	16657.3	15.714	> 0.5000
11n-20	2412	17741.8	15.127	> 0.5000
	2437	17762.0	15.449	> 0.5000
	2462	17736.8	15.125	> 0.5000

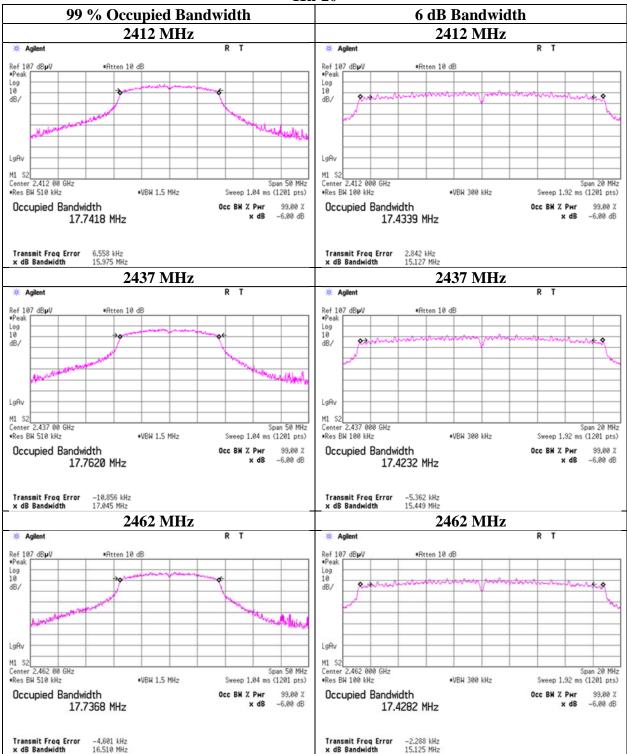
Test Report No. : 14277402H-A-R1 Page : 20 of 55

99 % Occupied Bandwidth and 6 dB Bandwidth


11b

Test Report No. : 14277402H-A-R1 : 21 of 55 Page

99 % Occupied Bandwidth and 6 dB Bandwidth



Test Report No. : 14277402H-A-R1 Page : 22 of 55

99 % Occupied Bandwidth and 6 dB Bandwidth

11n-20

Test Report No. : 14277402H-A-R1 : 23 of 55 Page

Maximum Peak Output Power

Test place Ise EMC Lab. No.2 Shielded Room Date May 9, 2022 May 12, 2022 25 deg. C / 55 % RH Temperature / Humidity 23 deg. C / 64 % RH Kiyoshiro Okazaki Kiyoshiro Okazaki Engineer

Mode Tx 11b

Antenna	В			Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Result		Limit		Margin	Antenna	Result		Limit		Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	-0.74	0.50	19.99	19.75	94.41	30.00	1000	10.25	3.10	22.85	192.75	36.02	4000	13.17
2437	-0.82	0.50	19.99	19.67	92.68	30.00	1000	10.33	3.10	22.77	189.23	36.02	4000	13.25
2462	-0.75	0.50	19.99	19.74	94.19	30.00	1000	10.26	3.10	22.84	192.31	36.02	4000	13.18

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

2437MHz

Rate	Reading	Reading	Remark
	ANT-A	ANT-B	
[Mbps]	[dBm]	[dBm]	
1		-1.36	
2		-1.27	
5.5		-1.25	
11	-1.16	-0.82	*

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

^{*}Antenna Gain was applied to the more higher 3.1 dBi.

Test Report No. : 14277402H-A-R1 : 24 of 55 Page

Maximum Peak Output Power

Test place Ise EMC Lab. No.2 Shielded Room Date May 9, 2022 May 12, 2022 25 deg. C / 55 % RH Temperature / Humidity 23 deg. C / 64 % RH Kiyoshiro Okazaki Kiyoshiro Okazaki Engineer

Mode Tx 11g

Antenna	В			Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	Result		Limit		Antenna	Result		Limit		Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	5.10	0.50	19.99	25.59	362.24	30.00	1000	4.41	3.10	28.69	739.61	36.02	4000	7.33
2437	5.26	0.50	19.99	25.75	375.84	30.00	1000	4.25	3.10	28.85	767.36	36.02	4000	7.17
2462	5.15	0.50	19.99	25.64	366.44	30.00	1000	4.36	3.10	28.74	748.17	36.02	4000	7.28

Sample Calculation:
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

2437 MHz

Rate	Reading	Reading	Remark
	ANT-A	ANT-B	
[Mbps]	[dBm]	[dBm]	
6		5.25	
9		5.23	
12		5.22	
18		5.13	
24		5.22	
36		5.23	
48		5.23	
54	5.04	5.26	*

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

^{*}Antenna Gain was applied to the more higher 3.1 dBi.

Test Report No. : 14277402H-A-R1 Page : 25 of 55

Maximum Peak Output Power

Test place Ise EMC Lab. No.2 Shielded Room

Date May 9, 2022 May 12, 2022

Temperature / Humidity Engineer Kiyoshiro Okazaki Kiyoshiro Okazaki

Mode Tx 11n-20

Antenna	В			Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	Result		Limit		Antenna	Result		Limit		Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	4.91	0.50	19.99	25.40	346.74	30.00	1000	4.60	3.10	28.50	707.95	36.02	4000	7.52
2437	5.14	0.50	19.99	25.63	365.59	30.00	1000	4.37	3.10	28.73	746.45	36.02	4000	7.29
2462	4.93	0.50	19.99	25.42	348.34	30.00	1000	4.58	3.10	28.52	711.21	36.02	4000	7.50

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

2437 MHz, Long GI or Short GI

MCS	Reading	Reading	Remark
Number	ANT-A	ANT-B	
	[dBm]	[dBm]	
0		4.93	
1		5.00	
2		5.01	
3		5.00	
4		5.11	
5		4.63	
6		5.13	short
6	4.25	5.14	long *
7		4.97	

^{*:} Worst MCS

All comparison were carried out on same frequency and measurement factors.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

^{*}Antenna Gain was applied to the more higher 3.1 dBi.

Test Report No. : 14277402H-A-R1 Page : 26 of 55

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab. No.2 Shielded Room

Date May 12, 2022
Temperature / Humidity 23 deg. C / 64 % RH
Engineer Kiyoshiro Okazaki

Mode T

11b **1 Mbps**

110	I III PP							
Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-3.84	0.50	19.99	16.65	46.24	0.28	16.93	49.32
2437	-3.97	0.50	19.99	16.52	44.87	0.28	16.80	47.86
2462	-3.89	0.50	19.99	16.60	45.71	0.28	16.88	48.75

11g **6 Mbps**

**8	P							
Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-5.43	0.50	19.99	15.06	32.06	0.44	15.50	35.48
2437	-5.37	0.50	19.99	15.12	32.51	0.44	15.56	35.97
2462	-5.41	0.50	19.99	15.08	32.21	0.44	15.52	35.65

11n-20 MCS 0

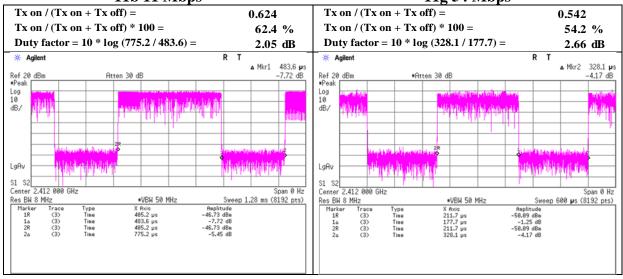
Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-6.36	0.50	19.99	14.13	25.88	0.32	14.45	27.86
2437	-6.30	0.50	19.99	14.19	26.24	0.32	14.51	28.25
2462	-6.31	0.50	19.99	14.18	26.18	0.32	14.50	28.18

Sample Calculation:

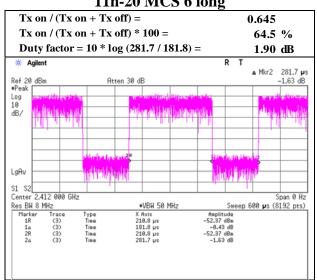
Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.


Test Report No. : 14277402H-A-R1 : 27 of 55 Page

Burst rate confirmation


Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Date May 10, 2022 25 deg. C / 42 % RH Temperature / Humidity Engineer Sayaka Hara Mode Tx

11g 54 Mbps 11b 11 Mbps

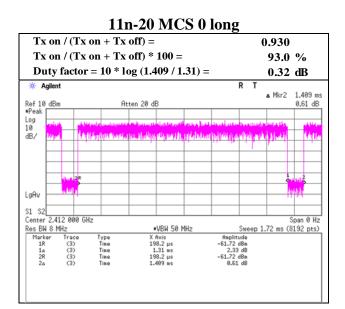
^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. : 14277402H-A-R1 Page : 28 of 55

Burst rate confirmation

Test place Ise EMC Lab. No.2 Shielded Room

Date May 12, 2022
Temperature / Humidity 23 deg. C / 64 % RH
Engineer Kiyoshiro Okazaki


Mode Tx

11g 6 Mbps **11b 1 Mbps** Tx on / (Tx on + Tx off) =Tx on / (Tx on + Tx off) =0.938 0.904 Tx on / (Tx on + Tx off) * 100 =Tx on / (Tx on + Tx off) * 100 =93.8 % 90.4 % Duty factor = $10 * \log (4.714 / 4.423) =$ Duty factor = $10 * \log (1.546 / 1.398) =$ 0.28 dB 0.44 dB 1.546 ms ▲ Mkr2 4.714 ms Δ Mkr2 -3.14 dB Log 10 dB/ Log 10 dB/ LgAv S1 S2

Center 2.412 000 GHz

Res BH 8 MHz

Marker Trace
1R (3)
1a (3)
2R (3)
2a (3) S1 S2 Center 2.412 000 GHz
Res BH 8 MHz
Marker Trace
1R (3)
1a (3)
2R (3)
2R (3)
28 (3) Span 0 Hz Sweep 6,007 ms (8192 pts) Amplitude -57,49 dBm -3,20 dB -57,49 dBm NBW 50 MHz •VBW 50 MHz Sweep 1.96 ms (8192 pts) X Axis 285 µs 1.398 ms 285 µs 1.546 ms X fixis 779.6 μs 4.423 ms 779.6 μs 4.714 ms

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. : 14277402H-A-R1 Page : 29 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date May 10, 2022 May 11, 2022
Temperature / Humidity 25 deg. C / 42 % RH 24 deg. C / 52 % RH
Engineer Sayaka Hara Sayaka Hara

(1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11b 2412 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	60.6	48.9	27.6	4.7	34.9	2.1	58.0	48.4	73.9	53.9	15.9	5.5	*1)
Hori.	3618.0	48.6	43.1	29.2	6.9	34.2	2.1	50.5	47.1	73.9	53.9	23.4	6.8	
Hori.	4824.0	49.9	40.9	31.5	7.0	34.1	2.1	54.3	47.4	73.9	53.9	19.6	6.5	
Hori.	7236.0	44.0	33.4	35.9	8.4	34.1	-	54.2	43.7	73.9	53.9	19.7	10.2	Floor noise
Hori.	9648.0	44.4	33.5	38.8	8.9	34.7	-	57.5	46.6	73.9	53.9	16.4	7.3	Floor noise
Vert.	2390.0	60.1	48.6	27.6	4.7	34.9	2.1	57.6	48.1	73.9	53.9	16.3	5.8	*1)
Vert.	3618.0	48.9	43.3	29.2	6.9	34.2	2.1	50.8	47.3	73.9	53.9	23.1	6.6	
Vert.	4824.0	51.4	42.5	31.5	7.0	34.1	2.1	55.8	49.0	73.9	53.9	18.1	4.9	
Vert.	7236.0	44.0	33.4	35.9	8.4	34.1	-	54.2	43.6	73.9	53.9	19.7	10.3	Floor noise
Vert.	9648.0	44.4	33.5	38.8	8.9	34.7	-	57.5	46.6	73.9	53.9	16.4	7.3	Floor noise

 $Result \; (QP \; / \; PK) = Reading + \; Ant \; Factor + \; Loss \; (Cable + \; Attenuator + \; Filter + \; Distance \; factor (above \; 1 \; GHz)) - \; Gain (Amplifier)$

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

200DC Data	D.IICCU								
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	110.1	27.5	4.8	34.9	107.5	-	-	Carrier
Hori.	2400.0	69.1	27.6	4.7	34.9	66.6	87.5	21.0	
Vert.	2412.0	108.8	27.5	4.8	34.9	106.3	-	-	Carrier
Vert.	2400.0	68.4	27.6	4.7	34.9	65.8	86.3	20.4	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz $20 \log (3.65 \text{ m} / 3.0 \text{ m}) = 1.71 \text{ dB}$

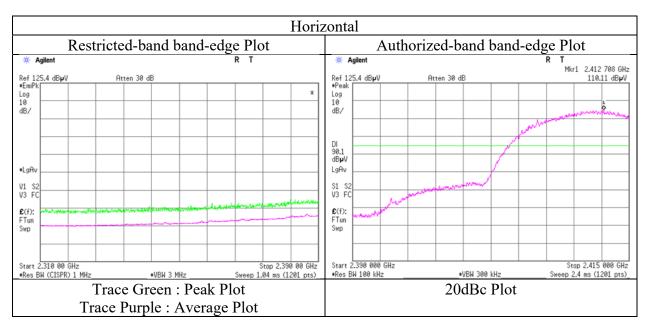
 $10~GHz - 26.5~GHz \qquad \quad 20log \, (1.0~m \, / \, 3.0~m) = ~ -9.5~dB$

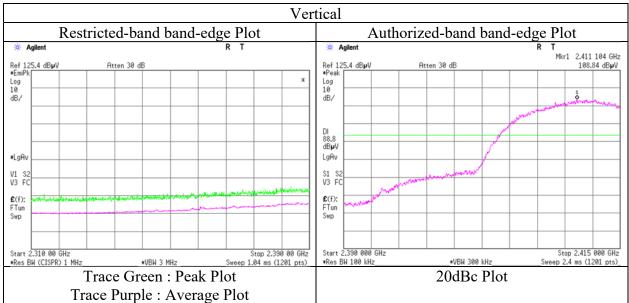
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. : 14277402H-A-R1 Page : 30 of 55


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Test place Ise EMC Lab.

Semi Anechoic Chamber No.2
Date No.2 May 10, 2022

Temperature / Humidity 25 deg. C / 42 % RH Engineer Sayaka Hara

(1 GHz - 10 GHz) Mode Tx 11b 2412 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14277402H-A-R1 Page : 31 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date May 10, 2022 May 11, 2022
Temperature / Humidity Engineer Sayaka Hara Sayaka Hara

(1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11b 2437 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
,		``	(/					``	` '	,	` ′	()	. ,	Kemark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	3655.5	49.2	43.7	29.3	6.9	34.2	2.1	51.2	47.7	73.9	53.9	22.7	6.2	
Hori.	4874.0	48.6	38.4	31.5	7.0	34.1	2.1	53.0	44.9	73.9	53.9	21.0	9.0	
Hori.	7311.0	44.5	33.5	36.0	8.4	34.1	-	54.9	43.8	73.9	53.9	19.0	10.1	Floor noise
Hori.	9748.0	44.6	33.6	39.0	9.0	34.7	-	57.9	46.9	73.9	53.9	16.0	7.0	Floor noise
Vert.	3655.5	48.6	43.2	29.3	6.9	34.2	2.1	50.6	47.2	73.9	53.9	23.3	6.7	
Vert.	4874.0	51.3	42.0	31.5	7.0	34.1	2.1	55.7	48.5	73.9	53.9	18.2	5.5	
Vert.	7311.0	44.6	33.5	36.0	8.4	34.1	-	54.9	43.8	73.9	53.9	19.0	10.1	Floor noise
Vert.	9748.0	44.6	33.6	39.0	9.0	34.7	-	57.9	46.9	73.9	53.9	16.0	7.0	Floor noise

 $Result \; (QP \, / \, PK) = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier)$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Gain (Am$

Distance factor: 1 GHz - 10 GHz 20log (3.65 m / 3.0 m) = 1.71 dB

10 GHz - 26.5 GHz $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. : 14277402H-A-R1 Page : 32 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

 Date
 May 10, 2022
 May 11, 2022

 Temperature / Humidity
 25 deg. C / 42 % RH
 24 deg. C / 52 % RH

 Engineer
 Sayaka Hara
 Sayaka Hara

 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

(1 GHz - 10 GHz) Mode Tx 11b 2462 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	(AV) [dB]	Kemark
Hori.	2483.5	60.2	48.3	27.5	4.8	34.9	2.1	57.6	47.8	73.9	53.9	16.3	6.2	*1)
Hori.	2487.4	60.3	48.4	27.5	4.8	34.9	2.1	57.7	47.9	73.9	53.9	16.2	6.1	
Hori.	3693.1	48.6	43.4	29.3	6.9	34.1	2.1	50.7	47.6	73.9	53.9	23.2	6.4	
Hori.	4924.0	48.8	38.8	31.5	7.0	34.1	2.1	53.2	45.3	73.9	53.9	20.7	8.6	
Hori.	7386.0	44.1	33.6	36.1	8.4	34.1	-	54.5	44.0	73.9	53.9	19.4	10.0	Floor noise
Hori.	9848.0	43.9	33.5	39.1	9.0	34.7	-	57.3	46.9	73.9	53.9	16.6	7.0	Floor noise
Vert.	2483.5	60.1	48.3	27.5	4.8	34.9	2.1	57.5	47.8	73.9	53.9	16.4	6.1	*1)
Vert.	3693.1	48.8	43.7	29.3	6.9	34.1	2.1	50.9	47.8	73.9	53.9	23.0	6.1	
Vert.	4924.0	50.2	40.2	31.5	7.0	34.1	2.1	54.6	46.7	73.9	53.9	19.3	7.2	
Vert.	7386.0	44.1	33.6	36.1	8.4	34.1	-	54.5	44.0	73.9	53.9	19.4	9.9	Floor noise
Vert.	9848.0	43.9	33.6	39.1	9.0	34.7	-	57.3	46.9	73.9	53.9	16.6	7.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Amplifier$

Distance factor: 1 GHz - 10 GHz $20 \log (3.65 \text{ m} / 3.0 \text{ m}) = 1.71 \text{ dB}$

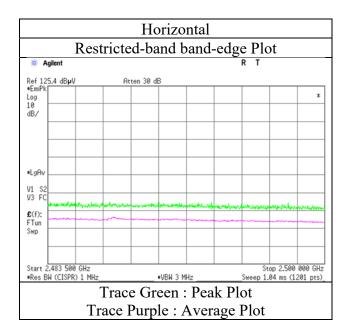
 $10~GHz - 26.5~GHz \qquad \quad 20log (1.0~m \, / \, 3.0~m) = \, -9.5~dB$

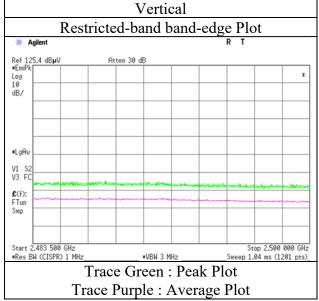
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than $20~\mathrm{dB}$).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. : 14277402H-A-R1 Page : 33 of 55


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date May 10, 2022 Temperature / Humidity 25 deg. C / 42 % RH Engineer Sayaka Hara

(1 GHz - 10 GHz) Mode Tx 11b 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14277402H-A-R1 Page : 34 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date May 10, 2022 May 11, 2022
Temperature / Humidity 25 deg. C / 42 % RH 24 deg. C / 52 % RH
Engineer Sayaka Hara Sayaka Hara

(1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11g 2412 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	73.2	51.8	27.6	4.7	34.9	2.7	70.7	52.0	73.9	53.9	3.2	1.9	*1),*2)
Hori.	3618.0	46.7	37.8	29.2	6.9	34.2	2.7	48.6	42.4	73.9	53.9	25.3	11.6	
Hori.	4824.0	43.9	33.0	31.5	7.0	34.1	-	48.3	37.5	73.9	53.9	25.6	16.5	Floor noise
Hori.	7236.0	44.3	33.4	35.9	8.4	34.1	-	54.5	43.7	73.9	53.9	19.4	10.2	Floor noise
Hori.	9648.0	44.4	33.5	38.8	8.9	34.7	-	57.5	46.6	73.9	53.9	16.4	7.3	Floor noise
Vert.	2390.0	73.4	51.1	27.6	4.7	34.9	2.7	70.8	51.2	73.9	53.9	3.1	2.7	*1),*2)
Vert.	3618.0	49.7	43.8	29.2	6.9	34.2	2.7	51.6	48.4	73.9	53.9	22.3	5.5	
Vert.	4824.0	47.9	36.3	31.5	7.0	34.1	2.7	52.3	43.4	73.9	53.9	21.6	10.5	
Vert.	7236.0	44.3	33.4	35.9	8.4	34.1	-	54.6	43.7	73.9	53.9	19.4	10.3	Floor noise
Vert.	9648.0	45.7	34.8	38.8	8.9	34.7	2.7	58.8	50.6	73.9	53.9	15.1	3.3	

 $Result \; (QP \, / \, PK) = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier)$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Gain (Am$

20dBc Data Sheet

20ube Dutu									
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	106.6	27.5	4.8	34.9	104.0	-	-	Carrier
Hori.	2400.0	72.6	27.6	4.7	34.9	70.0	84.0	14.0	
Vert.	2412.0	105.6	27.5	4.8	34.9	103.0	-	-	Carrier
Vert.	2400.0	71.3	27.6	4.7	34.9	68.8	83.0	14.3	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz 20log(3.65 m/3.0 m) = 1.71 dB

 $10~GHz - 26.5~GHz \qquad \quad 20log \, (1.0~m \, / \, 3.0~m) = ~ -9.5~dB$

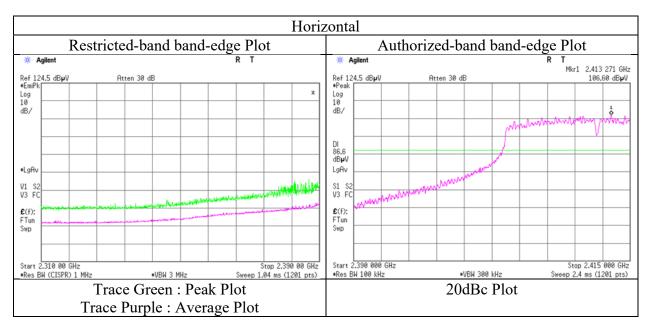
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

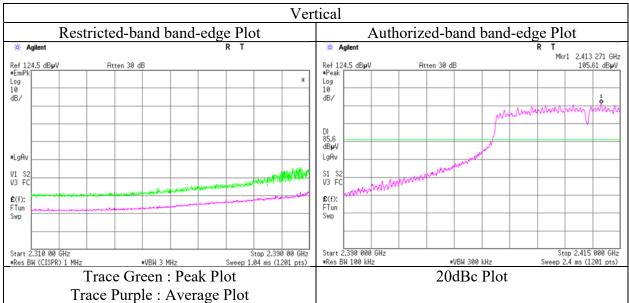
^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration method (AV only)

Test Report No. : 14277402H-A-R1 Page : 35 of 55


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date May 10, 2022
Temperature / Humidity 25 deg. C / 42 % RH
Engineer Sayaka Hara

(1 GHz - 10 GHz) Mode Tx 11g 2412 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14277402H-A-R1 : 36 of 55 Page

Radiated Spurious Emission

Test place

Ise EMC Lab.

Semi Anechoic Chamber

Date

Temperature / Humidity

Engineer

No.2 May 10, 2022

25 deg. C / 42 % RH

Sayaka Hara (1 GHz - 10 GHz) Tx 11g 2437 MHz No.2

May 11, 2022 24 deg. C / 52 % RH

Sayaka Hara (10 GHz - 26.5 GHz) No.2

May 15, 2022 23 deg. C / 53 % RH Kiyoshiro Okazaki

(Below 1 GHz)

M	0	d	e

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	54.3	31.8	-	9.8	7.0	28.5	-	20.1	-	40.0	-	19.9	-	
Hori.	77.2	32.2	-	6.6	7.3	28.5	-	17.6	-	40.0	-	22.4	-	
Hori.	98.3	34.5	-	10.0	7.4	28.4	-	23.5	-	43.5	-	20.0	-	
Hori.	260.8	37.4	-	12.8	8.5	27.8	-	31.0	-	46.0	-	15.0	-	
Hori.	361.6	33.2	-	15.3	9.3	28.1	-	29.7	-	46.0	-	16.3	-	
Hori.	433.3	36.1	-	16.5	9.6	28.7	-	33.4	-	46.0	-	12.6	-	
Hori.	3655.5	48.7	43.5	29.3	6.9	34.2	2.7	50.7	48.2	73.9	53.9	23.2	5.7	
Hori.	4874.0	46.3	34.8	31.5	7.0	34.1	2.7	50.7	41.9	73.9	53.9	23.2	12.0	
Hori.	7311.0	44.5	33.5	36.0	8.4	34.1	-	54.8	43.8	73.9	53.9	19.1	10.1	Floor noise
Hori.	9748.0	44.6	33.5	39.0	9.0	34.7	-	57.9	46.8	73.9	53.9	16.0	7.1	Floor noise
Vert.	54.3	37.9	-	9.8	7.0	28.5	-	26.2	-	40.0	-	13.8	-	
Vert.	77.6	33.6	-	6.7	7.3	28.5	-	19.1	-	40.0	-	21.0	-	
Vert.	98.4	38.3	-	10.0	7.4	28.4	-	27.3	-	43.5	-	16.2	-	
Vert.	260.8	26.9	-	12.8	8.5	27.8	-	20.5	-	46.0	-	25.5	-	
Vert.	380.9	33.2	-	15.5	9.4	28.3	-	29.8	-	46.0	-	16.2	-	
Vert.	433.1	34.6	-	16.5	9.6	28.7	-	31.9	-	46.0	-	14.1	-	
Vert.	3655.5	49.0	42.8	29.3	6.9	34.2	2.7	50.9	47.4	73.9	53.9	23.0	6.5	
Vert.	4874.0	47.3	35.8	31.5	7.0	34.1	2.7	51.7	42.8	73.9	53.9	22.2	11.1	
Vert.	7311.0	44.5	33.5	36.0	8.4	34.1	-	54.9	43.8	73.9	53.9	19.1	10.1	Floor noise
Vert.	9748.0	44.6	33.5	39.0	9.0	34.7	-	57.9	46.8	73.9	53.9	16.0	7.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Gain (Amplifier) +$ *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor:

1 GHz - 10 GHz 10 GHz - 26.5 GHz

20log (3.65 m / 3.0 m) = 1.71 dB $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

^{*}QP detector was used up to 1GHz.

Test Report No. : 14277402H-A-R1 Page : 37 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date May 10, 2022 May 11, 2022
Temperature / Humidity 25 deg. C / 42 % RH 24 deg. C / 52 % RH
Engineer Sayaka Hara Sayaka Hara

(1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11g 2462 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	71.1	52.4	27.5	4.8	34.9	2.7	68.6	52.5	73.9	53.9	5.4	1.4	*1)
Hori.	3683.0	48.7	43.7	29.3	6.9	34.1	2.7	50.8	48.4	73.9	53.9	23.2	5.5	
Hori.	4924.0	43.1	33.0	31.5	7.0	34.1	2.7	47.6	40.1	73.9	53.9	26.3	13.8	
Hori.	7386.0	44.1	33.5	36.1	8.4	34.1	2.7	54.5	46.6	73.9	53.9	19.4	7.3	
Hori.	9848.0	44.0	33.5	39.1	9.0	34.7	2.7	57.4	49.6	73.9	53.9	16.5	4.3	
Vert.	2483.5	69.7	51.1	27.5	4.8	34.9	2.7	67.1	51.2	73.9	53.9	6.8	2.7	*1)
Vert.	3683.0	49.1	43.9	29.3	6.9	34.1	2.7	51.2	48.6	73.9	53.9	22.7	5.3	
Vert.	4924.0	46.1	35.3	31.5	7.0	34.1	2.7	50.5	42.4	73.9	53.9	23.4	11.5	
Vert.	7386.0	44.0	33.5	36.1	8.4	34.1	2.7	54.4	46.5	73.9	53.9	19.5	7.4	
Vert.	9848.0	44.1	33.5	39.1	9.0	34.7	2.7	57.5	49.6	73.9	53.9	16.4	4.3	

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Amplifier$

Distance factor: $1~GHz - 10~GHz \qquad \qquad 20log\left(3.65~m \,/\, 3.0~m\right) = 1.71~dB$

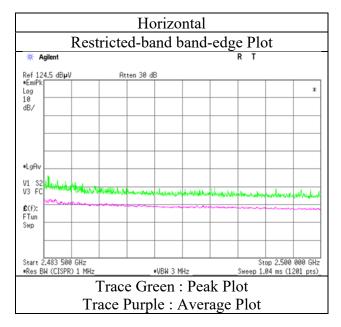
10 GHz - 26.5 GHz $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

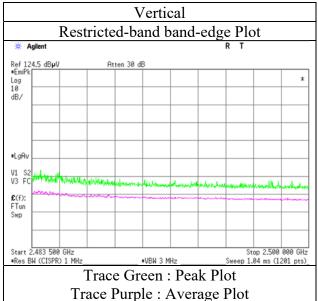
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. : 14277402H-A-R1 Page : 38 of 55


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date May 10, 2022
Temperature / Humidity 25 deg. C / 42 % RH
Engineer Sayaka Hara
(1 GHz - 10 GHz)

Mode Tx 11g 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14277402H-A-R1 Page : 39 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date May 11, 2022 May 11, 2022
Temperature / Humidity 24 deg. C / 48 % RH 24 deg. C / 52 % RH
Engineer Yuta Moriya Sayaka Hara

(1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11n-20 2412 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	71.4	53.3	27.6	4.7	34.9	1.9	68.9	52.6	73.9	53.9	5.0	1.3	*1)
Hori.	3618.0	49.2	40.0	29.2	6.9	34.2	1.9	51.2	43.8	73.9	53.9	22.7	10.1	
Hori.	4824.0	44.1	34.8	31.5	7.0	34.1	1.9	48.5	41.1	73.9	53.9	25.4	12.8	
Hori.	7236.0	43.5	34.3	35.9	8.4	34.1	-	53.7	44.6	73.9	53.9	20.2	9.3	Floor noise
Hori.	9648.0	42.9	34.0	38.8	8.9	34.7	-	56.0	47.1	73.9	53.9	18.0	6.8	Floor noise
Vert.	2390.0	69.6	52.1	27.6	4.7	34.9	1.9	67.1	51.5	73.9	53.9	6.8	2.4	*1)
Vert.	3618.0	48.4	42.5	29.2	6.9	34.2	1.9	50.3	46.4	73.9	53.9	23.6	7.5	
Vert.	4824.0	45.6	36.4	31.5	7.0	34.1	1.9	50.0	42.7	73.9	53.9	23.9	11.2	
Vert.	7236.0	42.7	34.1	35.9	8.4	34.1	-	52.9	44.3	73.9	53.9	21.0	9.6	Floor noise
Vert.	9648.0	42.2	34.1	38.8	8.9	34.7	-	55.3	47.2	73.9	53.9	18.6	6.7	Floor noise

 $Result \; (QP \ / \ PK) = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier)$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Gain (Am$

20dBc Data Sheet

200DC Data	D.IICCU								
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	105.8	27.5	4.8	34.9	103.2	-	-	Carrier
Hori.	2400.0	71.6	27.6	4.7	34.9	69.0	83.2	14.2	
Vert.	2412.0	104.0	27.5	4.8	34.9	101.4	-	-	Carrier
Vert.	2400.0	69.8	27.6	4.7	34.9	67.2	81.4	14.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

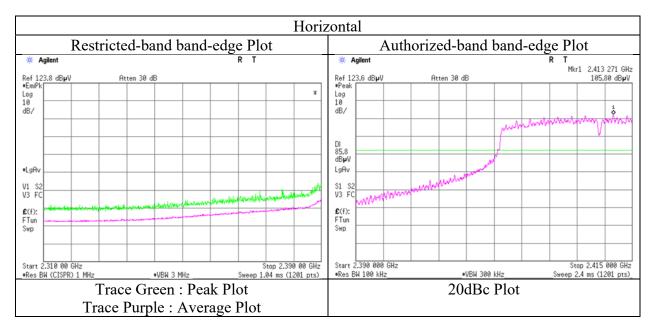
Distance factor: 1 GHz - 10 GHz 20log (3.65 m / 3.0 m) = 1.71 dB

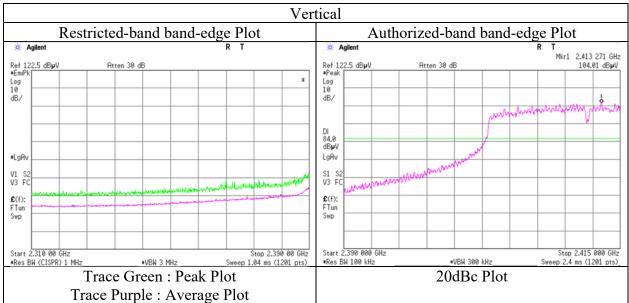
 $10~GHz - 26.5~GHz \qquad \quad 20log \, (1.0~m \, / \, 3.0~m) = ~ -9.5~dB$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

 $^{^*\}mbox{QP}$ detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. : 14277402H-A-R1 Page : 40 of 55


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date May 11, 2022
Temperature / Humidity 24 deg. C / 48 % RH
Engineer Yuta Moriya

(1 GHz - 10 GHz) Mode Tx 11n-20 2412 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14277402H-A-R1 Page : 41 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date May 11, 2022 May 11, 2022
Temperature / Humidity 24 deg. C / 48 % RH 24 deg. C / 52 % RH
Engineer Yuta Moriya Sayaka Hara

(1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11n-20 2437 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	3655.6	48.0	41.7	29.3	6.9	34.2	1.9	50.0	45.6	73.9	53.9	23.9	8.3	
Hori.	4874.0	43.6	34.9	31.5	7.0	34.1	1.9	48.0	41.2	73.9	53.9	26.0	12.7	
Hori.	7311.0	42.5	34.3	36.0	8.4	34.1	-	52.9	44.6	73.9	53.9	21.1	9.3	Floor noise
Hori.	9748.0	42.6	34.2	39.0	9.0	34.7	-	55.9	47.6	73.9	53.9	18.0	6.4	Floor noise
Vert.	3655.6	48.8	44.0	29.3	6.9	34.2	1.9	50.8	47.9	73.9	53.9	23.1	6.0	
Vert.	4874.0	45.6	36.2	31.5	7.0	34.1	1.9	50.0	42.5	73.9	53.9	23.9	11.4	
Vert.	7311.0	42.2	34.2	36.0	8.4	34.1	-	52.5	44.5	73.9	53.9	21.4	9.4	Floor noise
Vert.	9748.0	42.5	34.2	39.0	9.0	34.7	-	55.9	47.5	73.9	53.9	18.1	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Gain (Amplifier) +$

 $Distance \ factor: \qquad \qquad 1 \ GHz - 10 \ GHz \qquad \qquad 20log \ (3.65 \ m \, / \, 3.0 \ m) = 1.71 \ dB$

10 GHz - 26.5 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. : 14277402H-A-R1 Page : 42 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date May 11, 2022 May 11, 2022
Temperature / Humidity 24 deg. C / 48 % RH 24 deg. C / 52 % RH
Engineer Yuta Moriya Sayaka Hara

(1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11n-20 2462 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	71.2	51.8	27.5	4.8	34.9	1.9	68.6	51.1	73.9	53.9	5.3	2.8	*1)
Hori.	3692.5	48.4	42.4	29.3	6.9	34.1	1.9	50.5	46.4	73.9	53.9	23.4	7.5	
Hori.	4924.0	43.4	34.9	31.5	7.0	34.1	1.9	47.9	41.2	73.9	53.9	26.0	12.7	
Hori.	7386.0	42.4	34.2	36.1	8.4	34.1	-	52.8	44.6	73.9	53.9	21.1	9.3	Floor noise
Hori.	9848.0	43.2	35.2	39.1	9.0	34.7	1.9	56.5	50.4	73.9	53.9	17.4	3.5	
Vert.	2483.5	71.3	49.7	27.5	4.8	34.9	1.9	68.7	49.0	73.9	53.9	5.2	4.9	*1)
Vert.	3692.5	49.0	44.8	29.3	6.9	34.1	1.9	51.0	48.8	73.9	53.9	22.9	5.1	
Vert.	4924.0	44.2	35.8	31.5	7.0	34.1	1.9	48.6	42.1	73.9	53.9	25.3	11.8	
Vert.	7386.0	42.6	34.4	36.1	8.4	34.1	-	53.0	44.8	73.9	53.9	20.9	9.1	Floor noise
Vert.	9848.0	43.0	34.2	39.1	9.0	34.7	-	56.4	47.6	73.9	53.9	17.5	6.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Gain (Am$

Distance factor: 1 GHz - 10 GHz $20 \log (3.65 \text{ m} / 3.0 \text{ m}) = 1.71 \text{ dB}$

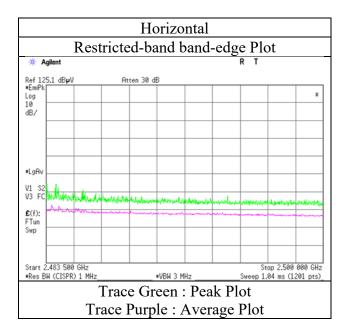
10 GHz - 26.5 GHz 20log(1.0 m/3.0 m) = -9.5 dB

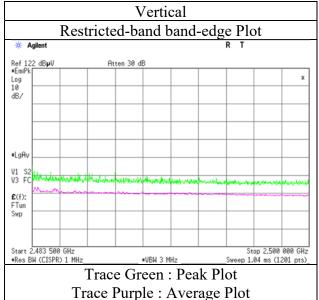
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than $20\ dB$).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. : 14277402H-A-R1 Page : 43 of 55

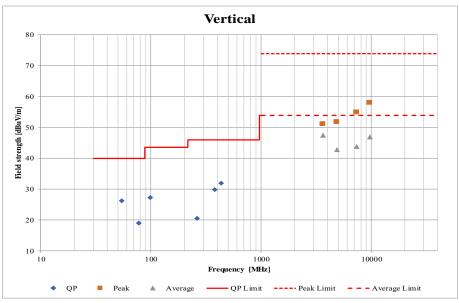

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date May 11, 2022
Temperature / Humidity 24 deg. C / 48 % RH
Engineer Yuta Moriya

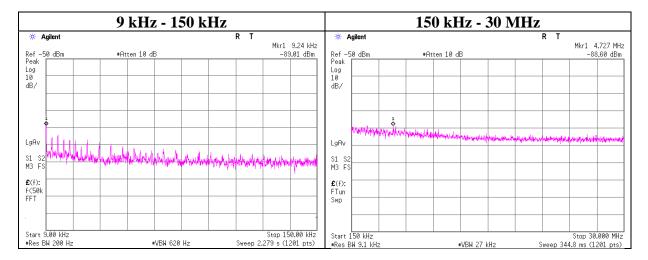
(1 GHz - 10 GHz) Mode Tx 11n-20 2462 MHz


^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14277402H-A-R1 Page : 44 of 55

<u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Peak Output Power)

Ise EMC Lab. Test place Semi Anechoic Chamber No.2 No.2 No.2 May 10, 2022 May 11, 2022 May 15, 2022 Date 25 deg. C / 42 % RH 23 deg. C / 53 % RH Temperature / Humidity 24 deg. C / 52 % RH Engineer Sayaka Hara Sayaka Hara Kiyoshiro Okazaki (1 GHz - 10 GHz) (10 GHz - 26.5 GHz) (Below 1 GHz) Tx 11g 2437 MHz Mode


^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. : 14277402H-A-R1 Page : 45 of 55

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Date May 18, 2022
Temperature / Humidity 23 deg. C / 50 % RH
Engineer Takumi Nishida
Mode Tx 11g 2437 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.24	-89.0	0.00	9.8	3.1	1	-76.1	300	6.0	-14.9	48.2	63.1	
4727.00	-88.6	0.02	9.8	3.1	1	-75.7	30	6.0	5.6	29.5	24.0	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \ \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

N: Number of output

^{*}Antenna Gain was applied to the more higher 3.1 dBi.

Test Report No. : 14277402H-A-R1 Page : 46 of 55

Power Density

Test place Ise EMC Lab. No.6 Measurement Room

Date May 18, 2022
Temperature / Humidity 23 deg. C / 50 % RH
Engineer Takumi Nishida

Mode Tx

11b

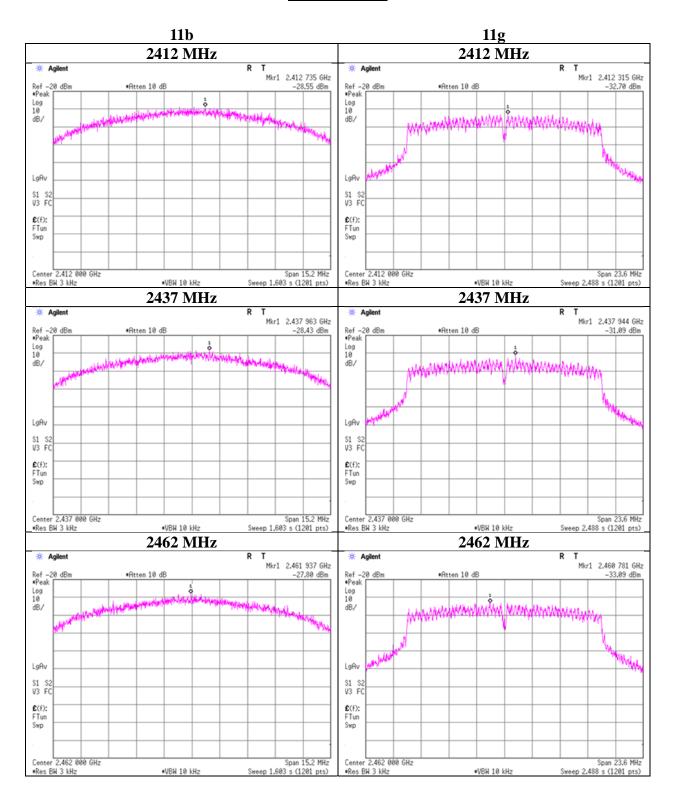
ſ	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
ı			Loss	Loss			
	[MHz]	dBm/3 kHz	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
ĺ	2412	-28.55	1.86	20.06	-6.63	8.00	14.63
Ī	2437	-28.43	1.87	20.06	-6.50	8.00	14.50
ı	2462	-27.80	1.88	20.06	-5.86	8.00	13.86

11g

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	dBm/3 kHz	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-32.70	1.86	20.06	-10.78	8.00	18.78
2437	-31.09	1.87	20.06	-9.16	8.00	17.16
2462	-33.09	1.88	20.06	-11.15	8.00	19.15

11n-20

ĺ	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
ı			Loss	Loss			
	[MHz]	dBm/3 kHz	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
ĺ	2412	-34.00	1.86	20.06	-12.08	8.00	20.08
ĺ	2437	-33.41	1.87	20.06	-11.48	8.00	19.48
ĺ	2462	-33.47	1.88	20.06	-11.53	8.00	19.53

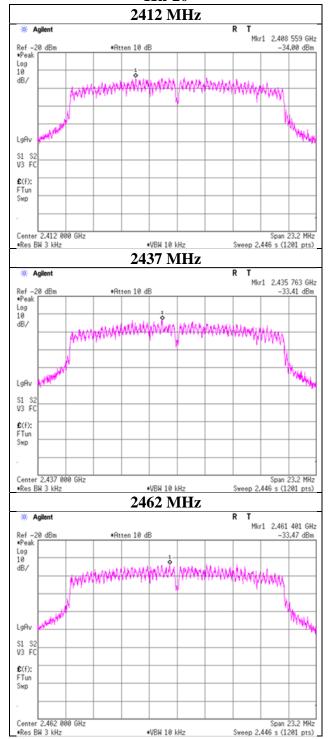

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. : 14277402H-A-R1 Page : 47 of 55

Power Density


Test Report No.
Page

: 14277402H-A-R1

: 48 of 55

Power Density

11n-20

: 14277402H-A-R1 Test Report No. : 49 of 55 Page

APPENDIX 2: Test Instruments

Test Fauinment (1/2)

	Equipment (1		
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
CE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/25/2020	24
CE	MAT-64	141290	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	12/17/2021	12
CE	MCC-113	141217	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM141/ 421-010/	-/04178	06/02/2021	12
					sucoform141-PE/ RFM-E121(SW)			
CE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
CE	MLS-23	141357	LISN(AMN)	Schwarzbeck Mess- Elektronik OHG	NSLK8127	8127-729	07/18/2021	12
CE	MLS-24	141358	LISN(AMN)	Schwarzbeck Mess- Elektronik OHG	NSLK8127	8127-730	07/18/2021	12
CE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/16/2022	12
CE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/10/2022	12
CE	MTA-56	141938	Terminator	TME	CT-01BP	-	12/16/2021	12
CE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	08/05/2021	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/26/2020	24
RE	MAEC-02- SVSWR	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/09/2021	24
RE	MAT-07	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/09/2021	12
RE	MBA-08	141427	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103B+ BBA9106	08031	07/10/2021	12
RE	MCC-12	141317	Coaxial Cable	UL Japan	-	-	09/06/2021	12
RE	MCC-218	141394	Microwave Cable	Junkosha	MWX221	1607S141(1 m) / 1608S264(5 m)	09/30/2021	12
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/21/2021	12
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170306	06/07/2021	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/30/2021	12
RE	MJM-27	142228	Measure	KOMELON	KMC-36	-	-	-
RE	MLA-21	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-190	07/10/2021	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/10/2021	12
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/19/2021	12
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/22/2022	12
RE	MPA-24	141594	Pre Amplifier	Keysight Technologies Inc		2944A10150	02/25/2022	12
RE	MSA-10	141899	Spectrum Analyzer	Keysight Technologies Inc		MY46180655	02/18/2022	12
RE	MTR-09	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	10/14/2021	12

Test Report No. : 14277402H-A-R1 Page : 50 of 55

Test Equipment (2/2)

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/09/2021	12
AT	MAT-21	141174	Attenuator(20dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-120	901247	01/23/2022	12
AT	MAT-57	141333	Attenuator(10dB)	Suhner	6810.19.A	-	12/17/2021	12
AT	MAT-58	141334	Attenuator(10dB)	Suhner	6810.19.A	-	12/08/2021	12
AT	MCC-128	141221	Coaxial Cable	Suhner	NRG180	-	08/11/2021	12
AT	MCC-67	141329	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28635/2	04/01/2022	12
AT	MJM-24	142225	Measure	ASKUL	-	-	-	-
AT	MJM-27	142228	Measure	KOMELON	KMC-36	-	-	-
AT	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/10/2021	12
AT	MMM-12	141547	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	60500120	02/01/2022	12
AT	MOS-24	90289	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0005	01/10/2022	12
AT	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/19/2021	12
AT	MPM-12	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/18/2022	12
AT	MPM-13	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/22/2021	12
AT	MPM-16	141812	Power Meter	Keysight Technologies Inc	8990B	MY51000271	08/11/2021	12
AT	MPSE-17	141830	Power sensor	Anritsu Corporation	MA2411B	738285	05/18/2022	12
AT	MPSE-18	141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/22/2021	12
AT	MPSE-22	141842	Power sensor	Keysight Technologies Inc	N1923A	MY54070003	08/11/2021	12
AT	MSA-10	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	02/18/2022	12
AT	MSA-22	141978	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180899	03/24/2022	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: CE: Conducted Emission

RE: Radiated Emission

AT: Antenna Terminal Conducted