	之 须 J CHNOLOGY						
	TEST REPO	RT					
FCC ID	2ALNA-BTS12						
Test Report No:	TCT211209E032	TCT211209E032					
Date of issue:	Jan. 11, 2022						
Testing laboratory:	SHENZHEN TONGCE TEST	TING LAB					
Testing location/ address:		TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China					
Applicant's name: :	Shenzhen Thousandshores	Technology Co., Ltd.					
Address::	5/F, Chuangxin Building, Seven-star Creative Square, No.2North Alley, Chuangye 2nd Road, Bao'an Dis 28th, ShenZhen, 518000, China						
Manufacturer's name :	Shenzhen Thousandshores	Shenzhen Thousandshores Technology Co., Ltd.					
Address:	5/F, Chuangxin Building, Seven-star Creative Square, No.2North Alley, Chuangye 2nd Road, Bao'an Dis 28th, ShenZhen, 518000, China						
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013						
Test item description :	Portable Wireless Speaker						
Trade Mark:	Tribit						
Model/Type reference :	BTS12						
Rating(s):	Rechargeable Li-ion Battery	DC 3.6V					
Date of receipt of test item	Dec. 09, 2021						
Date (s) of performance of test:	Dec. 09, 2021 ~ Jan. 11, 2022						
Tested by (+signature) :	Aaron MO	Aaron Maronger					
Check by (+signature) :	Beryl ZHAO	Bayl the E TCT					
Approved by (+signature):	Tomsin	Jomsm 45 35					

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

		duct Info						
1.1.	EUT desc	ription						3
		list						
1.3.	Operation	Frequenc	у					3
2. Tes	st Result	Summary	/					4
3. Ge	neral Info	ormation.						5
3.1.	Test envi	ronment ar	nd mode	<u>(c)</u>		<u> (c) </u>		5
3.2.	Descriptio	on of Supp	ort Units.					5
4. Fac	cilities an	d Accred	itations					6
4.1.	Facilities		(\mathbf{C})				<u>(S)</u>	6
4.2.	Location							6
		nent Uncer						
5. Tes	st Results	s and Mea	asureme	ent Data .		<u>v</u>		
5.1.	Antenna r	equiremen	it					7
5.2.	Conducte	d Emissio	n					8
5.3.	Conducte	d Output P	ower		\sim		\sim	12
		Bandwidth						
5.5.	Power Sp	ectral Dens	sity					14
5.6.	Conducte	d Band Ed	ge and S	purious Er	nission M	easureme	nt	15
5.7.	Radiated	Spurious E	mission	Measurem	ent			17
Appe	ndix A: T	est Resul	t of Cor	nducted T	est			
Appe	ndix B: P	hotograp	hs of Te	est Setup				
		hotograp						
S.								

TCT通测检测 TESTING CENTRE TECHNOLOGY 1. General Product Information

1.1. EUT description

Test item description:	Portable Wireless Speaker		
Model/Type reference:	BTS12		
Sample Number	TCT211209E007-0101		
Bluetooth Version:	V5.3 (This report is for BLE)		
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz	(\mathbf{c})	
Number of Channel:	40		
Modulation Type:	GFSK		
Antenna Type:	FPC Antenna		
Antenna Gain:	2.01dBi		
Rating(s):	Rechargeable Li-ion Battery DC	3.6V	$\langle \mathcal{C} \rangle$

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
(<u>(</u>)	(<u>(</u>)		(C)		(c)····
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Channel 0, 19 & 39 have been tested.							

Report No.: TCT211209E032

2. Test Result Summary

Requirement	CFR 47 Section	Result		
Antenna requirement	§15.203/§15.247 (c)	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Conducted Peak Output Power	§15.247 (b)(3)	PASS		
6dB Emission Bandwidth	§15.247 (a)(2)	PASS		
Power Spectral Density	§15.247 (e)	PASS		
Band Edge	§15.247(d)	PASS		
Spurious Emission	§15.205/§15.209	PASS		

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. After pre-testing the two earphones, the two earphones are left and right ears respectively; we found that the left earphone is the worst case, so the results are recorded in this report.

Page 4 of 44

Report No.: TCT211209E032

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	25 °C	24.6 °C				
Humidity:	55 % RH	53 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Software:						
Software Information:	BT FCC Tool V2.24					
Power Level:	0					
Test Mode:	· · · · · · · · · · · · · · · · · · ·					

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical

above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735		

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Antenna

Page 7 of 44

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is FPC antenna which permanently attached, and the best case gain of the antenna is 2.01dBi.

5.2. Conducted Emission

5.2.1. Test Specification

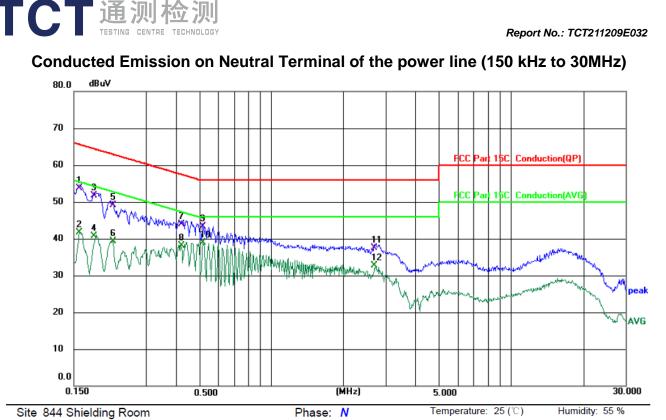
Test Requirement:	FCC Part15 C Section	15 207				
-						
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	(\mathcal{C})				
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto			
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Refere	nce Plane				
Test Setup:	E.U.T Adap Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ine				
Test Mode:	Charging + Transmittir	ng Mode				
	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test Procedure:	photographs). 3. Both sides of A.C. conducted interferen emission, the relativ the interface cables	. line are checkence. In order to fir re positions of equisions of equi	ed for maximum nd the maximum ipment and all o led according to			
Test Procedure: Test Result:	photographs). 3. Both sides of A.C. conducted interferen emission, the relativ the interface cables	. line are checkence. In order to fir re positions of equisions of equi	ed for maximun nd the maximun ipment and all o ed according to			

Page 8 of 44

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022			
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022			
Line-5	тст	CE-05	N/A	Jul. 07, 2022			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Page 9 of 44


5.2.3. Test data

Please refer to following diagram for individual Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz) dBu¥ 80.0 70 FCC 15C Conduction(QP) 60 CC Conduction(AVG 15C 50 11 40 12 X 30 AVG 20 10 0.0 (MHz) 30 000 0.150 0.500 5.000 Humidity: 55 % Site 844 Shielding Room Phase: L1 Temperature: 25 (°C) Limit: FCC Part 15C Conduction(QP) Power: DC 5 V(Adapter Input AC 120 V/60 Hz) Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 0.1700 38.52 64.96 -16.85 QP 1 9.59 48.11 2 0.1700 26.21 9.59 35.80 54.96 -19.16 AVG 3 0.2260 36.03 9.36 45.39 62.60 -17.21 QP 4 0.2260 26.02 35.38 52.60 -17.22 AVG 9.36 0.3537 QP 34.81 9.27 44.08 58.88 -14.80 5 6 0.3537 27.92 9.27 37.19 48.88 -11.69 AVG 7 0.5340 34.24 9.20 43.44 56.00 -12.56 QP 0.5340 46.00 -4.59 8 32.21 9.20 41.41 AVG QP 1.4376 30.32 9.37 39.69 56.00 -16.31 9 10 1.4376 26.36 9.37 35.73 46.00 -10.27 AVG 11 2.3500 29.89 9.46 39.35 56.00 -16.65 QP 12 2.3500 46.00 -12.48 24.06 9.46 33.52 AVG

Report No.: TCT211209E032

Note:

Freq. = Emission frequency in MHz Reading level (dBμV) = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement (dBμV) = Reading level (dBμV) + Corr. Factor (dB) Limit (dBμV) = Limit stated in standard Margin (dB) = Measurement (dBμV) – Limits (dBμV) Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz Page 10 of 44

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1580	44.06	9.59	53.65	65.57	-11.92	QP	
2	0.1580	32.16	9.59	41.75	55.57	-13.82	AVG	
3	0.1814	42.11	9.54	51.65	64.42	-12.77	QP	
4	0.1814	31.13	9.54	40.67	54.42	-13.75	AVG	
5	0.2179	39.85	9.31	49.16	62.90	-13.74	QP	
6	0.2179	29.90	9.31	39.21	52.90	-13.69	AVG	
7	0.4213	34.64	9.24	43.88	57.42	-13.54	QP	
8	0.4213	28.82	9.24	38.06	47.42	-9.36	AVG	
9	0.5180	34.01	9.22	43.23	56.00	-12.77	QP	
10 *	0.5180	29.71	9.22	38.93	46.00	-7.07	AVG	
11	2.6939	28.12	9.41	37.53	56.00	-18.47	QP	
12	2.6939	23.38	9.41	32.79	46.00	-13.21	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	30dBm					
Test Setup:						
Test Mode:	Refer to item 3.1					
Test Procedure:	Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.					
Test Result:	PASS					

5.3.2. Test Instruments

Name	ne Manufacturer Model No. Serial Number				
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022	
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022	

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

	Name Manufact		Model No.	Serial Number	per Calibration Due		
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022		
	Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022		

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:						
	Spectrum Analyzer EUT					
Test Mode:	Refer to item 3.1					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 					
Test Result:	PASS					

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when
	 maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Page 15 of 44

5.6.2.

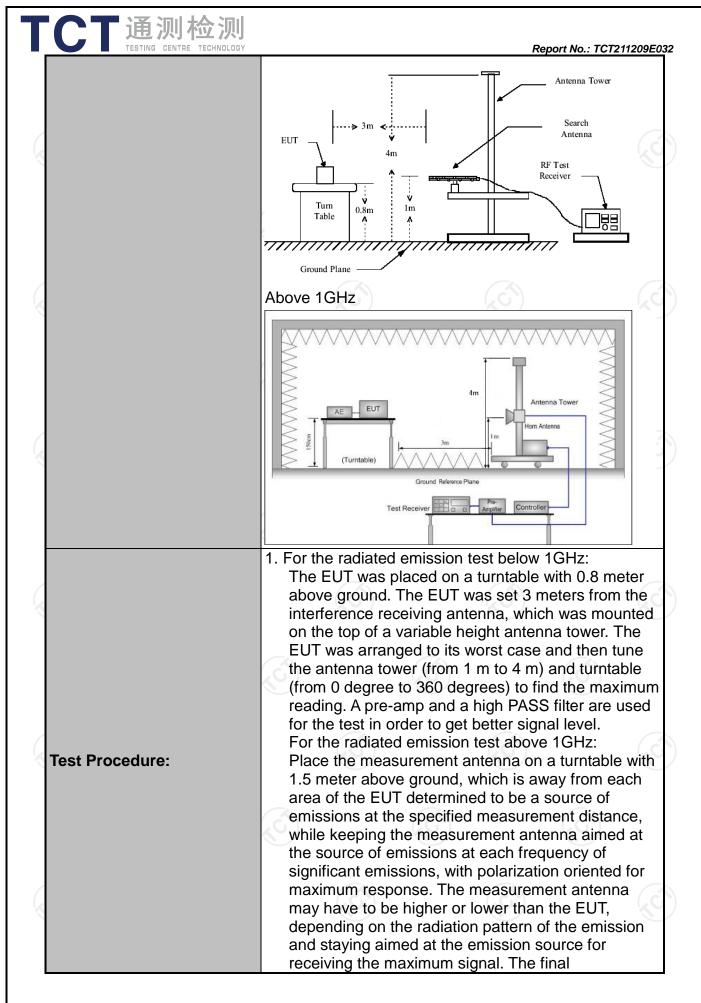
6.2. Test Instrum	ents			
Name	Manufacturer	Model No.	Serial Number	
Spectrum Analyzer	Agilent	N9020A	MY49100619	
Combiner Box	Ascentest	AT890-RFB	N/A	

Report No.: TCT211209E032

Calibration Due

Jul. 18, 2022

Jul. 07, 2022


5.7. Radiated Spurious Emission Measurement

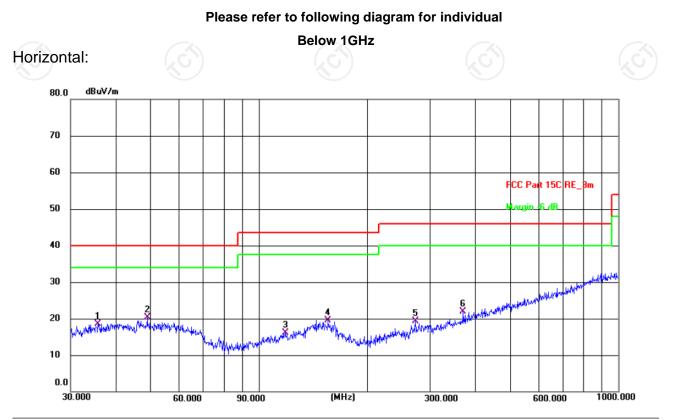
5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10): 2013					
Frequency Range:	9 kHz to 25 (GHz					
Measurement Distance:	3 m	X	9				
Antenna Polarization:	Horizontal &	Vertical					
Operation mode:	Refer to item	n 3.1	(G ()			
	Frequency 9kHz- 150kHz	Detector Quasi-peak	RBW < 200Hz	VBW 1kHz	Remark Quasi-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value		
	30MHz-1GHz	Quasi-peak		300KHz	Quasi-peak Value		
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value		
	Frequen		Field Stro (microvolts	/meter)	Measurement Distance (meters)		
	0.009-0.490		2400/F(KHz) 24000/F(KHz)		300 30		
	1.705-30		30		30		
	30-88		100		3		
	88-216		150		3		
Limit:	216-960		200		3		
	Above 960		500		3		
			rield Strength crovolts/meter) Measure Distai (mete		ce Detector		
	About 101	_ (500	3	Average		
	Above 1GHz	Z	5000 3 Pea				
	For radiated	emissions	s below 30)MHz			
	Di	stance = 3m			Computer		
	Pre -Amplifier						
Test setup:							
	0.8m						
		Ground	d Plane				
	30MHz to 10						

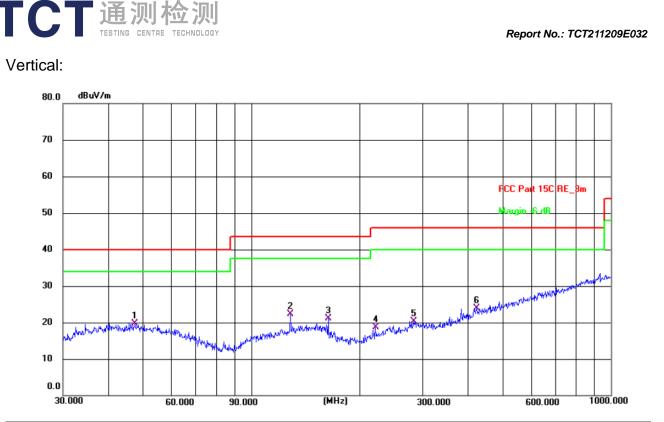
Page 17 of 44

	NJ Bonort No - TCT2/1/2005
	 Report No.: TCT211209Ed measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
	power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS


5.7.2. Test Instruments

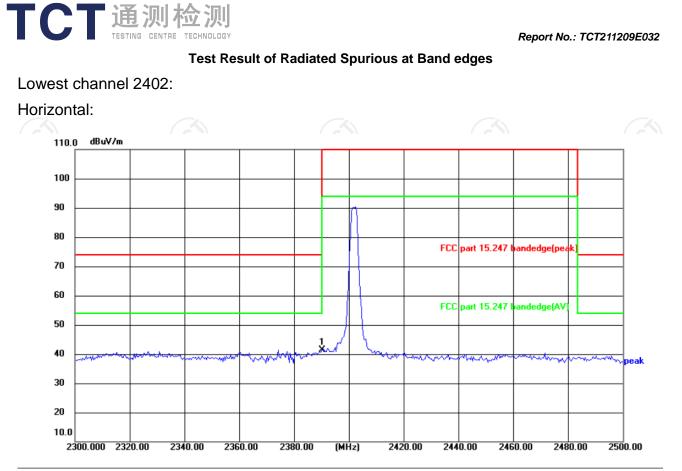
	Radiated E	Emission Test Site	e (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022	
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022	
Pre-amplifier	SKET	LNPA_0118G-45	SK2021012 102	Mar. 11, 2022	
Pre-amplifier	SKET	LNPA_1840G-50	SK2021092 03500	Apr. 08, 2022	
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023	
Antenna Mast	Keleto	RE-AM	N/A	N/A	
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022	
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022	
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

Page 20 of 44


5.7.3. Test Data

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT211209E032


			Polariza				Te	emperature: 24.6(C)	Humidity: 53 %
imit: FCC Part 15C RE_3m Power: DC 3.6V						3.6V			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
35.7490	5.23	13.30	18.53	40.00	-21.47	QP	Ρ		
49.0144	6.52	13.79	20.31	40.00	-19.69	QP	Ρ		
118.6012	4.32	11.84	16.16	43.50	-27.34	QP	Ρ		
155.9100	6.19	13.38	19.57	43.50	-23.93	QP	Ρ		
273.2339	5.61	13.63	19.24	46.00	-26.76	QP	Ρ		
370.7022	5.65	16.23	21.88	46.00	-24.12	QP	Ρ		
	FCC Part 150 Frequency (MHz) 35.7490 49.0144 118.6012 155.9100 273.2339	FCC Part 15C RE_3m Frequency (MHz) Reading (dBuV) 35.7490 5.23 49.0144 6.52 118.6012 4.32 155.9100 6.19 273.2339 5.61	FCC Part 15C RE_3m Frequency (MHz) Reading (dBuV) Factor (dB/m) 35.7490 5.23 13.30 49.0144 6.52 13.79 118.6012 4.32 11.84 155.9100 6.19 13.38 273.2339 5.61 13.63	FCC Part 15C RE_3m Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) 35.7490 5.23 13.30 18.53 49.0144 6.52 13.79 20.31 118.6012 4.32 11.84 16.16 155.9100 6.19 13.38 19.57 273.2339 5.61 13.63 19.24	FCC Part 15C RE_3m Pow Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) 35.7490 5.23 13.30 18.53 40.00 49.0144 6.52 13.79 20.31 40.00 118.6012 4.32 11.84 16.16 43.50 155.9100 6.19 13.38 19.57 43.50 273.2339 5.61 13.63 19.24 46.00	FCC Part 15C RE_3m Power: DC Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 35.7490 5.23 13.30 18.53 40.00 -21.47 49.0144 6.52 13.79 20.31 40.00 -19.69 118.6012 4.32 11.84 16.16 43.50 -27.34 155.9100 6.19 13.38 19.57 43.50 -23.93 273.2339 5.61 13.63 19.24 46.00 -26.76	FCC Part 15C RE_3m Power: DC 3.6V Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 35.7490 5.23 13.30 18.53 40.00 -21.47 QP 49.0144 6.52 13.79 20.31 40.00 -19.69 QP 118.6012 4.32 11.84 16.16 43.50 -27.34 QP 155.9100 6.19 13.38 19.57 43.50 -23.93 QP 273.2339 5.61 13.63 19.24 46.00 -26.76 QP	FCC Part 15C RE_3m Power: DC 3.6V Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector P/F 35.7490 5.23 13.30 18.53 40.00 -21.47 QP P 49.0144 6.52 13.79 20.31 40.00 -19.69 QP P 118.6012 4.32 11.84 16.16 43.50 -27.34 QP P 155.9100 6.19 13.38 19.57 43.50 -23.93 QP P 273.2339 5.61 13.63 19.24 46.00 -26.76 QP P	FCC Part 15C RE_3m Power: DC 3.6V Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector P/F Remark 35.7490 5.23 13.30 18.53 40.00 -21.47 QP P 49.0144 6.52 13.79 20.31 40.00 -19.69 QP P 118.6012 4.32 11.84 16.16 43.50 -27.34 QP P 155.9100 6.19 13.38 19.57 43.50 -23.93 QP P 273.2339 5.61 13.63 19.24 46.00 -26.76 QP P

Site #	e #2 3m Anechoic Chamber Polarization: Vertical							Те	emperature: 24.6(C)	Humidity: 53 %
Limit:	.imit: FCC Part 15C RE_3m Power: DC 3.6V						3.6V			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	47.4917	5.95	13.83	19.78	40.00	-20.22	QP	Р		
2	128.5629	9.75	12.50	22.25	43.50	-21.25	QP	Р		
3	163.7547	8.07	13.03	21.10	43.50	-22.40	QP	Р		
4	221.3917	7.09	11.53	18.62	46.00	-27.38	QP	Р		
5	282.9849	6.16	14.13	20.29	46.00	-25.71	QP	Р		
6	423.5402	6.06	17.76	23.82	46.00	-22.18	QP	Р		

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (high, channel) was submitted only.
 - 3. Freq. = Emission frequency in MHz Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB)
 - Correction Factor= Antenna Factor + Cable loss Pre-amplifier
 - $Limit (dB\mu V/m) = Limit stated in standard$
 - Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)
 - * is meaning the worst frequency has been tested in the test frequency range

Page 22 of 44

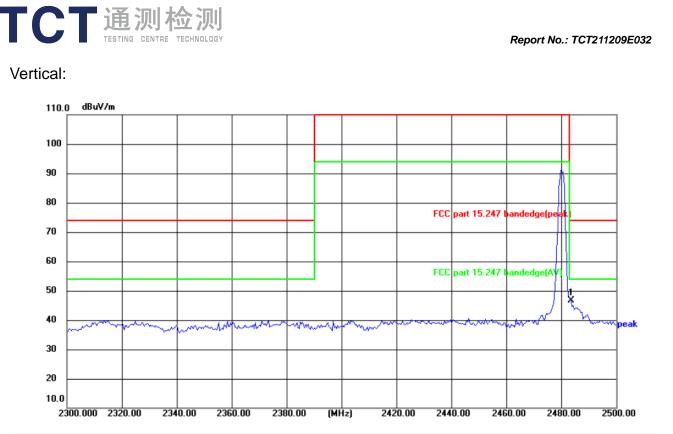
Site Limit: FC0	C part 15.247 banded	lge(peak)	Polariza Power:	ation: Horizon DC 3.6 V	al Temperature: 25(°C) Humidity: 55 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2390.000	56.26	-14.99	41.27	74.00	-32.73	peak

Page 23 of 44

С		乱测相	金测 TECHNOLOGY								Report No.	: TCT2112	09E0
rtical:													
110.0) dBu∀/m				1						, ,		1
100													
90							~						
80							$\left \right $						
70							Ц		FCC	part 15.247	bandedge(pea	k]	
60													
50							Ц		FCL	part 15.247	bandedge(AV]		
40	Man	mayan	minut	I MAN	mui	1 A		human			m	manthan	peak
30												with and	реак
20													
10.0	00.000 23	20.00 23	40.00 236	60.00 238	30.00	(MI			0.00 24	40.00 24	50.00 248 0		0.00

Site			Polariza	tion: Vertical	Ten	nperature:	25(℃)
Limit: FCC	C part 15.247 banded	lge(peak)	Power:	DC 3.6 V	Hur	nidity: 55 %	6
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2390.000	52.73	-14.99	37.74	74.00	-36.26	peak

Page 24 of 44


Report No.: TCT211209E032 Highest channel 2480: Horizontal: 110.0 dBu¥/m 100 90 80 andedge(pea FCC part 15.247 t 70 60 FCC part 15.247 bandedge(A) 50 40 meterston North and Maria all and Withour \sim wood 30 20 10.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480.00 2500.00

Site			Polariza	ation: Horizor	ntal Ter	mperature:	25(°℃)	
Limit: FC	C part 15.247 banded	dge(peak)	Power:	DC 3.6 V	Hu	Humidity: 55 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	2483.500	62.11	-14.58	47.53	74.00	-26.47	peak	
			1					



Page 25 of 44

Site			Polariza	ation: Vertical	Ter	mperature:	25(℃)
Limit: FC	C part 15.247 banded	lge(peak)	Power:	Hui	Humidity: 55 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	2483.500	61.18	-14.58	46.60	74.00	-27.40	peak

Page 26 of 44

Above 1GHz

Low chann	el: 2402 IV	IHZ							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	44.12		0.66	44.78		74	54	-9.22
7206	Н	34.83		9.50	44.33		74	54	-9.67
	Н								
4804	V	43.71		0.66	44.37	×	74	54	-9.63
7206	V	34.50		9.50	44.00	<u>(</u>)-	74	54	-10.00
	V								

Middle channel: 2440 MHz

通测检测 TESTING CENTRE TECHNOLOGY

nt. Pol. H/V	reading (dBµV) 45.51	reading (dBµV)	Factor (dB/m)	Peak	AV	Peak limit (dBµV/m)	(dBu)/m	Margin (dB)
Н	15 51				(dBµV/m)	(abp v/m)		(ub)
	40.01		0.99	46.50		74	54	-7.50
Н	35.95		9.87	45.82		74	54	-8.18
Н				(
		K,)					
V	45.76		0.99	46.75		74	54	-7.25
V	35.93		9.87	45.80		74	54	-8.20
V								
		H V 45.76 V 35.93	H V 45.76 V 35.93	H V 45.76 0.99 V 35.93 9.87	H V 45.76 0.99 46.75 V 35.93 9.87 45.80	H V 45.76 0.99 46.75 V 35.93 9.87 45.80	H V 45.76 0.99 46.75 74 V 35.93 9.87 45.80 74	H

High channel: 2480 MHz

Frequency	quency Ant. Pol.			Correction			Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV		(dBµV/m)	(dB)
4960	Н	42.41		1.33	43.74		74	54	-10.26
7440	H	32.85		10.22	43.07		74	54	-10.93
	Н								
4960	V	43.50		1.33	44.83		74	54	-9.17
7440	V	33.61		10.22	43.83		74	54	-10.17
	V			<i></i>	/				

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

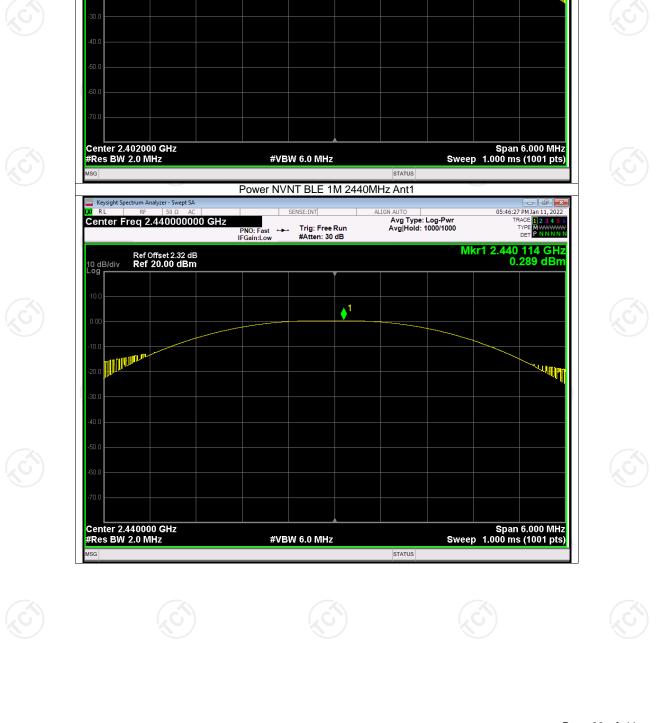
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power											
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict					
NVNT	BLE 1M	2402	Ant1	0.54	30	Pass					
NVNT	BLE 1M	2440	Ant1	0.29	30	Pass					
NVNT	BLE 1M	2480	Ant1	0.99	30	Pass					



Page 28 of 44

Test Graphs Power NVNT BLE 1M 2402MHz Ant1

♦1

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold: 1000/1000

Keysight Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz

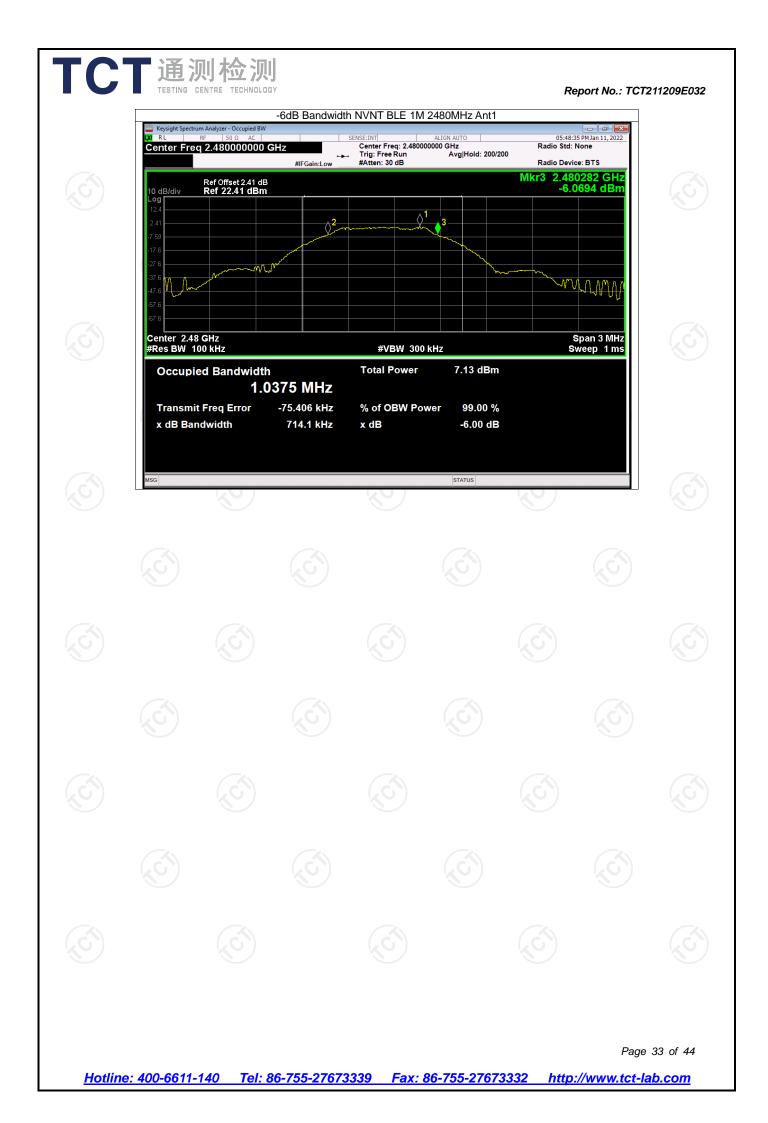
Ref Offset 2.19 dB Ref 20.00 dBm

KI RI

10 dB/div

Report No.: TCT211209E032

05:41:05 PM Jan 11, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWM DET P N N N N

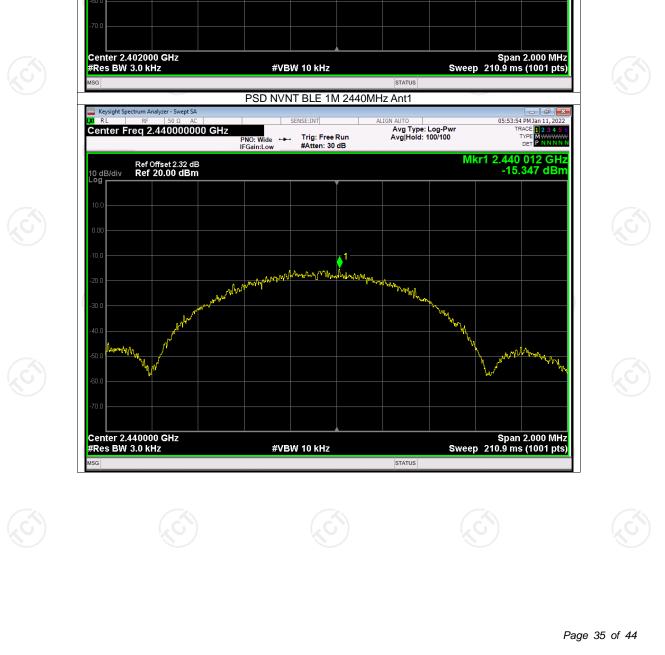

Mkr1 2.402 108 GHz 0.537 dBm

TESTING CE	n Analyzer - Swept SA		NT BLE 1M 248	OMHz Ant1		eport No.: TCT	2112092032
LXI RL F	rf 50 Ω AC 2.480000000 G	Hz PNO: Fast ↔	SENSE:INT → Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log- Avg Hold: 1000/	05:48 Pwr 1000	17 PMJan 11, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN	
Re 10 dB/div Re Log	ef Offset 2.41 dB ef 20.00 dBm	I Guilleow				0 144 GHz 0.993 dBm	
10.0							
-10.0							
-20.0							
-30.0							
-40.0							
-60.0							
-70.0							
Center 2.480 #Res BW 2.0		#VE	3W 6.0 MHz	STATUS	Spa Sweep 1.000 n	n 6.000 MHz ns (1001 pts)	
	No.		S.		K)		

211209E032	Report No.: TCT	R				川 作立 沢 リ ENTRE TECHNOLOGY		TC1
				6dB Bandv	•			
Verdic	nit -6 dB ndwidth (MHz)	Bar	-6 dB Bandwidth (MHz)	Antenna		Frequen (MHz)	Mode	Condition
Pass	0.5		0.710	Ant1		2402	BLE 1M	NVNT
Pass	0.5		0.704	Ant1	Œ	2440	BLE 1M	NVNT
Pass	0.5		0.714	Ant1	N.	2480	BLE 1M	NVNT

Page 32 of 44

Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict	
NVNT	BLE 1M	2402	Ant1	-15.00	8	Pass	
NVNT	BLE 1M	2440	Ant1	-15.35	8	Pass	
NVNT	BLE 1M	2480	Ant1	-14.87	8	Pass	

Page 34 of 44

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT211209E032

Test Graphs PSD NVNT BLE 1M 2402MHz Ant1

→ Trig: Free Run #Atten: 30 dB

Avg Type: Log-Pwr Avg|Hold: 100/100

mal

MALAN

when the share when the share of the share o man wh Prof.

PNO: Wide IFGain:Low

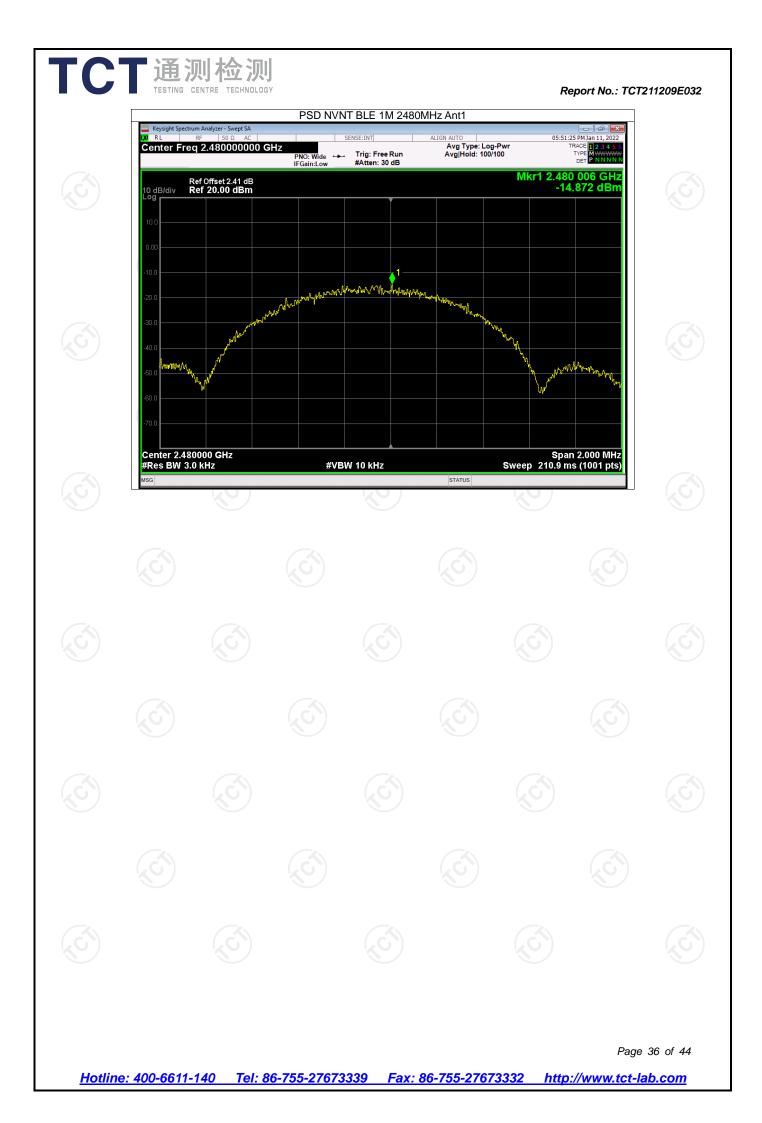
KI RI Center Freq 2.402000000 GHz 10 dB/div

Keysight Spectrum Analyzer - Swept SA

rin/hi/la

Ref Offset 2.19 dB Ref 20.00 dBm

Report No.: TCT211209E032

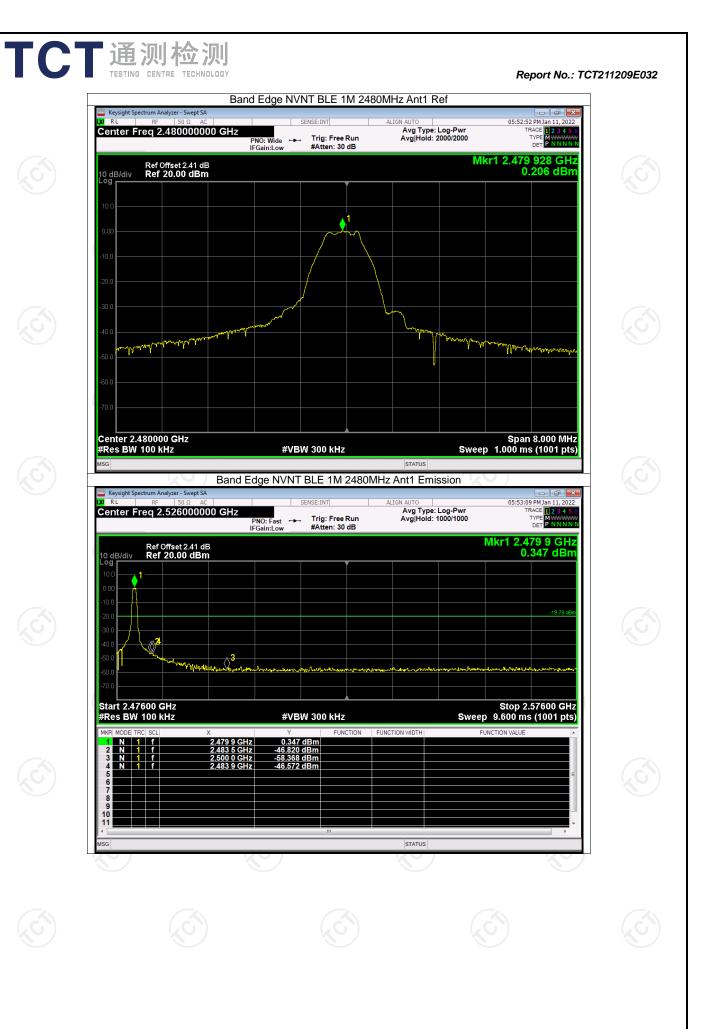

05:55:44 PM Jan 11, 2022

12345 MWWWW PNNNN

^rwyd

TYP.

Mkr1 2.402 008 GHz -15.001 dBm


TC		り检测					Report No.: TCT21	1209E032			
Band Edge Condition Mode Frequency (MHz) Antenna Max Value (dBc) Limit (dBc) Verdict											
Condition NVNT	Mode BLE 1M	2402	MHZ)	Antenna Ant1	-53.	07	Limit (dBc) -20	Verdict Pass			
NVNT	BLE 1M	2480		Ant1	-46.	78	-20	Pass			
							Davia (1)	7 of 44			
Hotline	: 400-6611-1	40 Tel: 86-75	5-27673	339 Fax:	<u>86-755-2767</u>	3332 htt	Page 3 p://www.tct-lab				

Test Graphs Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

Report No.: TCT211209E032

Page 38 of 44

Page 39 of 44

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-43.64	-20	Pass
NVNT	BLE 1M	2440	Ant1	-44.57	-20	Pass
NVNT	BLE 1M	2480	Ant1	-44.95	-20	Pass

Conducted RF Spurious Emission

Report No.: TCT211209E032

Page 40 of 44

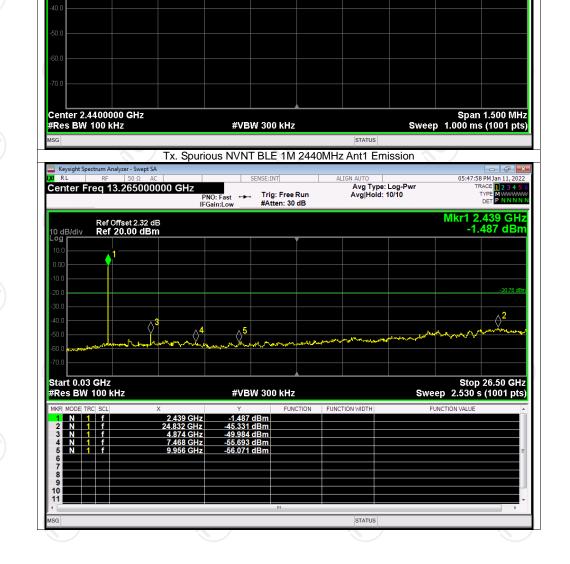
Test Graphs Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref 05:42:23 PM Jan 11, 2022 TRACE 1 2 3 4 5 6 ALIGN AUTO Avg Type: Log-Pwr

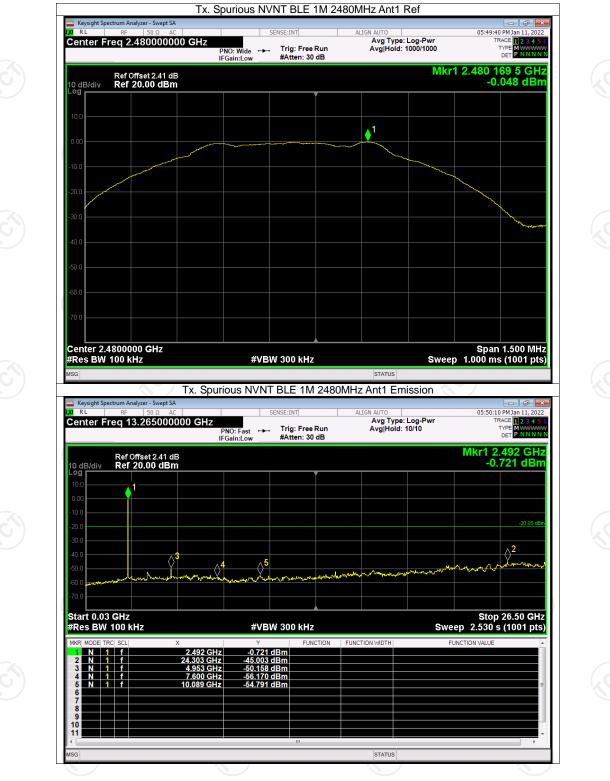
Report No.: TCT211209E032

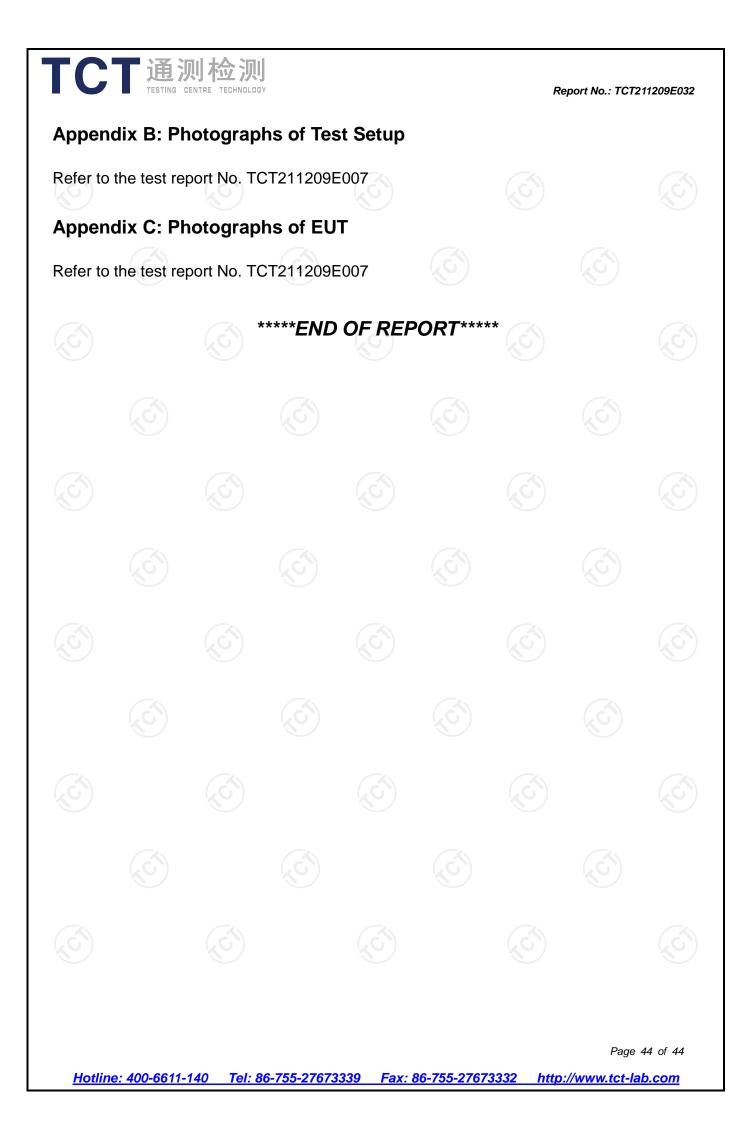
R L	RF	50 Ω A 4020000			SENSE:INT		ALIGN AUTO Avg Type	log-Pwr	05:42:2 T	3 PM Jan 11, 20 RACE <mark>1 2 3 4</mark>
enter F	req 2.4	4020000	IUU GHZ	PNO: Wide ← IFGain:Low	► Trig: Fr #Atten:	ee Run 30 dB	Avg Hold:	1000/1000		
	Ref Of	fset 2.19 d	В					Mki	1 2.402 1	171 0 GI .468 dB
dB/div	Ref 2	0.00 dBr	n						-•	.400 00
0.0										
							▲1			
.00				~~~~~			~			
1.0		-								
										- Andrew
0.0										
).0										
enter 2.	402000								Spar	า 1.500 M
les BW				#V	BW 300 kl	Hz		Swee	p 1.000 m	
les BW			Try Car				STATUS			
Res BW	100 kH						STATUS MHz Ant1 Em			s (1001 p
Keysight Sp	ectrum Ana RF	Iz Iyzer - Swept S 50 Ω A	A .C	urious NVI	NT BLE 1	M 2402	MHz Ant1 Em	nission	p 1.000 m 05:42:5	s (1001 p
Keysight Sp	ectrum Ana RF	Iz Iyzer - Swept S 50 Ω A		urious NVI	NT BLE 1	M 24021	MHz Ant1 Em	nission : Log-Pwr	p 1.000 m 05:42:5	s (1001 p
Keysight Sp	100 kH ectrum Ana RF Treq 13 Ref 0	Iz Iyzer - Swept S 50 Ω A 3.2650000 ffset 2.19 c	A C 0000 GHz IB	Urious NVI	NT BLE 1 SENSE:INT	M 24021	MHz Ant1 Em	nission : Log-Pwr	ep 1.000 m	s (1001 p 2 PMJan 11, 20 RACE 1 2 3 4 TYPE MWWW DET P N N N 412 GH
Keysight Sp RL Enter F	100 kH ectrum Ana RF Treq 13 Ref 0	Iz Iyzer - Swept S 50 Ω A 5.265000	A C 0000 GHz IB	Urious NVI	NT BLE 1 SENSE:INT	M 24021	MHz Ant1 Em	nission : Log-Pwr	ep 1.000 m	s (1001 p 2 PMJan 11, 20 RACE 1 2 3 4 TYPE MWWW DET P N N N 412 GH
Keysight Sp RL enter F	100 kH ectrum Ana RF Treq 13 Ref 0	Iz Iyzer - Swept S 50 Ω A 3.2650000 ffset 2.19 c	A C 0000 GHz IB	Urious NVI	NT BLE 1 SENSE:INT	M 24021	MHz Ant1 Em	nission : Log-Pwr	ep 1.000 m	s (1001 p 2 PMJan 11, 20 RACE 1 2 3 4 TYPE MWWW DET P N N N 412 GH
Keysight Sp RL AB/div 9 00 00	100 kH ectrum Ana RF Treq 13 Ref 0	Iz Iyzer - Swept S 50 Ω A 3.2650000 ffset 2.19 c	A C 0000 GHz IB	Urious NVI	NT BLE 1 SENSE:INT	M 24021	MHz Ant1 Em	nission : Log-Pwr	ep 1.000 m	s (1001 p 2 PMJan 11, 20 RACE 1 2 3 4 TYPE MWWW DET P N N N 412 GH
Keysight Sp RL enter F	100 kH ectrum Ana RF Treq 13 Ref 0	Iz Iyzer - Swept S 50 Ω A 3.2650000 ffset 2.19 c	A C 0000 GHz IB	Urious NVI	NT BLE 1 SENSE:INT	M 24021	MHz Ant1 Em	nission : Log-Pwr	ep 1.000 m	s (1001 p ^{[2} PM]an 11, 2 ^{[2} RACE] 2.3.4 TYPE PNNN DET PNNN .412 GH .523 dB
Keysight Sp RL enter F 0 dB/div 0 0 0 0 0 0 0 0 0 0 0 0	ectrum Ana RF req 13 Ref 0 Ref 2	Iz Iyzer - Swept S 50 Ω A 3.2650000 ffset 2.19 c	A C 0000 GHz IB	Urious NVI	NT BLE 1 SENSE:INT	M 24021	MHz Ant1 Em	nission : Log-Pwr	ep 1.000 m	
Keysight Sp RL enter F 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	100 kH ectrum Ana RF Treq 13 Ref 0	Iz Iyzer - Swept S 50 Ω A 3.2650000 ffset 2.19 c	A C C C C C C C C C C C C C C C C C C C	PNO: Fast IFGain:Low	NT BLE 1 SENSE:INT → Trig: Fr #Atten:	M 24021	MHz Ant1 Em	iission : Log-Pwr 10/10	ep 1.000 m	s (1001 p ² PMJan 11, 20 ² RAGE 12, 34 TYPE 23, 4 VA12 GH 523 dB
Research B RL P Patter F	ectrum Ana RF req 13 Ref 0 Ref 2	Iz yzer - Swept S 50 Ω A 265000 ffset 2.19 o 20.00 dBt	A C C C C C C C C C C C C C C C C C C C	Urious NVI	NT BLE 1 SENSE:INT → Trig: Fr #Atten:	M 24021	MHz Ant1 Em	nission : Log-Pwr	ep 1.000 m	s (1001 p ² PMJan 11, 20 ² RAGE 12, 34 TYPE 23, 4 VA12 GH 523 dB
dB/div g dB/div g g g g g <	ectrum Ana RF req 13 Ref 0 Ref 2	Iz yzer - Swept S 50 Ω A 265000 ffset 2.19 o 20.00 dBt	A C C C C C C C C C C C C C C C C C C C	PNO: Fast IFGain:Low	NT BLE 1 SENSE:INT → Trig: Fr #Atten:	M 24021	MHz Ant1 Em	iission : Log-Pwr 10/10	ep 1.000 m	s (1001 p ^{[2} PM]an 11, 2 ^{[2} RACE] 2.3.4 TYPE PNNN DET PNNN .412 GH .523 dB
Keysight Sp RL Ball enter F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	100 kF req 13 Ref 0 Ref 2	Iz yzer - Swept S 50 Ω A 265000 ffset 2.19 o 20.00 dBt	A C C C C C C C C C C C C C C C C C C C	PNO: Fast IFGain:Low	NT BLE 1 SENSE:INT → Trig: Fr #Atten:	M 24021	MHz Ant1 Em	hission : Log-Pwr 10/10	05:42:5 T Mkr1 2 -0	s (1001 p 2 PM an 1), 2C 2 PM an 1), 2C 2 PM an 1), 2C 2 3 4 2 3 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5
Keysight Sp RL enter F 200 200 200 200 200 200 200 200 200 20	100 kF req 13 Ref 0 Ref 2 3 GHz 100 kF	1z yzer - Swept S 50 Ω A 2C65000 ffset 2.19 o 20.00 dB1		PNO: Fast IFGain:Low	NT BLE 1 SENSE:INT ATTIG: Fr #Atten:	M 2402l	MHz Ant1 Em	hission Log-Pwr 10/10	205:42:5 05:42:5 Mkr1 2 -0	s (1001 p 2 PM an 1), 2C 2 PM an 1), 2C 2 PM an 1), 2C 2 3 4 2 3 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5
Keysight Sp RL enter F dB/div g dB/div dB/div dB/div g dB/div g dB/div dB/di dB/div dB/di dD/di dB/div dB/di dD/di dD/di dD/di dD/di	100 kF req 13 Ref 0 Ref 2 3 GHz 100 kF 100 kF 100 kF 100 kF	1z yzer - Swept S 50 Ω A 2C65000 ffset 2.19 o 20.00 dB1	A C 10000 GHz IB M 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast IFGain:Low	NT BLE 1 SENSE:INT Trig: Fr #Atten: BW 3000 kl	M 2402l	MHz Ant1 Em	hission Log-Pwr 10/10	05:42:5 T Mkr1 2 -0	s (1001 p 2 PM an 1), 2C 2 PM an 1), 2C 2 PM an 1), 2C 2 3 4 2 3 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5
Keysight Sp RL enter F dB/div g dB/div g dB/div g d d d d d d d d d d d d d d d d d d	100 kF req 13 Ref 0 Ref 2 3 GHz 100 kF RC SCL	1z yzer - Swept S 50 Ω A 2C65000 ffset 2.19 o 20.00 dB1	A C 10000 GHz 18 m 3 3 3 4 4 4 1309 G 4.795 G	Jrious NVI	NT BLE 1 SENSE:INT → Trig: Fr #Atten: BW 300 kl BW 300 kl 3 dBm	M 2402l	MHz Ant1 Em	hission Log-Pwr 10/10	205:42:5 05:42:5 Mkr1 2 -0	s (1001 p 2 PM an 1), 2C 2 PM an 1), 2C 2 PM an 1), 2C 2 3 4 2 3 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5
Keysight Sp RL RL enter F odB/div 00 <td>100 kF req 13 Ref O Ref 2 1 3 3 3 3 3 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>1z yzer - Swept S 50 Ω A 2C65000 ffset 2.19 o 20.00 dB1</td> <td>A C D000 GHz IB m 3 3 2.412 GI 1.909 GHz</td> <td>Urious NVI</td> <td>NT BLE 1 SENSE:INT ATTIG: Fr #Atten: BW 300 kl S3 dBm</td> <td>M 2402l</td> <td>MHz Ant1 Em</td> <td>hission Log-Pwr 10/10</td> <td>205:42:5 05:42:5 Mkr1 2 -0</td> <td>s (1001 p 2 PM)an 1, 20 2 PM)an 1, 20 2 A 4 17 PP 8 VM N 2 4 4 12 GH 5 22 d 20 47 c 20 47 c</td>	100 kF req 13 Ref O Ref 2 1 3 3 3 3 3 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	1z yzer - Swept S 50 Ω A 2C65000 ffset 2.19 o 20.00 dB1	A C D000 GHz IB m 3 3 2.412 GI 1.909 GHz	Urious NVI	NT BLE 1 SENSE:INT ATTIG: Fr #Atten: BW 300 kl S3 dBm	M 2402l	MHz Ant1 Em	hission Log-Pwr 10/10	205:42:5 05:42:5 Mkr1 2 -0	s (1001 p 2 PM)an 1, 20 2 PM)an 1, 20 2 A 4 17 PP 8 VM N 2 4 4 12 GH 5 22 d 20 47 c 20 47 c
Keysight Sp RL enter F 0 dB/div 0	100 kF req 13 Ref O Ref 2 1 3 3 3 3 3 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	1z yzer - Swept S 50 Ω A 2C65000 ffset 2.19 o 20.00 dB1	A C D000 GHz IB m 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	Urious NVI	NT BLE 1 SENSE:INT ATTIG: Fr #Atten: BW 300 kl BW 300 kl 3 dBm 3 dBm 1 dBm	M 2402l	MHz Ant1 Em	hission Log-Pwr 10/10	205:42:5 05:42:5 Mkr1 2 -0	s (1001 p 2 PM)an 1, 20 2 PM)an 1, 20 2 A 4 17 PP 8 VM N 2 4 4 12 GH 5 22 d 20 47 c 20 47 c

MSG

STATUS


Page 41 of 44


						<u> </u>				
					Tx.	Spurious	۶NV	'NT BLE '	1M 2440)MHz An
🔤 Key	/sight Spe	ectrum A	nalyzer - Swe	pt SA						
lxi Ri	-	RF	50 Ω	AC				SENSE:INT		ALIGN AUTO
Cen	ter F	req 2	.44000	0000	GHz			Trig: Free	Run	Avg T Avg H
						PNO: Wide IFGain:Low	-	#Atten: 30		A Salar
		Ref (Offset 2.3	2 dB						
10 dE	3/div		20.00 d							
208									Í	
10.0										
										1
0.00										•'
0.00										


TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT211209E032

