	TEST REPORT				
FCC ID:	2ALNA-BTH99				
Test Report No:	TCT240604E022				
Date of issue:	Jun. 21, 2024				
Testing laboratory:	SHENZHEN TONGCE TESTING LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China				
Applicant's name:	Shenzhen Thousandshores Technology Co., Ltd.				
Address:	Room 1101, Building B, Lotus Plaza, No. 3186 Nanshan Avenue, Majialong Community, Nantou Street, Nanshan District, Shenzhen, China				
Manufacturer's name :	Shenzhen Thousandshores Technology Co., Ltd.				
Address::	Room 1101, Building B, Lotus Plaza, No. 3186 Nanshan Avenue, Majialong Community, Nantou Street, Nanshan District, Shenzhen, China				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013				
Product Name::	True Wireless Earbuds				
Trade Mark :	Tribit				
Model/Type reference :	BTH99				
Rating(s):	Rechargeable Li-ion Battery DC 3.7V				
Date of receipt of test item	Jun. 04, 2024				
Date (s) of performance of test:	Jun. 04, 2024 ~ Jun. 21, 2024				
Tested by (+signature) :	Onnado YE				
Check by (+signature) :	Beryl ZHAO				
Approved by (+signature):	Tomsin				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

	3
1.1. EUT description	
1.2. Model(s) list	
1.3. Operation Frequency	
2. Test Result Summary	
3.1. Test environment and mode	<u>a)</u>
3.2. Description of Support Units	
	6
4.2. Location	6
4.3. Measurement Uncertainty	
5. Test Results and Measurement I	Data7
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	
5.5. Carrier Frequencies Separation	
5.7. Dwell Time	16
5.8. Pseudorandom Frequency Hoppin	ing Sequence17
	nent18
	leasurement19
5.11.Radiated Spurious Emission Mea	asurement20
Appendix A: Test Result of Conduc	
Appendix B: Photographs of Test S	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	True Wireless Earbuds	$(\mathbf{c}^{\mathbf{A}})$
Model/Type reference:	BTH99	
Sample Number:	TCT240604E022-0101	
Bluetooth Version:	V5.3 (This report is for BDR+EDR)	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	Internal Antenna	
Antenna Gain:	0.31dBi	KC)
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

1.3. Operation Frequency

Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
2421MHz	39	2441MHz	59	2461MHz		(\mathbf{c})
	2402MHz 2403MHz 2412MHz 2413MHz 2420MHz	2402MHz 20 2403MHz 21 2412MHz 30 2413MHz 31 2420MHz 38	2402MHz202422MHz2403MHz212423MHz2412MHz302432MHz2413MHz312433MHz2420MHz382440MHz	2402MHz 20 2422MHz 40 2403MHz 21 2423MHz 41 2423MHz 41 2412MHz 30 2432MHz 50 2413MHz 31 2433MHz 51 2420MHz 38 2440MHz 58	2402MHz 20 2422MHz 40 2442MHz 2403MHz 21 2423MHz 41 2443MHz 2412MHz 30 2432MHz 50 2452MHz 2413MHz 31 2433MHz 51 2453MHz 2420MHz 38 2440MHz 58 2460MHz	2402MHz 20 2422MHz 40 2442MHz 60 2403MHz 21 2423MHz 41 2443MHz 61 2412MHz 30 2432MHz 50 2452MHz 70 2413MHz 31 2433MHz 51 2453MHz 71 2413MHz 31 2433MHz 51 2453MHz 71 2420MHz 38 2440MHz 58 2460MHz 78

Remark: Channel 0, 39 & 78 have been tested for GFSK, π /4-DQPSK, 8DPSK modulation mode.

Report No.: TCT240604E022

2. Test Result Summary

Requirement	CFR 47 Section	Result		
Antenna Requirement	§15.203/§15.247 (c)	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Conducted Peak Output Power	§15.247 (b)(1)	PASS		
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS		
Carrier Frequencies Separation	§15.247 (a)(1)	PASS		
Hopping Channel Number	§15.247 (a)(1)	PASS		
Dwell Time	§15.247 (a)(1)	PASS		
Radiated Emission	§15.205/§15.209	PASS		
Band Edge	§15.247(d)	PASS		

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. After pre-testing the two earbuds, the two earphones are left and right ears respectively; we found that the right earbud is the worst case, so the results are recorded in this report.

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	22.8 °C	24.7 °C				
Humidity:	49 % RH	48 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Software:						
Software Information:	FCC_assist_1.0.2.2					
Power Level:	10					

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery
--

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37R55T6KL2SE3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

TCT通测检测 TESTING CENTRE TECHNOLOGY

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

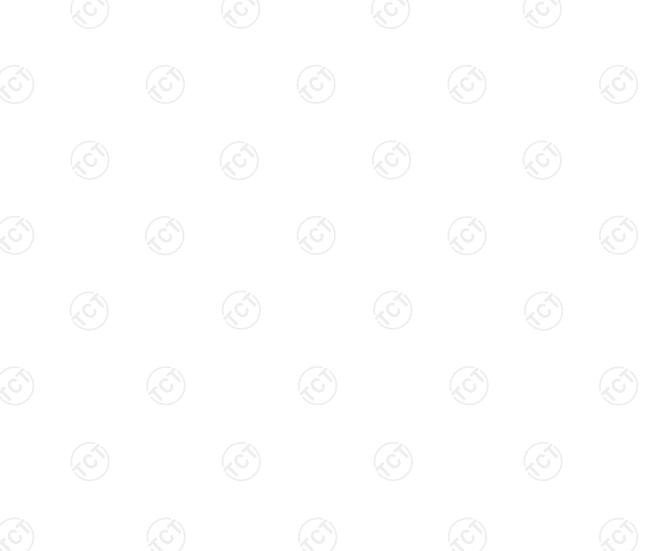
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	• ± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB
7	Occupied Bandwidth	± 57.74kHz

5. Test Results and Measurement Data

5.1. Antenna requirement FCC Part15 C Section 15.203 /247(c) **Standard requirement:** 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. E.U.T Antenna: The Bluetooth antenna is internal antenna which permanently attached, and the best case gain of the antenna is 0.31dBi. uiu ol 10 30 50 09 09 04 08 06 to 30 50 10400 80 80 20 90 90 70 90 70 90 50 90

5.2. Conducted Emission


5.2.1. Test Specification

Test Requirement: Test Method: Frequency Range: Receiver setup: Limits:	FCC Part15 C Section ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz)	٥	e=auto
Frequency Range: Receiver setup:	150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz)	· ·	e=auto
Receiver setup:	RBW=9 kHz, VBW=30 Frequency range (MHz)	· ·	e=auto
	Frequency range (MHz)	· ·	e=auto
Limits:	(MHz)	Limit (
Limits:	(MHz)		dBuV)
Limits:		Quasi-peak	Áverage
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	Reference	e Plane	
Test Setup:	40cm E.U.T AC power Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ner Test table height=0.8m	r – AC power	
Test Mode:	Charging + Transmittin	ig Mode	
Test Procedure:	 The E.U.T is connecting edance stabilizing provides a 500hm/5 measuring equipmer The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10:2013 control 	ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm tern diagram of the line are checken nce. In order to fin e positions of equi must be changed	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all o l according to
Test Result:	PASS		

5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)							
	Equipment	Manufacturer	Model	Serial Number	Calibration Due			
0	EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024			
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025			
	Line-5	ТСТ	CE-05	/	Jul. 03, 2024			
	EMI Test Software	Shurple Technology	EZ-EMC	1	1			

Page 9 of 94

5.2.3. Test data

Please refer to following diagram for individual Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz) dBu¥ 80.0 70 Conduction(QP) IC C 60 Conduction(AVG C) 50 40 30 20 10 AVG 0 -10 0.150 0.500 30.000 5.000 Humidity: 49 % Site 844 Shielding Room Temperature: 22.8 (°C) Phase: L1 Limit: FCC Part 15C Conduction(QP) Power: DC 5 V(Adapter Input AC 120 V/60 Hz) Reading Correct Measure-Limit Over Freq. No. Mk. Level Factor ment MHz dBu∨ dB dBu∨ dBu∨ dB Detector Comment QP 0.1580 38.24 10.03 48.27 65.57 -17.30 1 27.78 2 0.1580 17.75 10.03 55.57 -27.79 AVG 3 0.2020 35.24 10.04 45.28 63.53 -18.25 QP 26.05 4 0.2020 16.01 10.04 53.53 -27.48 AVG QP 5 0.6740 24.26 9.19 33.45 56.00 -22.55 0.6740 16.92 26.11 46.00 -19.89 6 9.19 AVG 7 1.3460 16.00 9.95 25.95 56.00 -30.05 QP 17.77 8 1.3460 7.82 9.95 46.00 -28.23 AVG QP 9 5.6939 17.92 10.44 28.36 60.00 -31.64 18.75 AVG 10 5.6939 8.31 10.44 50.00 -31.25

Note:

12.1340

12.1340

26.38

13.90

10.64

10.64

11

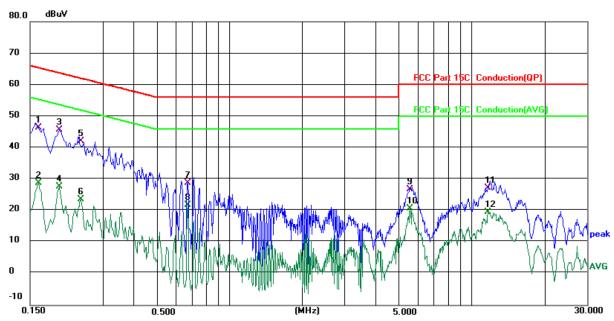
12

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

37.02

24.54

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.


60.00 -22.98

50.00 -25.46

QP

AVG

Report No.: TCT240604E022

Phase: N

Temperature: 22.8 (℃)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room . Limit: FCC Part 15C Conduction(QP)

					· · · · · · · · · · · · · · · · · · ·			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector	Comment
1	0.1620	36.37	10.01	46.38	65.36	-18.98	QP	
2	0.1620	18.76	10.01	28.77	55.36	-26.59	AVG	
3 *	0.1980	35.70	10.02	45.72	63.69	-17.97	QP	
4	0.1980	17.62	10.02	27.64	53.69	-26.05	AVG	
5	0.2419	32.33	9.82	42.15	62.03	-19.88	QP	
6	0.2419	13.72	9.82	23.54	52.03	-28.49	AVG	
7	0.6740	19.59	9.16	28.75	56.00	-27.25	QP	
8	0.6740	12.64	9.16	21.80	46.00	-24.20	AVG	
9	5.5819	16.48	10.36	26.84	60.00	-33.16	QP	
10	5.5819	10.44	10.36	20.80	50.00	-29.20	AVG	
11	11.7140	16.63	10.62	27.25	60.00	-32.75	QP	
12	11.7140	9.04	10.62	19.66	50.00	-30.34	AVG	

Note1:

Freq. = Emission frequency in MHz	
Reading level (dB μ V) = Receiver reading	
Corr. Factor (dB) = LISN factor + Cable loss	
Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)	
Limit (dB μ V) = Limit stated in standard	
Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)	
Q.P. =Quasi-Peak AVG =average	

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Middle channel and 8DPSK) was submitted only.

Report No.: TCT240604E022

Humidity: 49 %

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	9 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

5.5.2. Test Instruments				
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		1

5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 				
Test Result:	PASS				
E 6 2. Toot Instruments					

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.7. Dwell Time

5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	The average time of occupancy on any channel shall no be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

5.8. Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

Number of shift register stages: 9

- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Page 17 of 94

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.2	47 (d)	No.
KDB 558074 D01 v05r02		
radiation frequency band, the shall be at least 20 dB below radiated power. In addition,	ne radio frequenc w the highest lev radiated emissic	cy power el of the ons which fall
Spectrum Analyzer	EUT	3
Transmitting mode with mo	dulation	
 EUT transmit continuous 2. Set RBW = 100 kHz (≥1 kHz (≥RBW). Band edge 20 dB down from the high the authorized band as RBW. The attenuation s dB when RMS conducted used. 3. Enable hopping function step 2 and 3. 	sly. % span=10MHz) e emissions musi ghest emission le measured with a hall be 30 dB ins ed output power p n of the EUT and	, VBW = 300 t be at least evel within 100kHz tead of 20 procedure is then repeat
	 KDB 558074 D01 v05r02 In any 100 kHz bandwidth or radiation frequency band, the shall be at least 20 dB below radiated power. In addition, in the restricted bands must radiated emission limits. Spectrum Analyzer Transmitting mode with mode and the state of the maximum power of the state of th	 In any 100 kHz bandwidth outside the intent radiation frequency band, the radio frequency shall be at least 20 dB below the highest lev radiated power. In addition, radiated emission in the restricted bands must also comply with radiated emission limits. Spectrum Analyzer EUT Transmitting mode with modulation 1. Set to the maximum power setting and e EUT transmit continuously. 2. Set RBW = 100 kHz (≥1% span=10MHz) kHz (≥RBW). Band edge emissions must 20 dB down from the highest emission le the authorized band as measured with a RBW. The attenuation shall be 30 dB ins dB when RMS conducted output power pused. 3. Enable hopping function of the EUT and

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

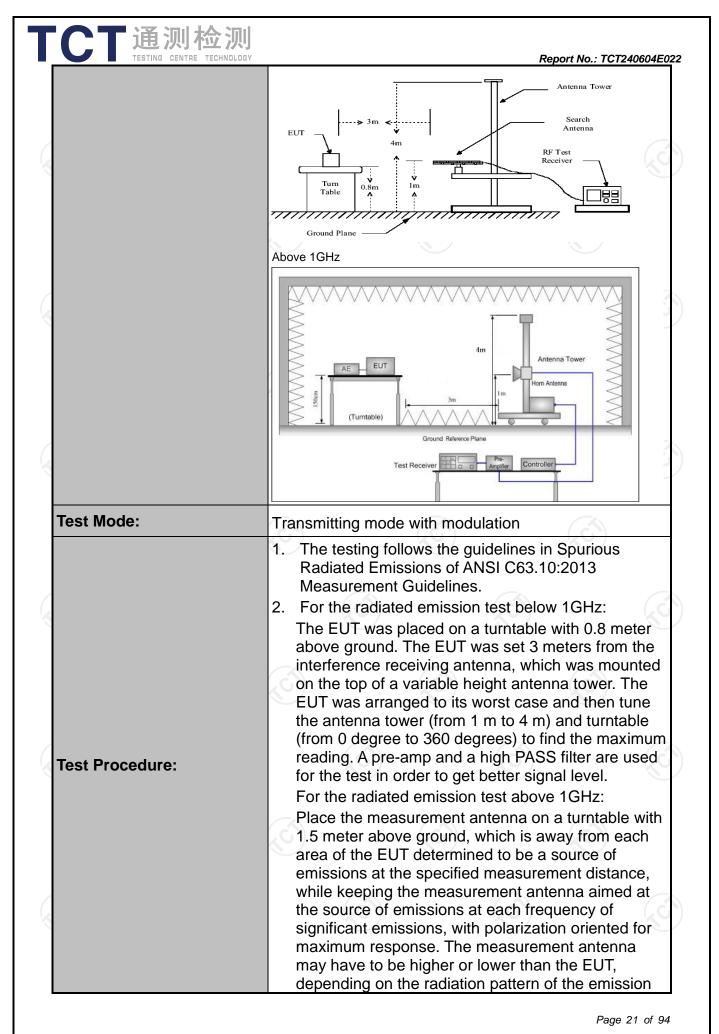
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020B	MY50030427	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		



5.11. Radiated Spurious Emission Measurement

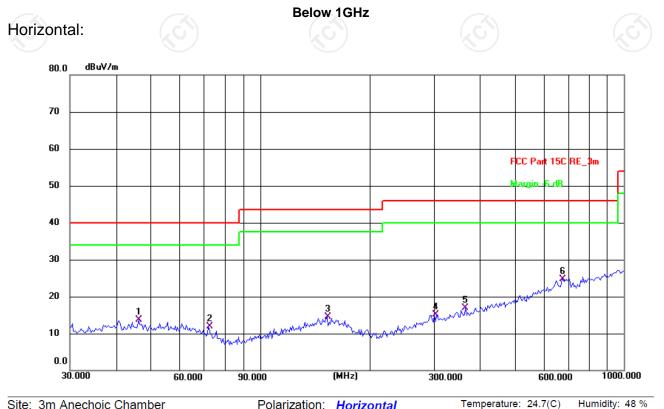
5.11.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209			
Test Method:	ANSI C63.10):2013				
Frequency Range:	9 kHz to 25 (GHz			C	6
Measurement Distance:	3 m	No.	\mathbf{y}		K.)
Antenna Polarization:	Horizontal &	Vertical				
	Frequency	Detector	RBW	VBW		Remark
	9kHz- 150kHz	Quasi-peal		1kHz		i-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz	Quas	i-peak Value
	30MHz-1GHz	Quasi-peak		300KHz		i-peak Value
	Above 1GHz	Peak	1MHz	3MHz		eak Value
		Peak	1MHz	10Hz	Ave	erage Value
	Frequen		Field Str	ength		asurement
			(microvolts		Dista	nce (meters)
	0.009-0.4		2400/F(300
	0.490-1.7		24000/F	(KHz)		30
	1.705-3		30			30 3
	88-216		150		3	
Limit:	216-96		200		3	
	Above 9	500			3	
	Frequency Above 1GH:		500 5000	Distant (meter 3 3		Detector Average Peak
Test setup:	For radiated emis	ssions below stance = 3m			Comput	
	(.		((

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	通测检测	receiv meas maxir anten restric above 3. Set t EUT 4. Use t (1) S (2) S fr (3) 1 (0)	ving the m surement a mizes the c ina elevati cted to a ra- e the group to the max transmit c the followi Span shall emission b Set RBW= or f>1GHz Sweep = a = max hol For average correction 5.35(c). D On time =N Where N1 length of t Average E Level + 20 Corrected I	aximum si intenna ele emissions. on for max ange of he nd or refer- kimum pov ontinuousl ng spectru wide enou eing meas 120 kHz fo ; VBW≥R auto; Dete d for peak ge measur factor me outy cycle = N1*L1+N2* l is numbe sype 1 puls Emission L D*log(Duty Reading: A	emission segnal. The f gnal. The f evation sha The meas imum emis ights of fro ence grour ver setting y. m analyze ugh to fully ured; or f < 1 GH BW; ctor function ement: use thod per = On time/ 2 L2++Nn- r of type 1 es, etc. evel = Pea cycle) antenna Fa	inal all be that w surement ssions shalom 1 m to 4 nd plane. and enab	vhich II be m Ie the e MHz Trace e conds Nn*Ln is n le
Test result	:s:	PASS					(d
<u>Hotline: 400</u>	<u>-6611-140 Tel: 86</u>	<u>-755-276733:</u>	<u>39 </u>	6-755-27673	<u>3332 http:</u>	Page :	22 of 94 <u>b.com</u>


5.11.2. Test Instruments

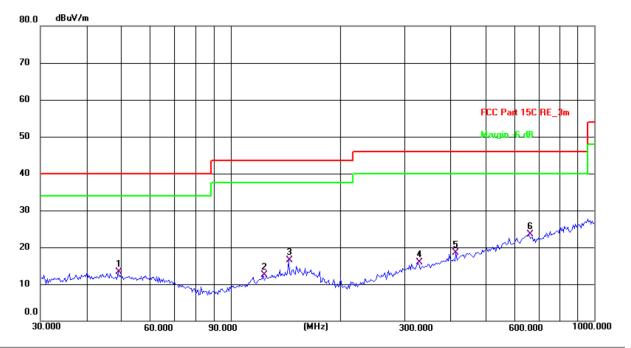
	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC		1

5.11.3. Test Data

Please refer to following diagram for individual

Site: 3m Anechoic Chamber

Polarization: Horizontal

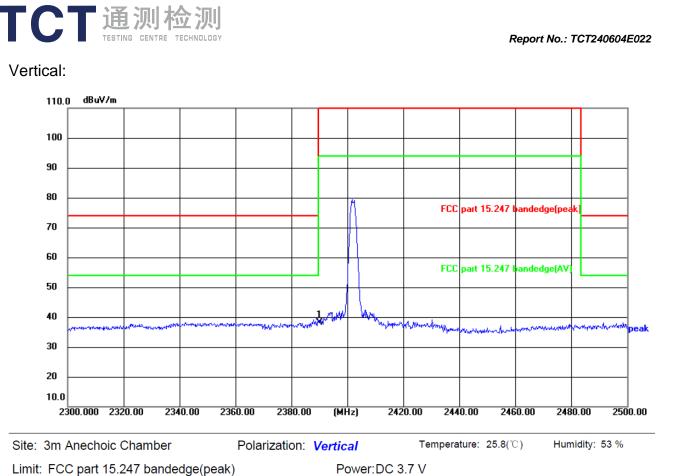

Temperature: 24.7(C)

Report No.: TCT240604E022

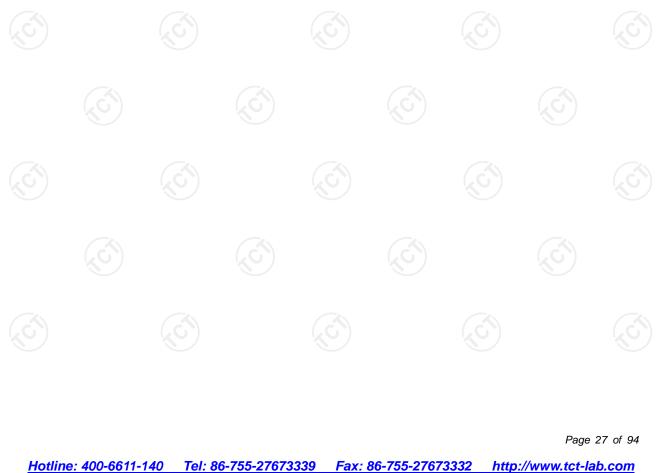
Limit: F	FCC Part 15C R	E_3m			Power:	DC 3.7 \	/		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	46.3402	26.31	-12.60	13.71	40.00	-26.29	QP	Ρ	
2	72.0843	26.51	-14.54	11.97	40.00	-28.03	QP	Ρ	
3	152.6641	25.42	-10.89	14.53	43.50	-28.97	QP	Ρ	
4	301.4224	25.26	-10.16	15.10	46.00	-30.90	QP	Ρ	
5	366.8231	25.90	-9.07	16.83	46.00	-29.17	QP	Ρ	
6 *	675.2080	28.30	-3.54	24.76	46.00	-21.24	QP	Ρ	

Page 24 of 94

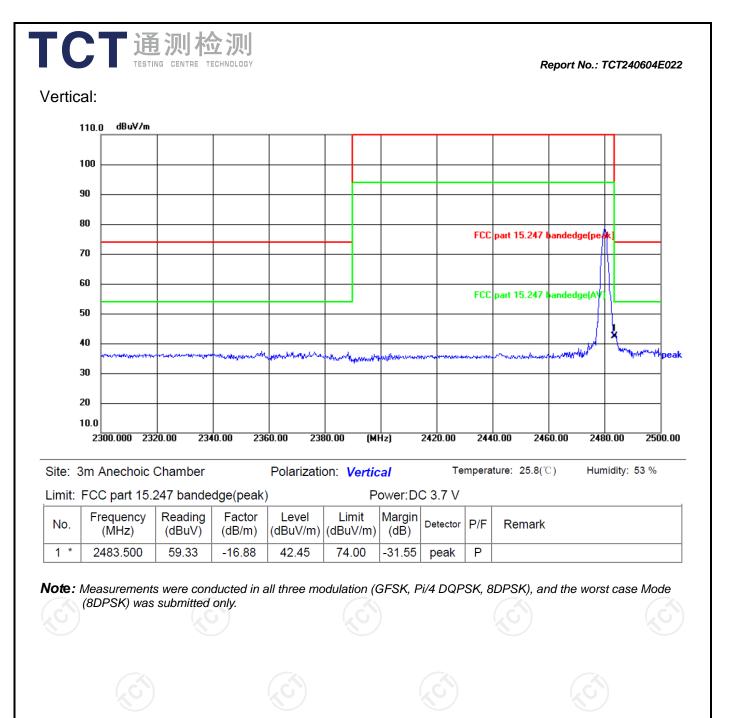
Vertical:


Polarization: Vertical Site: 3m Anechoic Chamber Temperature: 24.7(C) Humidity: 48 % Limit: FCC Part 15C RE_3m Power: DC 3.7 V Level Limit Frequency Reading Factor Margin Detector P/F No. Remark (dBuV/m) (dBuV/m) (MHz) (dBuV) (dB/m)(dB) 49.0145 25.88 -12.66 13.22 40.00 -26.78 Ρ 1 QP 122.8340 25.66 -13.06 12.60 43.50 -30.90 Ρ 2 QP 144.3348 -11.71 16.46 43.50 Ρ 3 28.17 -27.04 QP 4 327.8873 25.53 -9.54 15.99 46.00 -30.01 QP Ρ 5 416.1791 26.55 -7.98 18.57 46.00 Ρ -27.43 QP 661,1505 26.67 -3.23 23.44 46.00 -22.56 QP Ρ 6

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


- 2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Middle channel and 8DPSK) was submitted only.
- 3. Freq. = Emission frequency in MHz
- Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dB μ V/m) = Limit stated in standard Over (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)
 - * is meaning the worst frequency has been tested in the test frequency range.

Report No.: TCT240604E022


Report No.: TCT240604E022 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: 110.0 dBu∀/m 100 90 80 FCC part 15.247 bandedge(peal 70 60 FCC part 15.247 bandedge(AV) 50 40 ر. مەربىي -1-1 Manute eak 30 20 10.0 2300.000 2320.00 2340.00 2360.00 (MHz) 2420.00 2380.00 2440.00 2460.00 2480.00 2500.00 Temperature: 25.8(℃) Humidity: 53 % Site: 3m Anechoic Chamber Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Frequency Reading Factor Level Limit Margin P/F No. Detector Remark (dBuV) (MHz) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 53.49 2390.000 -17.10 36.39 74.00 -37.61 Ρ peak Page 26 of 94

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2390.000	55.35	-17.10	38.25	74.00	-35.75	peak	Ρ	

			会 沪リ						F	Report No.:	TCT240	604E022
Horiz		2100.										
	110.0 dBu∀/m											
	100											_
	90										\square	_
	80						_	FCC	part 15.247	bandadaafna	<u>6.</u>	_
	70							FLL	part 15.247	vandeuge(pe		
	60										<u> </u>	
	50							FCC	part 15.247	andedge(A)	∥∟_	
											×	
	40	and the manufacture of the		****		man	an the second second	Johnson Anto	and the second second second	and a second	halle	^{v#} ₩₩peak
	30											
	20						_					_
	10.0 2300.000 232	20.00 234	l0.00 230	60.00 238	30.00 (M	Hz)	2420.00	244	0.00 246	50.00 24	80.00	2500.00
Site: 1	3m Anechoic (Chamber		Polarizatio	on: Horiz	ontal	Te	mpera	ture: 25.8(°	C) Hu	midity: 5	3 %
	FCC part 15.2		dae(peak)			ower:D			(-,	,.	
						0,,01,0,	0.0.1 v					
	Frequency	Reading		1				- (F	_			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
No.	Frequency (MHz) 2483.500	Reading (dBuV) 59.24	Factor	Level	Limit	Margin		P/F P	Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			Ś
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark)	
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark	(Č)	
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark	(Č)	
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark)	
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark)	
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark)	
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark			
	(MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		Remark		Page 28	

Above 1GHz

Modulation	Type: 8D	PSK							
Low channe	el: 2402 N	IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.19		0.66	45.85		74	54	-8.15
7206	Н	34.54		9.50	44.04		74	54	-9.96
	H								
((()		(, C)	`)	(,	·C`)		(\mathcal{O})	
4804	V	43.59		0.66	44.25		74	54	-9.75
7206	V	34.13		9.50	43.63		74	54	-10.37
	V								

Middle cha	nnel: 2441	MHz))				K K
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4882	Н	45.15		0.99	46.14	<u> </u>	74	54	-7.86
7323	ζOH)	33.63	1.0	9.87	43.50	0	74	54	-10.50
	Ĥ								
4882	V	43.63		0.99	44.62		74	54	-9.38
7323	V	32.79		9.87	42.66		74	54	-11.34
7	V			· 'S'	/				

High channel: 2480 MHz

CT 通测检测 TESTING CENTRE TECHNOLOGY

i ligit chatil	ICI. 2400 IN								
Frequency	Ant Pol	Peak	AV	Correction	Emissic	n Level	Peak limit	A\/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4960	Н	44.02		1.33	45.35		74	54	-8.65
7440	Н	34.75		10.22	44.97		74	54	-9.03
	Н				2				
G)		(.c.)		(.0			(.c.)		Ĵ.)
4960	V	43.55		1.33	44.88		74	54	-9.12
7440	V	33.47		10.22	43.69		74	54	-10.31
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

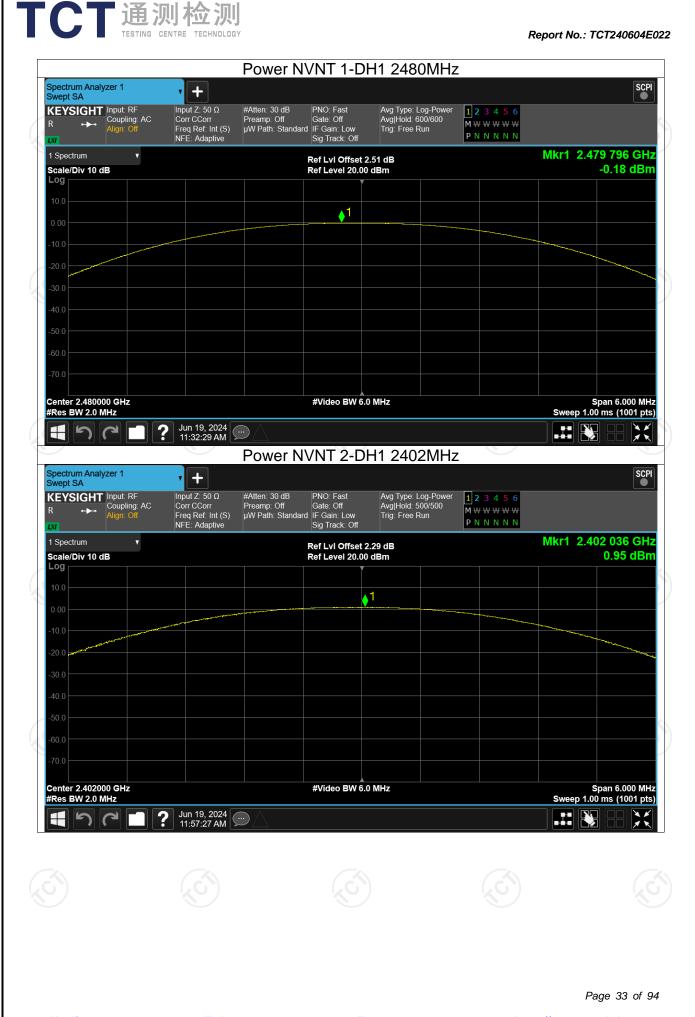
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

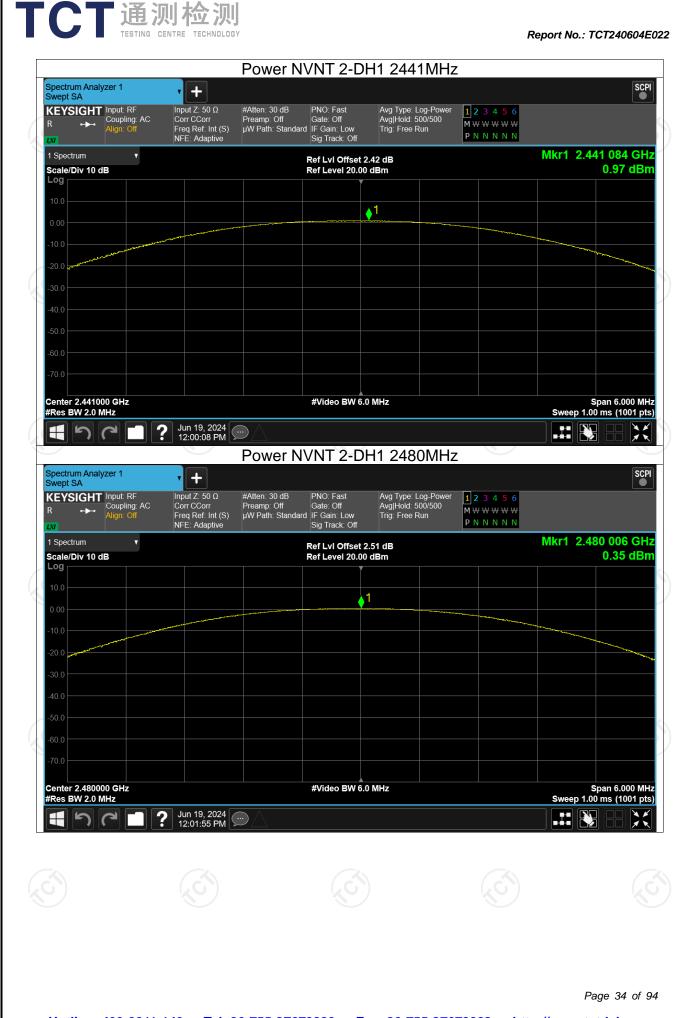
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

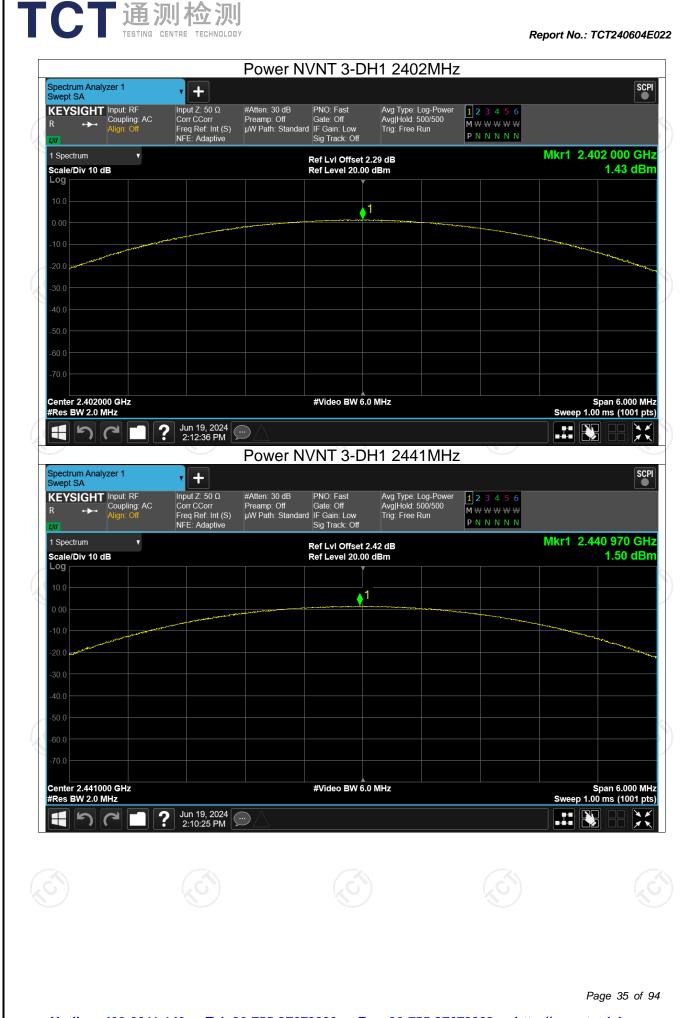
7. All the restriction bands are compliance with the limit of 15.209.

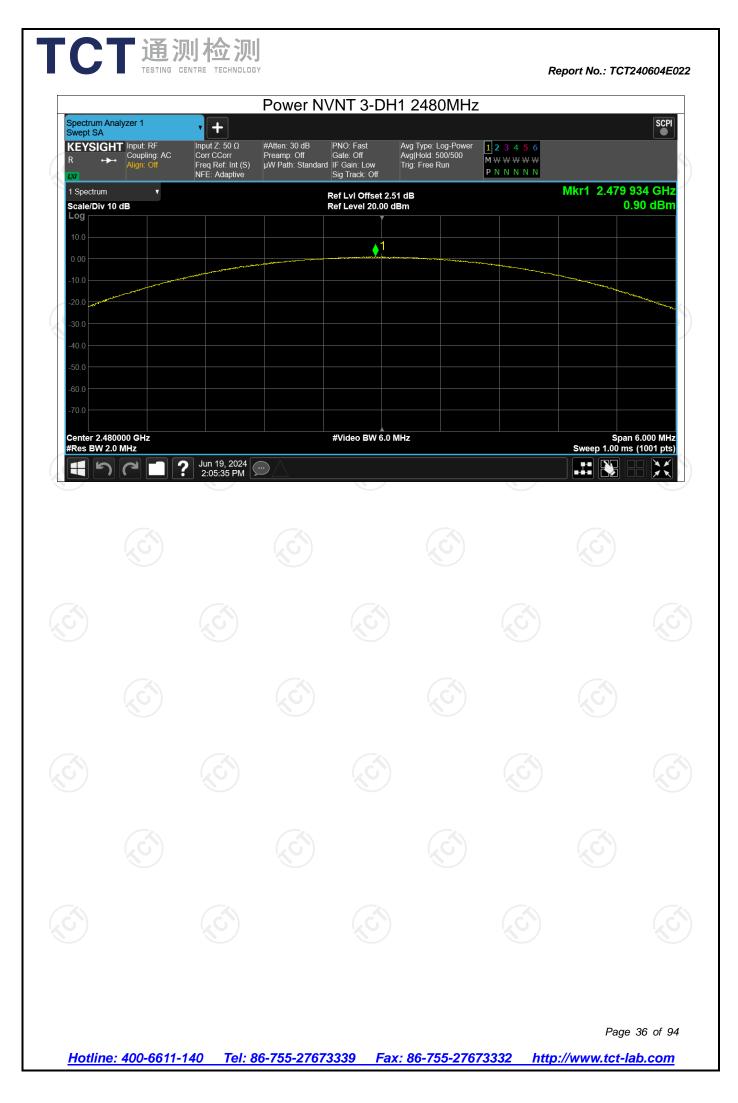
Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power					
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	0.33	30	Pass
NVNT	1-DH1	2441	0.46	30	Pass
NVNT	1-DH1	2480	-0.18	30	Pass
NVNT	2-DH1	2402	0.95	21	Pass
NVNT	2-DH1	2441	0.98	21	Pass
NVNT 🔇	2-DH1	2480	0.35	21	Pass
NVNT	3-DH1	2402	1.43	21	Pass
NVNT	3-DH1	2441	1.50	21	Pass
NVNT	3-DH1	2480	0.90	21	Pass



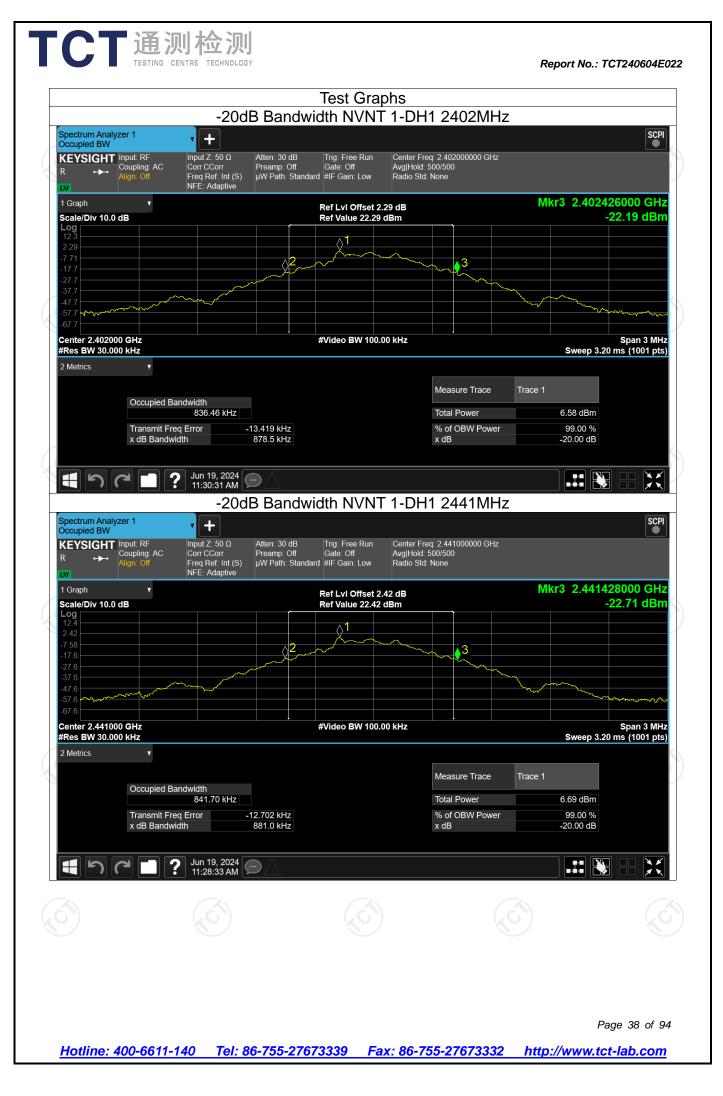

Page 31 of 94


Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com Hotline: 400-6611-140



Page 32 of 94

Page 37 of 94



Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict		
NVNT	1-DH1	2402	0.879	Pass		
NVNT 🚫	1-DH1	2441	0.881	Pass		
NVNT	1-DH1	2480	0.880	Pass		
NVNT	2-DH1	2402	1.244	Pass		
NVNT	2-DH1	2441	1.249	Pass		
NVNT	2-DH1	2480	1.248	Pass		
NVNT	3-DH1	2402	1.225	Pass		
NVNT	3-DH1	2441	1.223	Pass		
NVNT	3-DH1	2480	1.222	Pass		
		KU)	Ko /			

Report No.: TCT240604E022

3

CT通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT240604E022 -20dB Bandwidth NVNT 1-DH1 2480MHz Spectrum Analyzer 1 Occupied BW SCPI + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive REYSIGHT Input: RF Coupling: AC Atten: 30 dB Trig: Free Run Preamp: Off Gate: Off µW Path: Standard #IF Gain: Low Center Freq: 2.480000000 GHz Avg|Hold: 500/500 Radio Std: None **→**→ Mkr3 2.480427000 GHz 1 Graph Ref LvI Offset 2.51 dB Ref Value 22.51 dBm -22.77 dBm Scale/Div 10.0 dB Δ 3 2 Center 2.480000 GHz #Video BW 100.00 kHz Span 3 MHz #Res BW 30.000 kHz Sweep 3.20 ms (1001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 845.64 kHz 6 04 dBm Total Power 99.00 % -20.00 dB Transmit Freq Error -13.435 kHz % of OBW Power 880.2 kHz x dB Bandwidth x dB Jun 19, 2024 - っ つ ? -20dB Bandwidth NVNT 2-DH1 2402MHz Spectrum Analyzer 1 Occupied BW SCPI + v Input Z: 50 Ω Corr CCorr Center Freq: 2.402000000 GHz Avg|Hold: 500/500 Radio Std: None Trig: Free Run Gate: Off REYSIGHT Input: RF Coupling: AC Atten: 30 dB Preamp: Off Gate: Off µW Path: Standard #IF Gain: Low R **→**→ Freq Ref: Int (S) NFE: Adaptive Mkr3 2.402605000 GHz 1 Graph Ref LvI Offset 2.29 dB Ref Value 22.29 dBm -21.50 dBm Scale/Div 10.0 dB 3 Center 2.402000 GHz #Video BW 100.00 kHz Span 3 MHz #Res BW 30.000 kHz Sweep 3.20 ms (1001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 1.1730 MHz Total Power 6.33 dBm Transmit Freq Error -17.620 kHz % of OBW Power 99.00 % x dB Bandwidth 1.244 MHz x dB -20.00 dB Jun 19, 2024 11:57:51 AM ? 4 h C l (\cdots)

Page 39 of 94

TESTING CENTRE TECHNOLOGY Report No.: TCT240604E022 -20dB Bandwidth NVNT 2-DH1 2441MHz Spectrum Analyzer 1 Occupied BW SCPI + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive REYSIGHT Input: RF Coupling: AC Atten: 30 dB Trig: Free Run Preamp: Off Gate: Off µW Path: Standard #IF Gain: Low Center Freq: 2.441000000 GHz Avg|Hold: 500/500 Radio Std: None **→**→ Mkr3 2.441608000 GHz 1 Graph Ref LvI Offset 2.42 dB Ref Value 22.42 dBm -21.27 dBm Scale/Div 10.0 dB 3 Center 2.441000 GHz #Video BW 100.00 kHz Span 3 MHz #Res BW 30.000 kHz Sweep 3.20 ms (1001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 1.1754 MHz 6 45 dBm Total Power 99.00 % -20.00 dB Transmit Freq Error -16.799 kHz % of OBW Power 1.249 MHz x dB Bandwidth x dB Jun 19, 2024 - っ つ ? -20dB Bandwidth NVNT 2-DH1 2480MHz Spectrum Analyzer 1 Occupied BW SCPI + v Input Z: 50 Ω Corr CCorr Center Freq: 2.480000000 GHz Avg|Hold: 500/500 Radio Std: None Trig: Free Run Gate: Off REYSIGHT Input: RF Coupling: AC Atten: 30 dB Preamp: Off Gate: Off µW Path: Standard #IF Gain: Low R **→**→ Freq Ref: Int (S) NFE: Adaptive Mkr3 2.480608000 GHz 1 Graph Ref Lvi Offset 2.51 dB Ref Value 22.51 dBm -21.65 dBm Scale/Div 10.0 dB 7.49 3 Ć Center 2.480000 GHz #Res BW 30.000 kHz #Video BW 100.00 kHz Span 3 MHz Sweep 3.20 ms (1001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 1.1726 MHz Total Power 5.79 dBm Transmit Freq Error -15.420 kHz % of OBW Power 99.00 % x dB Bandwidth 1.248 MHz x dB -20.00 dB Jun 19, 2024 12:02:20 PM ? **1**50 (...)

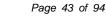
CT通测检测

Page 40 of 94

TESTING CENTRE TECHNOLOGY Report No.: TCT240604E022 -20dB Bandwidth NVNT 3-DH1 2402MHz Spectrum Analyzer 1 Occupied BW SCPI + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive REYSIGHT Input: RF Coupling: AC Atten: 30 dB Trig: Free Run Preamp: Off Gate: Off µW Path: Standard #IF Gain: Low Center Freq: 2.402000000 GHz Avg|Hold: 500/500 Radio Std: None **→**→ Mkr3 2.402612000 GHz 1 Graph Ref LvI Offset 2.29 dB Ref Value 22.29 dBm -21.52 dBm Scale/Div 10.0 dB Δ 3 Center 2.402000 GHz #Video BW 100.00 kHz Span 3 MHz #Res BW 30.000 kHz Sweep 3.20 ms (1001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 1.1587 MHz 6 73 dBm Total Power 99.00 % -20.00 dB Transmit Freq Error -531 Hz % of OBW Power 1.225 MHz x dB Bandwidth x dB Jun 19, 2024 170 ? -20dB Bandwidth NVNT 3-DH1 2441MHz Spectrum Analyzer 1 Occupied BW SCPI + v Input Z: 50 Ω Corr CCorr Center Freq: 2.441000000 GHz Avg|Hold: 500/500 Radio Std: None Trig: Free Run Gate: Off REYSIGHT Input: RF Coupling: AC Atten: 30 dB Preamp: Off Gate: Off µW Path: Standard #IF Gain: Low R **→**→ Freq Ref: Int (S) NFE: Adaptive Mkr3 2.441613000 GHz 1 Graph Ref LvI Offset 2.42 dB Ref Value 22.42 dBm -21.20 dBm Scale/Div 10.0 dB 2 41 3 Center 2.441000 GHz #Res BW 30.000 kHz #Video BW 100.00 kHz Span 3 MHz Sweep 3.20 ms (1001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 1.1603 MHz Total Power 6.82 dBm Transmit Freq Error 1.292 kHz % of OBW Power 99.00 % x dB Bandwidth 1.223 MHz x dB -20.00 dB Jun 19, 2024 2:10:58 PM ? 4 n C (\cdots)

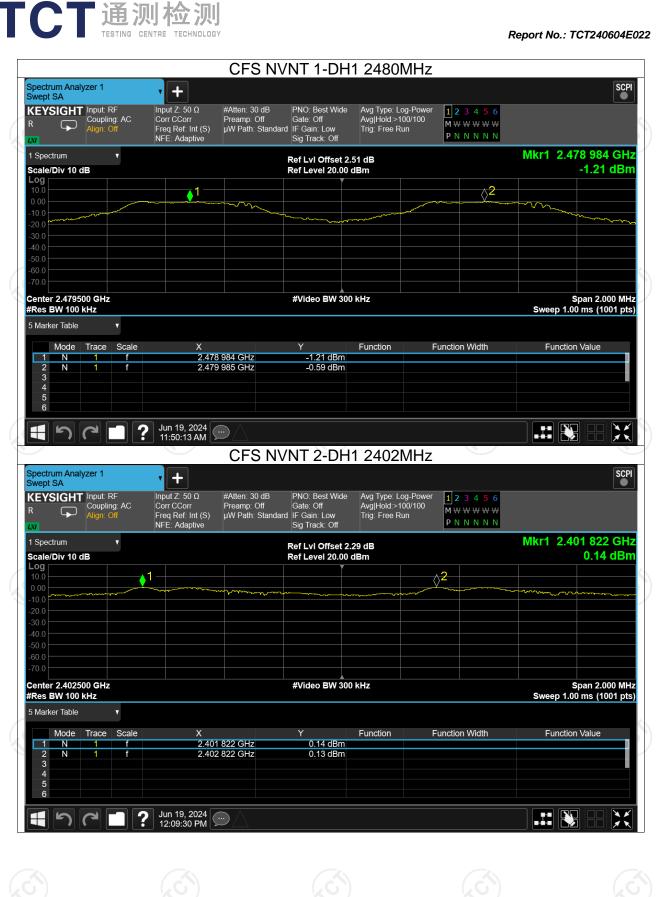
CT通测检测

Page 41 of 94

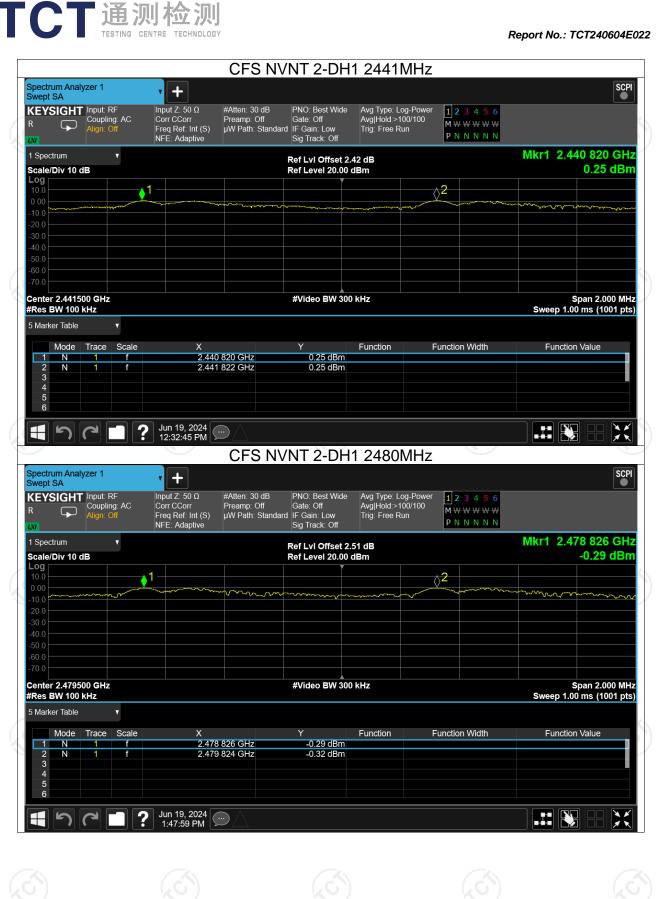


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

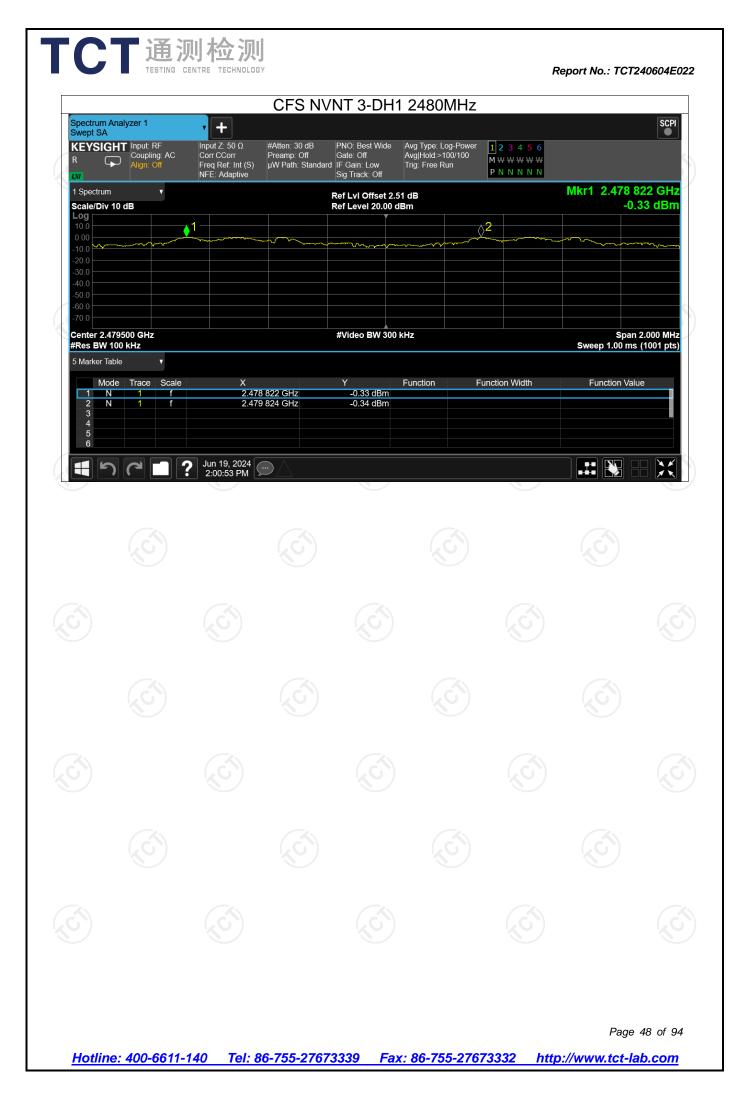
Condition	Mode	(MHz)	(MHz)	пгз (MHz)	(MHz)	Verdict
NVNT	1-DH1	2401.982	2402.980	0.998	0.881	Pass
NVNT	1-DH1	2440.980	2441.975	0.995	0.881	Pass
NVNT	1-DH1	2478.984	2479.985	1.001	0.881	Pass
NVNT	2-DH1	2401.822	2402.822	1	0.833	Pass
NVNT	2-DH1	2440.820	2441.822	1.002	0.833	Pass
NVNT 🔇	2-DH1	2478.826	2479.824	0.998	0.833	Pass
NVNT	3-DH1	2401.820	2402.824	1.004	0.817	Pass
NVNT	3-DH1	2440.828	2441.822	0.994	0.817	Pass
NVNT	3-DH1	2478.822	2479.824	1.002	0.817	Pass


Carrier Frequencies Separation

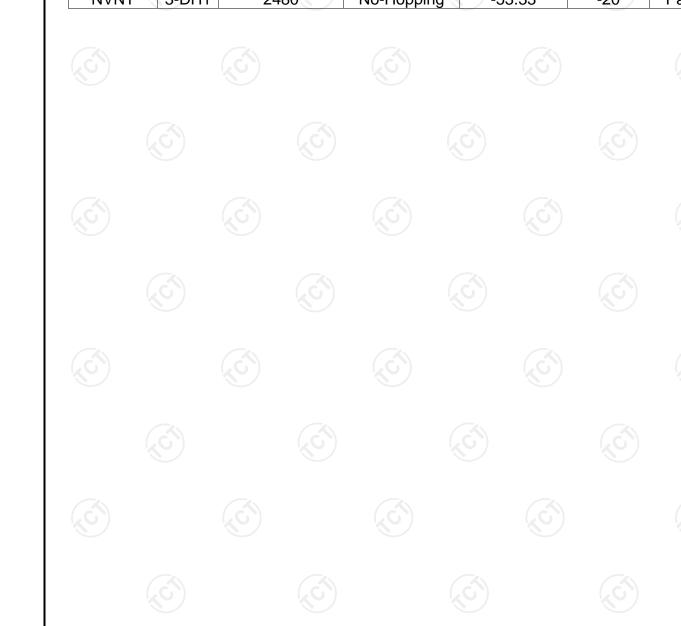
Report No.: TCT240604E022





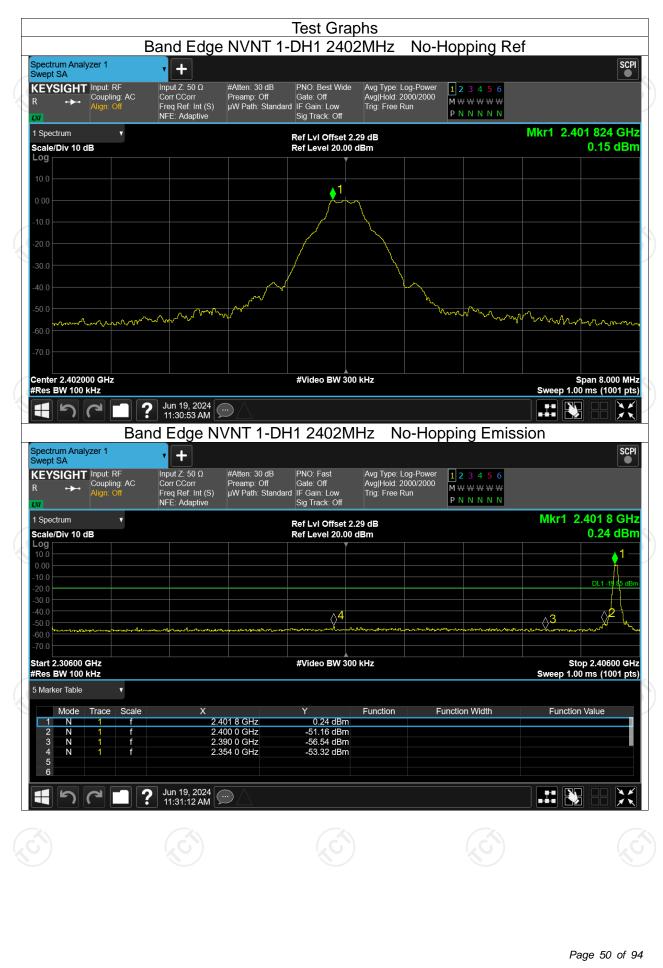

Page 45 of 94

Page 46 of 94

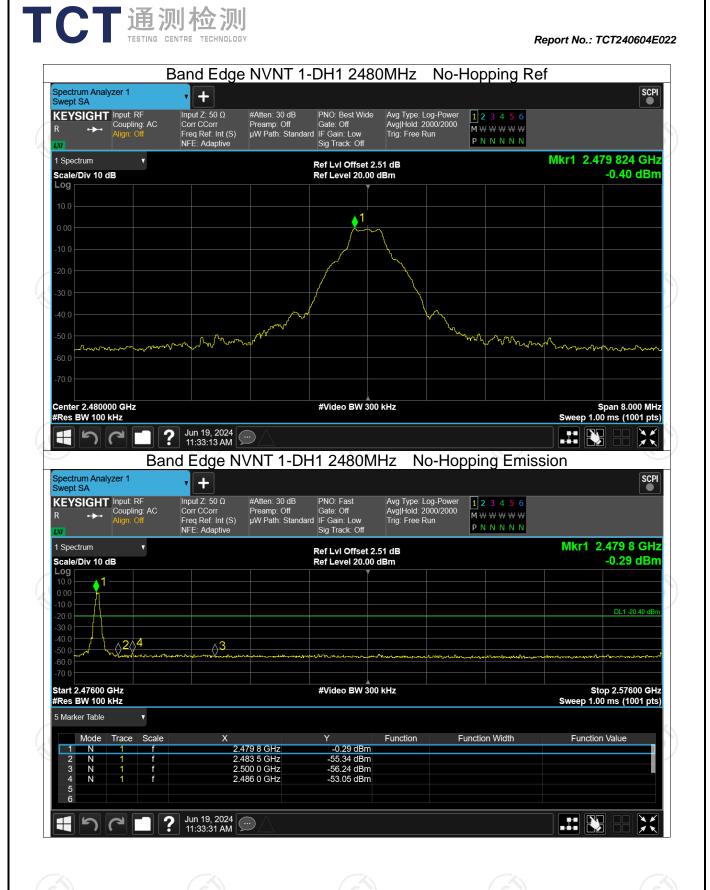

Page 47 of 94

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-53.47	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-52.65	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-53.83	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-52.83	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-54.59	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping 🖔	-53.33	-20	Pass

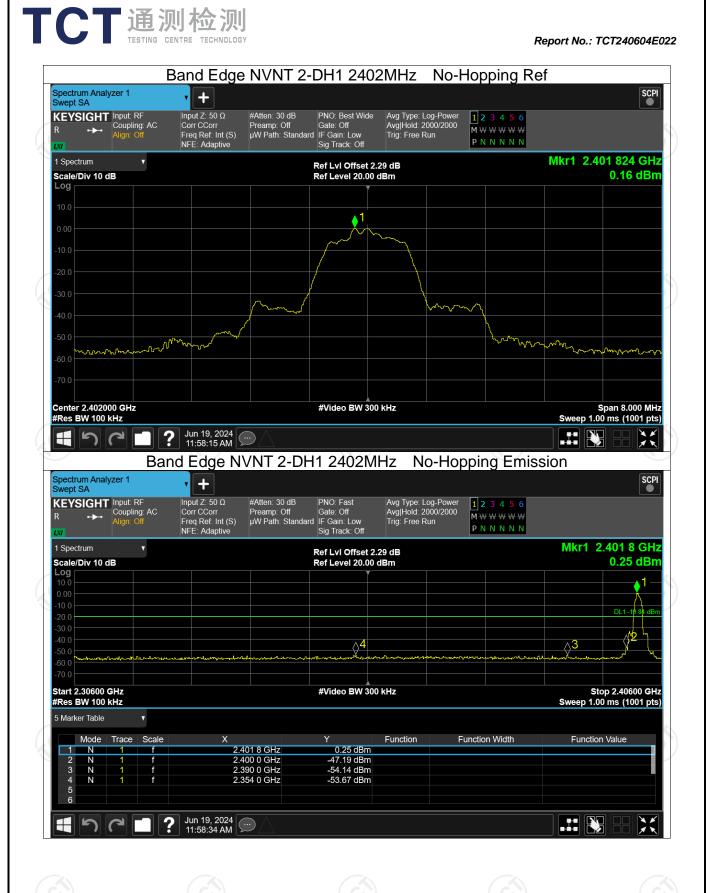
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)
		-	Band Edge	
		TRE TECHNOLOGY		


十八十 通测检测

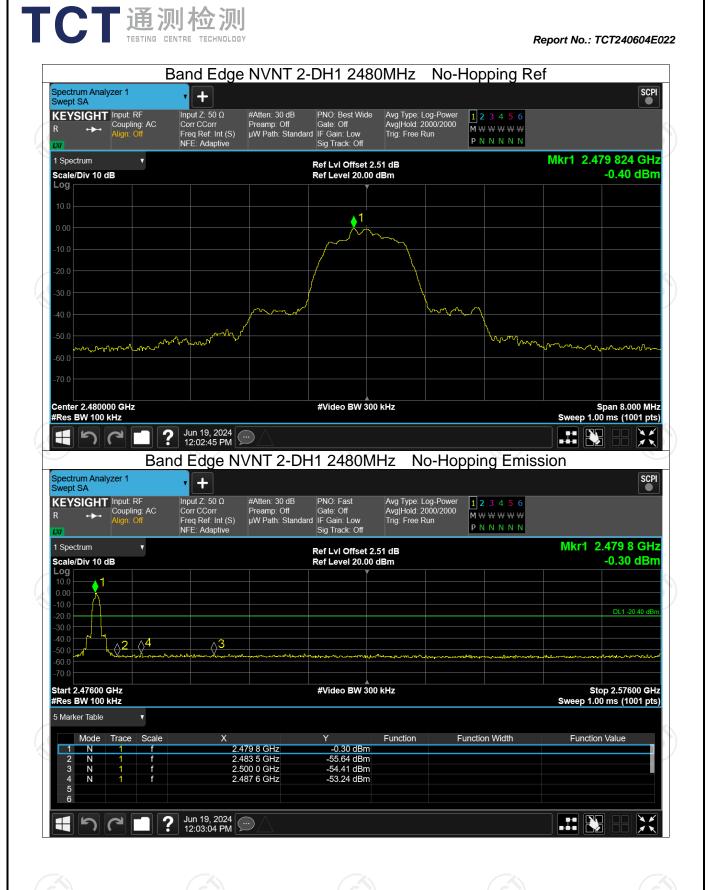
Report No.: TCT240604E022


Page 49 of 94

Report No.: TCT240604E022

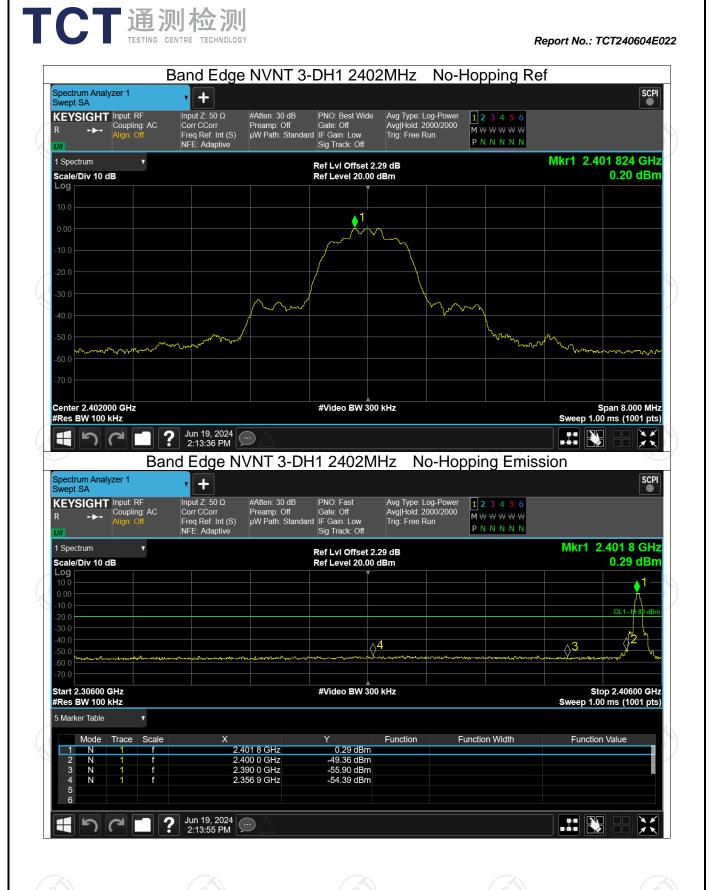

CT通测检测

TESTING CENTRE TECHNOLOGY

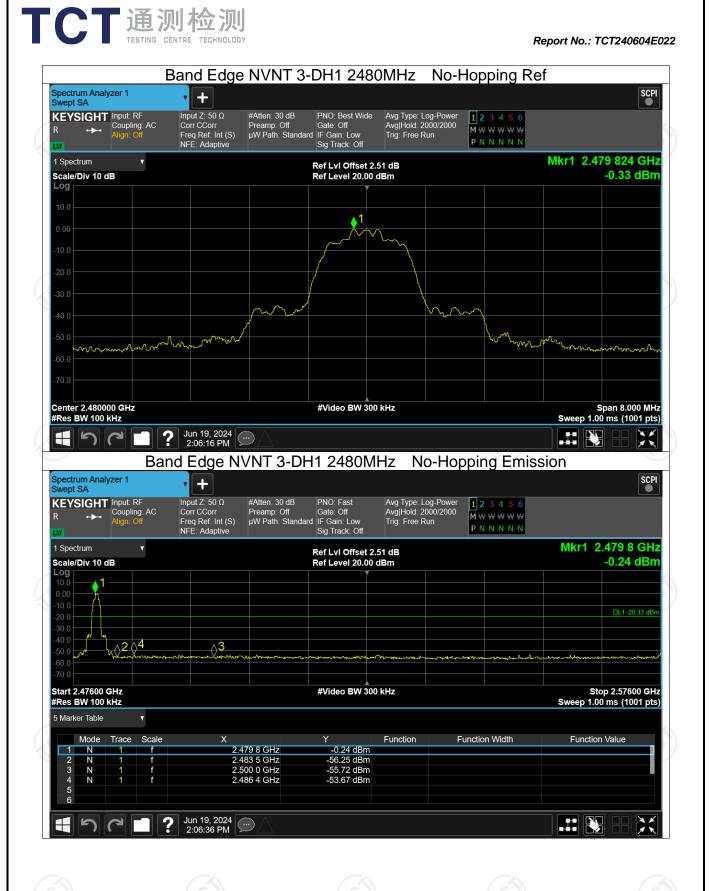


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 51 of 94

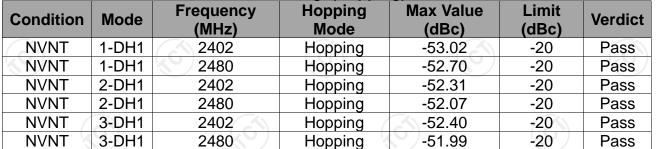


Page 52 of 94



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

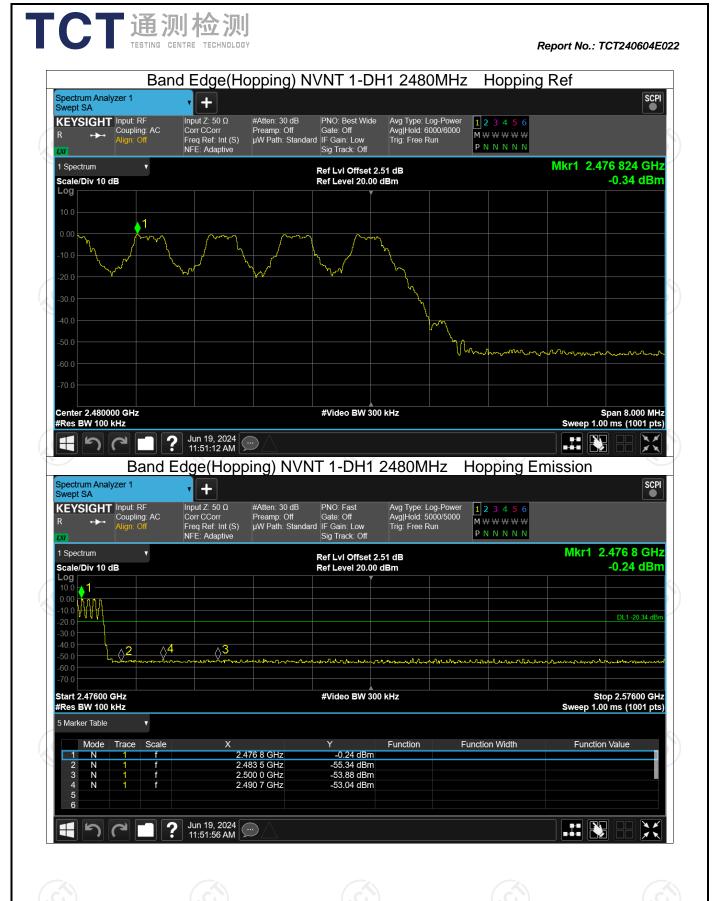
Page 53 of 94

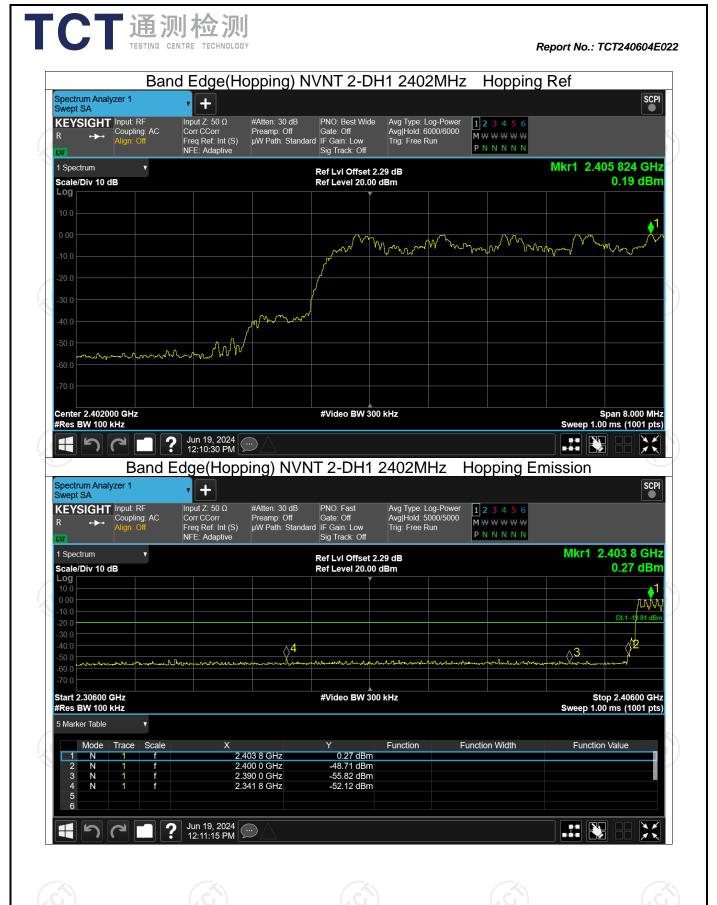


Page 54 of 94

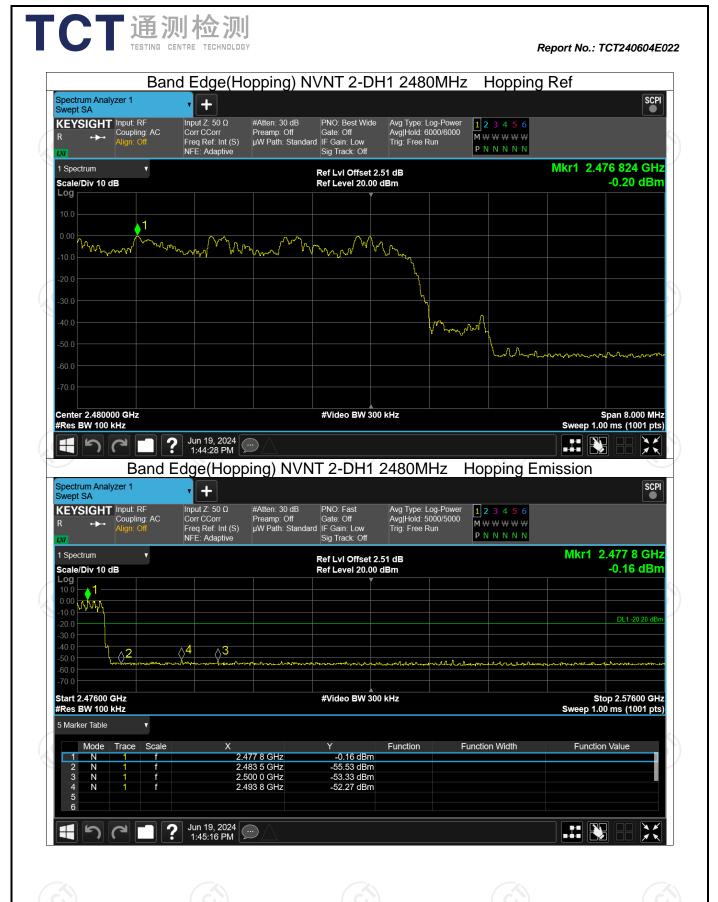
Page 55 of 94

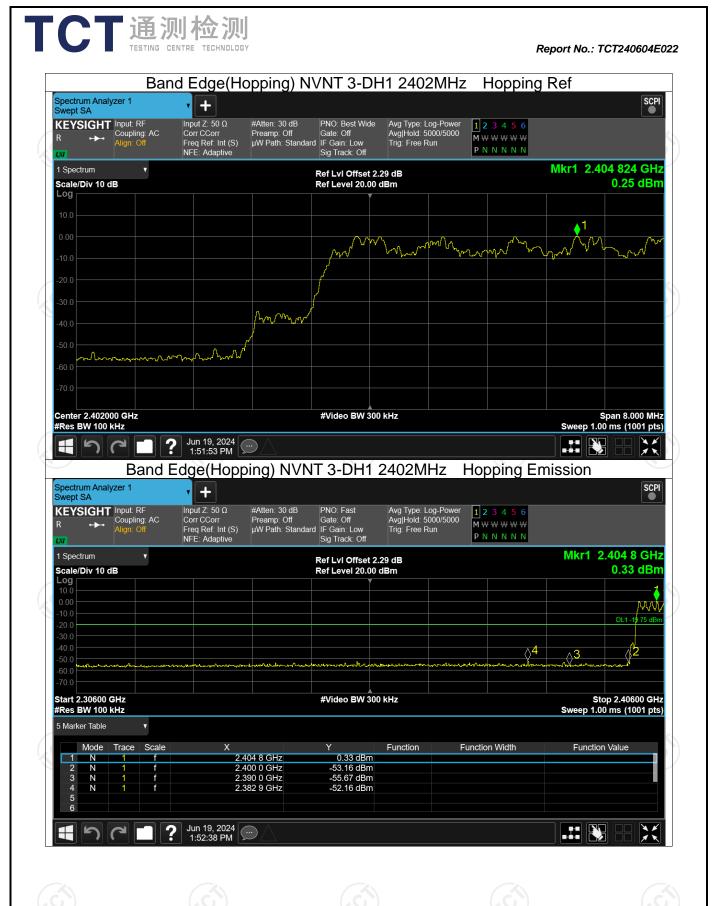
Page 56 of 94

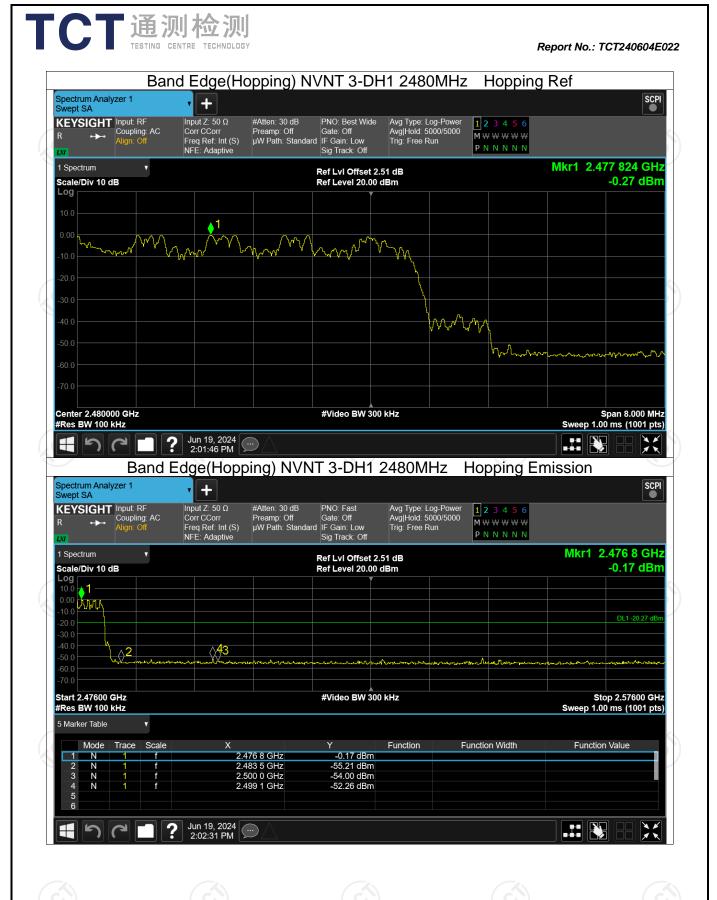

Band Edge(Hopping)


••••

Report No.: TCT240604E022



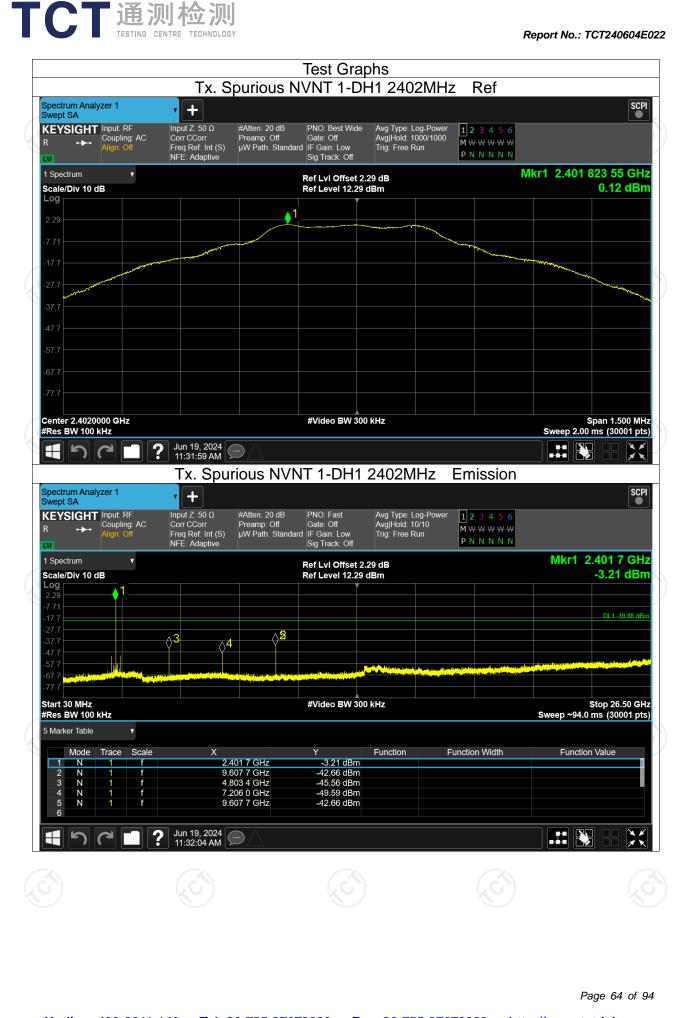

CT通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT240604E022 Test Graphs Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref Spectrum Analyzer 1 Swept SA SCPI + . KEYSIGHT Input: RF R +++ Coupling: AC PNO: Best Wide Avg Type: Log-Power Gate: Off Avg|Hold: 6000/6000 IF Gain: Low Trig: Free Run Input Z: 50 Ω #Atten: 30 dB 1 2 3 4 5 6 Corr CCorr Freq Ref: Int (S) NFE: Adaptive Preamp: Off Gate: Off µW Path: Standard IF Gain: Low Sig Track: Off <u>м</u>₩₩₩₩₩ R PNNNN Mkr1 2.402 824 GHz 1 Spectrum Ref LvI Offset 2.29 dB Ref Level 20.00 dBm 0.14 dBm Scale/Div 10 dB _og 1 mmmmm Martin Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.00 ms (1001 pts) #Video BW 300 kHz **?** Jun 19, 2024 う * * P וח Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission Spectrum Analyzer 1 Swept SA SCPI + REYSIGHT Input: RF Coupling: AC Input Z: 50 Ω #Atten: 30 dB Avg Type: Log-Power Avg|Hold: 5000/5000 PNO⁻ Fast **1 2 3 4 5 6** Corr CCorr Freq Ref: Int (S) NFE: Adaptive Preamp: Off Gate: Off <u> ₩ ₩ ₩ ₩ ₩</u> R ++μW Path: Standard IF Gain: Low Sig Track: Off Trig: Free Run PNNNN Mkr1 2.401 8 GHz 1 Spectrum Ref LvI Offset 2.29 dB Ref Level 20.00 dBm 0.19 dBm Scale/Div 10 dB .00 ▲1 DL1 -19.86 db ∖4 **∂**3 5 6 A Stop 2.40600 GHz Start 2.30600 GHz #Video BW 300 kHz #Res BW 100 kHz Sweep 1.00 ms (1001 pts) 5 Marker Table Mode Trace Scale Υ Function Function Width Function Value Х 2.401 8 GHz 0.19 dBm N -51.21 dBm -56.72 dBm -52.89 dBm 2.400 0 GHz 2.390 0 GHz 2 3 4 Ν N Ν 2.356 8 GHz 5 6 う C ? Jun 19, 2024

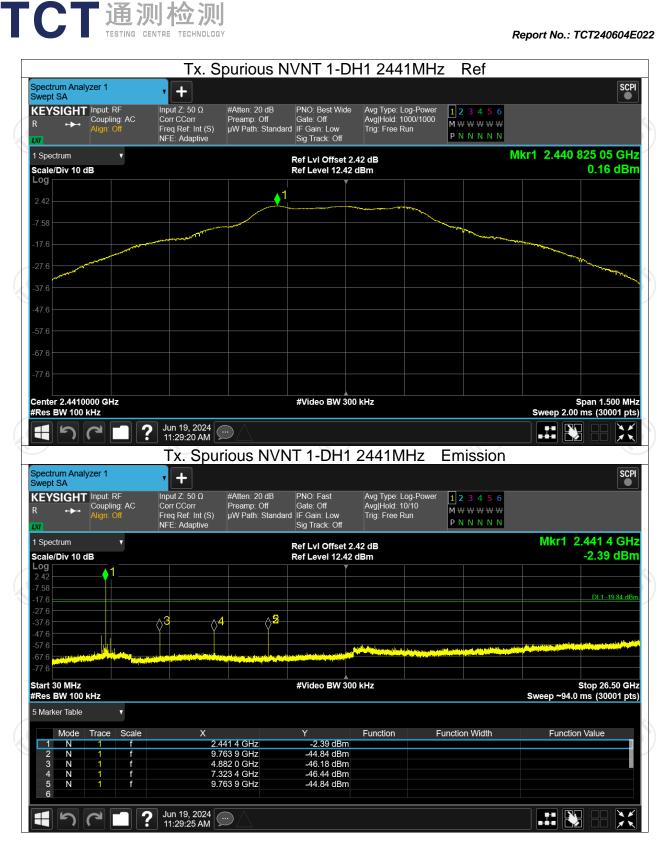


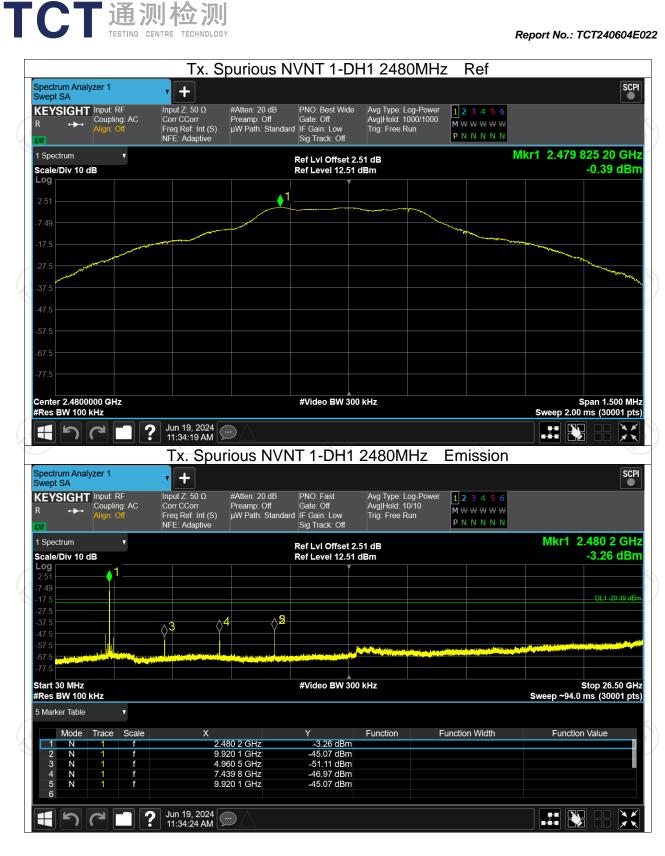
Page 59 of 94

Page 61 of 94

Page 62 of 94


Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	1-DH1	2402	-42.77	-20	Pass		
NVNT	1-DH1	2441	-44.99	-20	Pass		
NVNT	1-DH1	2480	-44.67	-20	Pass		
NVNT	2-DH1	2402	-43.23	-20	Pass		
NVNT	2-DH1	2441	-44.90	-20	Pass		
NVNT	2-DH1	2480	-44.56	-20	Pass		
NVNT 🚫	3-DH1	2402	-42.95	-20	Pass		
NVNT	3-DH1	2441	-45.10	-20	Pass		
NVNT	3-DH1	2480	-44.73	-20	Pass		


Report No.: TCT240604E022

Page 63 of 94

Page 65 of 94

Page 66 of 94