

TEST REPORT

Report No.:	BCTC2103239878E						
Applicant:	TRANSTYLE TECHNOLOGY CO., LIMITED						
Product Name:	Truly Wireless Earphones						
Model/Type reference:	TW91						
Tested Date:	2021-03-03 to 2021-03-15						
Issued Date:	2021-03-15						
Sher	nzhen BCTS Testing Co., Ltd. Page: 1 of 69 Edition: A.3						

FCC ID:2ALN9-TW91

Product Name:	Truly Wireless Earphones
Trademark:	N/A
Model/Type reference:	TW91 Refer to section 4.1
Prepared For:	TRANSTYLE TECHNOLOGY CO., LIMITED
Address:	1# Building, Dabuxiang Industrial Area, Guanlan Town, Longhua New district, Shenzhen China. 518110
Manufacturer:	TRANSTYLE TECHNOLOGY CO., LIMITED
Address:	1# Building, Dabuxiang Industrial Area, Guanlan Town, Longhua New district, Shenzhen China. 518110
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2021-03-03
Sample tested Date:	2021-03-03 to 2021-03-15
Issue Date:	2021-03-15
Report No.:	BCTC2103239878E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS / / / / / / / /
Remark:	This is Bluetooth Classic radio test report.

Tested by:

kelsey Ion

Kelsey Tan/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

TABLE OF CONTENT

Test Report Declaration	Page
1. VERSION	
2. TEST SUMMARY	
3. MEASUREMENT UNCERTAINTY	7
4. PRODUCT INFORMATION AND TEST SETUP	
4.1 Product Information	
4.2 Test Setup Configuration	
4.3 Support Equipment	
4.4 Channel List	
4.5 Test Mode	
4.6 table of parameters of text software setting	
5. TEST FACILITY AND TEST INSTRUMENT USED	
5.1 Test Facility	
5.2 Test Instrument Used	
6. CONDUCTED EMISSIONS	
6.1 Block Diagram Of Test Setup	
6.2 Limit	
6.3 Test procedure	
6.4 EUT operating Conditions	
6.5 Test Result	
7. RADIATED EMISSIONS	
7.1 Block Diagram Of Test Setup	
7.2 Limit	
7.3 Test procedure	
7.4 EUT operating Conditions	20
7.5 Test Result	
8. RADIATED BAND EMISSION MEASUREMENT AND RESTRICTE	
OF OPERATION	
8.1 Block Diagram Of Test Setup	
8.2 Limit	25
 8.2 Limit	
8.4 EUT operating Conditions	
8.5 Test Result	
9. CONDUCTED EMISSION	
9.1 Block Diagram Of Test Setup	
 9. CONDUCTED EMISSION	
9.3 Test procedure	
9.4 Test Result	
10. 20 DB BANDWIDTH	
10.1 Block Diagram Of Test Setup	

Page: 3 of 69

10.2	Limit	38
10.3	Test procedure	38
10.4	Test Result	
11. M	AXIMUM PEAK OUTPUT POWER	44
11.1	Block Diagram Of Test Setup	44
11.2	Limit	44
11.3	Test procedure	44
11.4	Test Result	45
12. H	OPPING CHANNEL SEPARATION	50
12.1	Block Diagram Of Test Setup	50
12.2	Limit	50
12.3	Test procedure	50
12.4	Test Result	51
13. NI	UMBER OF HOPPING FREQUENCY	56
13.1	Block Diagram Of Test Setup	56
13.2	Limit	56
13.3	Test procedure	56
13.4	Test Result	57
14. D\	WELL TIME	59
14.1	Block Diagram Of Test Setup	59
14.2	Limit	59
14.3	Test procedure	59
14.4	Test Result	
15. Al	NTENNA REQUIREMENT	65
15.1	Limit	
15.2	Test Result	
	UT PHOTOGRAPHS	
17. El	UT TEST SETUP PHOTOGRAPHS	67

(Note: N/A means not applicable)

Edition: A.3

1. VERSION

Report No.	Issue Date	Description	Approved
BCTC2103239878E	2021-03-15	Original	Valid

Page: 5 of 69

Edition: A.3

2. TEST SUMMARY

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Number of hoppingfrequencies	§15.247(a)(1)(iii)	PASS
5	Dwell Time	§15.247(a)(1)(iii)	PASS
6	Spurious RF conducted emissions	§15.247(d)	PASS
7	Band edge	§15.247(d)	PASS
8	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
9	Antenna Requirement	15.203	PASS

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	Conducted Emission (150kHz-30MHz)	U=3.2dB
2	3m camber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
3	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
4	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
5	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

No. : BCTC/RF-EMC-007

Page: 7 of 69

Edition: A.3

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model/Type reference:	TW91					
	MZX5100, MZX5100-CGRY, MZX5100-ICY, MZX5100-PP, MZX5100-MT, MZX5100-RYB, MZX5100-WHT, MZX5100-CGRY-STK-6, MZX5100-ICY-STK-6, MZX5100-PP-STK-6, MZX5100-MT-STK-6, MZX5100-RYB-STK-6, MZX5100-WHT-STK-6, MZX5100-CGRY-WM, MZX5100-ICY-WM, MZX5100-PP-WM, MZX5100-MT-WM, MZX5100-RYB-WM, MZX5100-WHT-WM, MZX5100-CGRY-TA, MZX5100-MT-TA, MZX5100-WHT-WM, MZX5100-CGRY-FR, MZX5100-CGRY-SA, MZX5100-WHT-TA, MZX5100-CGRY-FR, MZX5100-CGRY-SA, MZX5100-WHT-SA, MZX5100-CGRY-STK, MZX5100-MT-FR, MZX5100-MT-SA, MZX5100-MT-STK, MZX5100-RYB-FR, MZX5100-RYB-SA, MZX5100-RYB-STK, MZX5100-PP-FR, MZX5100-WHT-FR, MZX5100-WHT-STK, MZX5100-PP-SA, MZX5100-WHT-FR, MZX5100-ICY-FR, MZX5100-ICY-SA, MZX5100-PP-STK, MZX5100-ICY-FR, MZX5010-ICY-SA, MZX5100-PP-STK					
Model differences:	All the model are the same circuit and RF module, except model names.					
Bluetooth Version:	BT 5.0					
Operation Frequency:	Bluetooth: 2402-2480MHz					
Type of Modulation:	Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK					
Number Of Channel	79СН					
Antenna installation:	Bluetooth: FPCB antenna					
Antenna Gain:	Bluetooth: 1.1dBi					
Ratings:	USB:DC.5V					
	Battery:DC 3.7V					
	\sim					


Page: 8 of 69

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Truly Wireless Earphones	N/A	TW91	N/A	EUT
E-2	Adapter	N/A	BCTC001	N/A	Auxiliary

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.3M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	1

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(Pi/4DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Charging (Conducted emission)					
5	Transmitting (Radiated emission)					

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 table of parameters of text software setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT
Frequency	2402 MHz 2441 MHz 2480 MHz
Parameters	

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

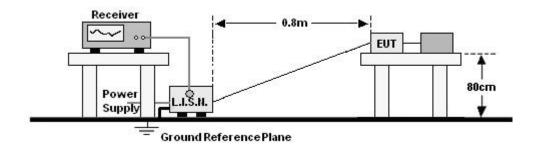
FCC Test Firm Registration Number: 712850

IC Registered No.: 23583

5.2 Test Instrument Used

Conducted emissions Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Receiver	R&S	ESR3	102075	Jun. 08, 2020	Jun. 07, 2021	
LISN	R&S	ENV216	101375	Jun. 04, 2020	Jun. 03, 2021	
ISN	HPX	ISN T800	S1509001	Jun. 04, 2020	Jun. 03, 2021	
Software	Frad	EZ-EMC	EMC-CON 3A1	١	N ₂	

RF conducted test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Power Metter	Keysight	E4419B		Jun. 08, 2020	Jun. 07, 2021	
Power Sensor (AV)	Keysight	E9 300A	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	Jun. 08, 2020	Jun. 07, 2021	
Signal Analyzer 20kHz-26.5G Hz	KEYSIGHT	N9020A	MY4910006 0	Jun. 04, 2020	Jun. 03, 2021	
Spectrum Analyzer 9kHz-40GHz	R&S	FSP40	100363	Jun. 08, 2020	Jun. 07, 2021	


Radiated emissions Test (966 chamber)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023			
Receiver	R&S	ESR3	102075	Jun. 08, 2020	Jun. 07, 2021			
Receiver	R&S	ESRP	101154	Jun. 08, 2020	Jun. 07, 2021			
Amplifier	Schwarzbeck	BBV9718	9718-309	Jun. 04, 2020	Jun. 03, 2021			
Amplifier	Schwarzbeck	BBV9744	9744-0037	Jun. 04, 2020	Jun. 03, 2021			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	VULB9163- 942	Jun. 08, 2020	Jun. 07, 2021			
Horn Antenna	SCHWARZBEC K	BBHA9120 D	1201	Jun. 10, 2020	Jun. 09, 2021			
Horn Antenna (18GHz-40 GHz)	SCHWARZBE CK	BBHA9170	822	Jun. 10, 2020	Jun. 09, 2021			
Amplifier (18GHz-40 GHz)	MITEQ	TTA1840-3 5-HG	2034381	Jun. 08, 2020	Jun. 07, 2021			
Loop Antenna (9KHz-30M Hz)	SCHWARZBE CK	FMZB1519 B	014	Jun. 08, 2020	Jun. 07, 2021			
RF cables1 (9kHz-30MH z)	Huber+Suhnar	9kHz-30M Hz	B1702988- 0008	Jun. 08, 2020	Jun. 07, 2021			
RF cables2 (30MHz-1G Hz)	Huber+Suhnar	30MHz-1G Hz	1486150	Jun. 08, 2020	Jun. 07, 2021			
RF cables3 (1GHz-40G Hz)	Huber+Suhnar	1GHz-40G Hz	1607106	Jun. 08, 2020	Jun. 07, 2021			
Power Metter	Keysight	E4419B		Jun. 08, 2020	Jun. 07, 2021			
Power Sensor (AV)	Keysight	E9 300A		Jun. 08, 2020	Jun. 07, 2021			
Signal Analyzer 20kHz-26.5 GHz	KEYSIGHT	N9020A	MY491000 60	Jun. 04, 2020	Jun. 03, 2021			
Spectrum Analyzer 9kHz-40G Hz	Agilent	FSP40	100363	Jun. 13, 2020	Jun. 12, 2021			
Software	Frad	EZ-EMC	FA-03A2 RE	N				

Edition: A.3

6. CONDUCTED EMISSIONS

6.1 Block Diagram Of Test Setup

6.2 Limit

FREQUENCY (MHz)	Limit (dBuV)		
	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

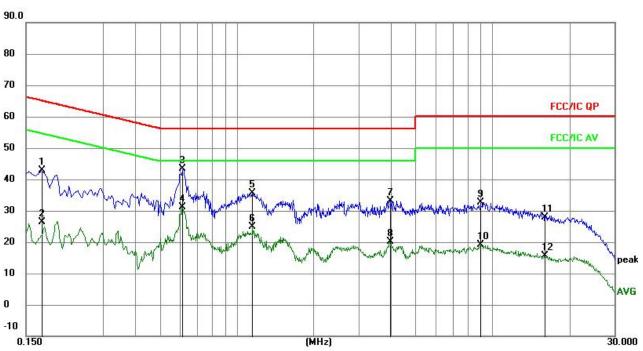
6.3 Test procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz / / / / / / /
IF Bandwidth	9 kHz / / / / / / / /

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

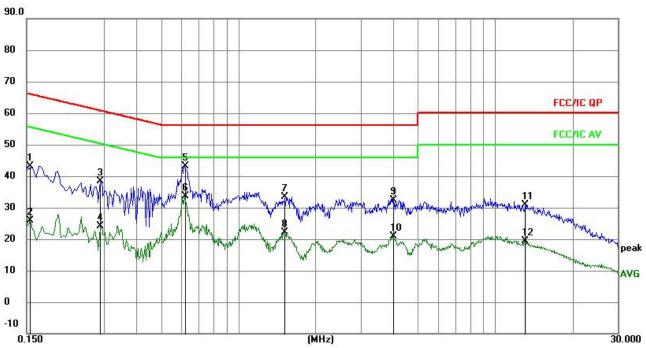
6.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 4

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1725	33.28	9.49	42.77	64.84	-22.07	QP
2		0.1725	17.01	9.49	26.50	54.84	-28.34	AVG
3	*	0.6134	33.48	9.95	43.43	56.00	-12.57	QP
4		0.6134	21.29	9.95	31.24	46.00	-14.76	AVG
5		1.1490	26.07	9.57	35.64	56.00	-20.36	QP
6		1.1490	15.19	9.57	24.76	46.00	-21.24	AVG
7		3.9750	23.43	9.73	33.16	56.00	-22.84	QP
8		3.9750	10.31	9.73	20.04	46.00	-25.96	AVG
9		8.9880	22.92	9.70	32.62	60.00	-27.38	QP
10		8.9880	9.55	9.70	19.25	50.00	-30.75	AVG
11		15.9945	18.06	9.72	27.78	60.00	-32.22	QP
12		15.9945	6.02	9.72	15.74	50.00	-34.26	AVG


No.: BCTC/RF-EMC-007

Page: 15 of 69

Edition :

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 4

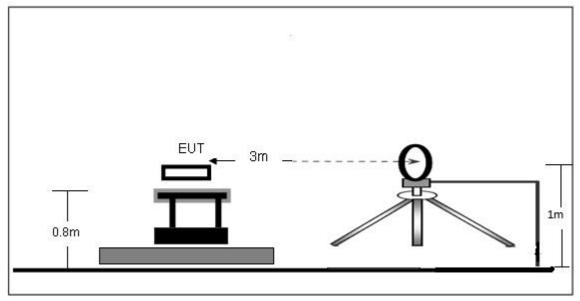
Remark:

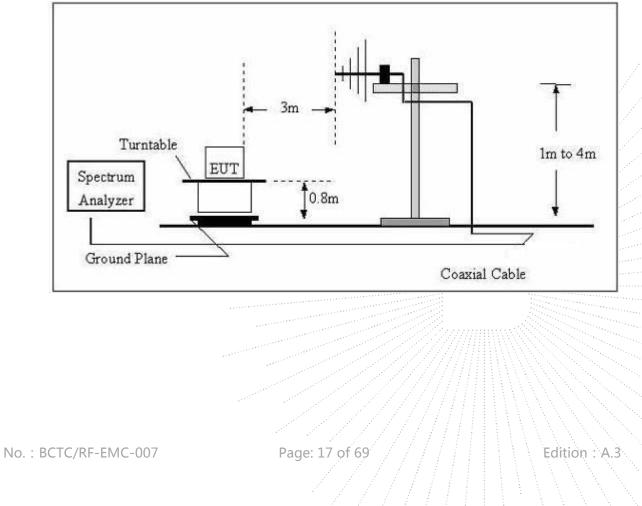
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1545	33.72	9.51	43.23	65.75	-22.52	QP
2		0.1545	16.31	9.51	25.82	55.75	-29.93	AVG
3		0.2895	28.76	9.57	38.33	60.54	-22.21	QP
4		0.2895	14.58	9.57	24.15	50.54	-26.39	AVG
5		0.6180	33.25	9.94	43.19	56.00	-12.81	QP
6	*	0.6180	23.73	9.94	33.67	46.00	-12.33	AVG
7		1.5135	23.74	9.58	33.32	56.00	-22.68	QP
8		1.5135	12.57	9.58	22.15	46.00	-23.85	AVG
9		3.9975	22.67	9.73	32.40	56.00	-23.60	QP
10		3.9975	11.21	9.73	20.94	46.00	-25.06	AVG
11		12.9975	21.21	9.70	30.91	60.00	-29.09	QP
12		12.9975	9.65	9.70	19.35	50.00	-30.65	AVG

No.: BCTC/RF-EMC-007

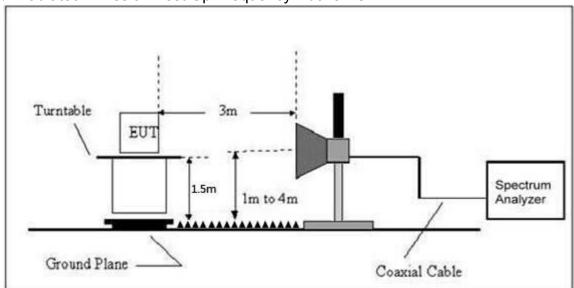
Page: 16 of 69


Edition : A.3


7. RADIATED EMISSIONS

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance			
(MHz)	uV/m	(m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENC	Limit (dBuV/	′m) (at 3M)	
Y (MHz)	PEAK	AVERAGE	-
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting	
1 2504-	RBW 1 MHz /VBW 1 MHz for Peak,	
1-25GHz	RBW 1 MHz / VBW 10Hz for Average	

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a.The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g.Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

		1
100	\sim	11
	그 가지는 가지, 가지, 것, 것, 것, 것, 것, 말을 물을 가지?	11
	그는 그 가지, 가지, 가지, 것, 것, 것, 것, 말을 빌릴 수 있다.	
	- 이번에는 이번에 가지 않는 것은 것을 알 알 알 <i>알 있다.</i>	1
•.		12
		2

		1
	1000	
	and a second	
	a bar a sa	
	a da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arres A da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arrest	
	والمرتبة المرتبة المرتبة والمرتبة والمرتبة المرتبة والمتعام المتعام والمتعام والمنافعة والمتعام والمتعام والمتع	
	الم المحكم في الحرج الحرج أن الحركم المراكب المعني المعني المعني المعني المعني المحمول المعني المعني المعني ال المحكم المحكم في الحرج أن الحركم المراكب المراكب المعني المعني المعني المعني المحمول المحمول المحمول المعني الم	N. N.
	يان الأبيانية المراجعة في المراجع أن الأراجي التي التي التي التي التي التي التي الت	
	المريح المريح المريح المريح المريح المريح المجر المحير المعجر المعمون المعمون المعمول	
• *		
	$\mathbf{D}_{\mathbf{r}}$	- ¹ -
	Page: 20 of 69	Ē

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidtity:	24%
Pressure:	101 kPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 5	Polarization :	

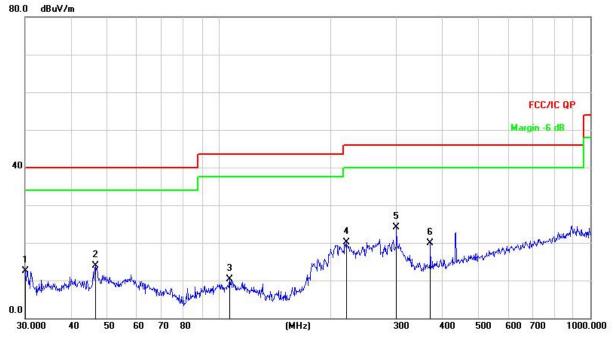
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

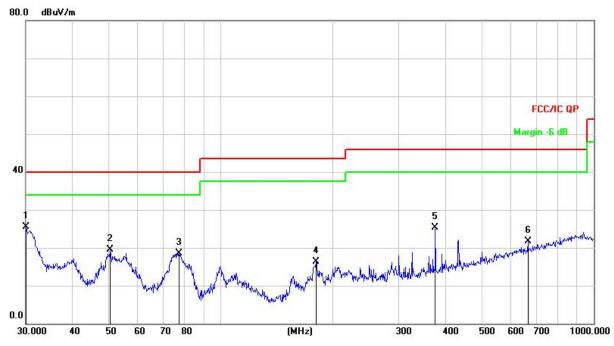
Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

No.: BCTC/RF-EMC-007


Page: 21 of 69

Edition: A.3

Between 30MHz – 1GHz					
Temperature:	26 ℃	Relative Humidtity:	54%		
Pressure:	101 kPa	Test Voltage :	DC 3.7V		
Test Mode :	Mode 5	Polarization :	Horizontal		


Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		30.1054	28.64	-16.10	12.54	40.00	-27.46	QP
2		46.3402	28.21	-14.39	13.82	40.00	-26.18	QP
3		106.7587	26.26	-15.91	10.35	43.50	-33.15	QP
4		219.8449	35.05	-14.85	20.20	46.00	-25.80	QP
5	*	300.3672	36.53	-12.39	24.14	46.00	-21.86	QP
6		370.7023	30.42	-10.49	19.93	46.00	-26.07	QP

Temperature:	26 ℃	Relative Humidtity:	54%
Pressure:	101 kpa	Test Voltage :	DC 3.7V
Test Mode :	Mode 5	Polarization :	Vertical

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	30.0000	41.63	-16.11	25.52	40.00	-14.48	QP
2		50.5860	33.56	-14.11	19.45	40.00	-20.55	QP
3		77.3212	37.48	-18.90	18.58	40.00	-21.42	QP
4		180.0165	32.87	-16.64	16.23	43.50	-27.27	QP
5	:	375.9385	35.69	-10.35	25.34	46.00	-20.66	QP
6	(665.8035	25.74	-4.10	21.64	46.00	-24.36	QP

Between 1GHz – 25GHz

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		G	FSK Low cl	nannel			
V	4804.00	52.08	-0.43	51.65	74.00	-22.35	PK
V	4804.00	42.47	-0.43	42.04	54.00	-11.96	AV
V	7206.00	42.18	8.31	50.49	74.00	-23.51	PK
V	7206.00	31.21	8.31	39.52	54.00	-14.48	AV
Н	4804.00	47.18	-0.43	46.75	74.00	-27.25	PK
H	4804.00	36.76	-0.43	36.33	54.00	-17.67	AV
H	7206.00	39.29	8.31	47.60	74.00	-26.40	PK
H	7206.00	31.07	8.31	39.38	54.00	-14.62	AV
		GF	SK Middle o	channel			
V	4882.00	48.08	-0.38	47.70	74.00	-26.30	PK
V	4882.00	41.99	-0.38	41.61	54.00	-12.39	AV
V	7323.00	38.72	8.83	47.55	74.00	-26.45	PK
V	7323.00	30.32	8.83	39.15	54.00	-14.85	AV
H	4882.00	44.50	-0.38	44.12	74.00	-29.88	PK
Н	4882.00	35.36	-0.38	34.98	54.00	-19.02	AV
Н	7323.00	36.49	8.83	45.32	74.00	-28.68	/ PK
Н	7323.00	28.72	8.83	37.55	54.00	-16.45	AV
		GF	SK High c				
V	4960.00	49.23	-0.32	48.91	74.00	-25.09	PK
V	4960.00	40.35	-0.32	40.03	54.00	-13.97	AV
V	7440.00	40.61	9.35	49.96	74.00	-24.04	PK
V	7440.00	31.08	9.35	40.43	54.00	-13.57	AV
H	4960.00	46.97	-0.32	46.65	74.00	-27.35	PK
Н	4960.00	36.24	-0.32	35.92	54.00	-18.08	AV
Н	7440.00	38.53	9.35	47.88	74.00	-26.12	PK
Н	7440.00	30.23	9.35	39.58	54.00	-14.42	AV

Remark:

1.Emission Level = Meter Reading + Factor,

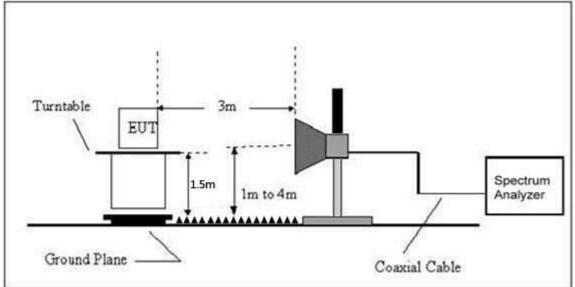
Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BANDS OF OPERATION

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENC	Limit (dBuV/	/m) (at 3M)
Y (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

No. : BCTC/RF-EMC-007

(1)The limit for radiated test was performed according to FCC PART 15C.
(2)The tighter limit applies at the band edges.
(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a.The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g.Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)		nits IV/m)	Result						
		(11112)	(dBuV/m)	(dB)	PK	PK	AV							
		Low Channel 2402MHz												
	Н	2390.00	56.80	-6.70	50.10	74.00	54.00	PASS						
	Н	2400.00	49.67	-6.71	42.96	74.00	54.00	PASS						
	V	2390.00	56.29	-6.70	49.59	74.00	54.00	PASS						
0501/	V	2400.00	47.33	-6.71	40.62	74.00	54.00	PASS						
GFSK		High Channel 2480MHz												
	Н	2483.50	55.66	-6.79	48.87	74.00	54.00	PASS						
	Н	2485.00	49.75	-6.81	42.94	74.00	54.00	PASS						
	V	2483.50	56.72	-6.79	49.93	74.00	54.00	PASS						
	V	2485.00	48.46	-6.81	41.65	74.00	54.00	PASS						
	Low Channel 2402MHz													
	Н	2390.00	57.33	-6.70	50.63	74.00	54.00	PASS						
	Н	2400.00	49.56	-6.71	42.85	74.00	54.00	PASS						
	V	2390.00	56.94	-6.70	50.24	74.00	54.00	PASS						
Pi/4DQPSK	V	2400.00	49.31	-6.71	42.60	74.00	54.00	PASS						
FI/4DQF3N	High Channel 2480MHz													
	Н	2483.50	55.88	-6.79	49.09	74.00	54.00	PASS						
	Н	2485.00	50.18	-6.81	43.37	74.00	54.00	PASS						
	V	2483.50	56.04	-6.79	49.25	74.00	54.00	PASS						
	V	2485.00	48.96	-6.81	42.15	74.00	54.00	PASS						
				Channel 2										
	Н	2390.00	57.06	-6.70	50.36	74.00	54.00	PASS						
	Н	2400.00	49.24	-6.71	42.53	74.00	54.00	PASS						
	V	2390.00	57.20	-6.70	50.50	74.00	54.00	PASS						
8DPSK	V	2400.00	50.14	-6.71	43.43	74.00	54.00	PASS						
		•		Channel 2										
	H	2483.50	57.56	-6.79	50.77	74.00	54.00	PASS						
	Н	2485.00	49.41	-6.81	42.60	74.00	54.00	PASS						
	V	2483.50	57.16	-6.79	50.37	74.00	54.00	PASS						
<u> </u>	V	2485.00	50.11	-6.81	43.30	74.00	54.00	PASS						
Remark:														

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. CONDUCTED EMISSION

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

9.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer:

Below 30MHz:

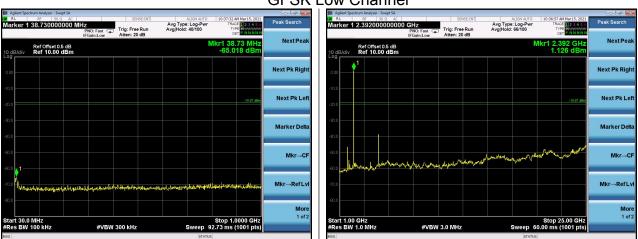
RBW = 100kHz, VBW = 300kHz, Sweep = auto

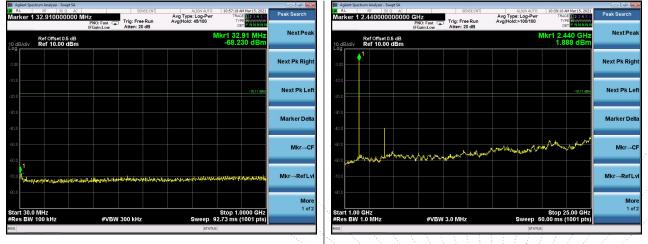
Detector function = peak, Trace = max hold

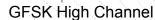
Above 30MHz:

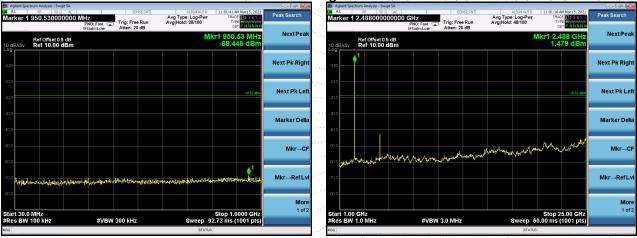
RBW = 100KHz, VBW = 300KHz, Sweep = auto

Detector function = peak, Trace = max hold


Page: 28 of 69

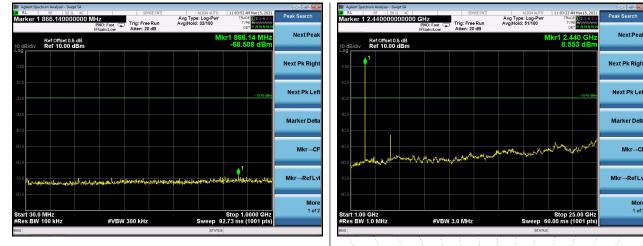

9.4 Test Result

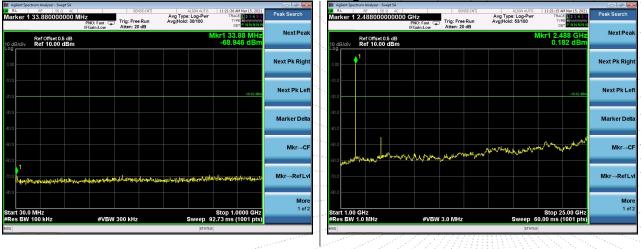

Temperature :	26 ℃	Relative Humidity :	54%
Test Voltage :	DC 3.7V	Remark:	N/A


30MHz – 25GHz GFSK Low Channel

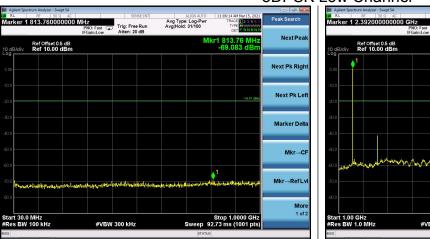
GFSK Middle Channel

No. : BCTC/RF-EMC-007

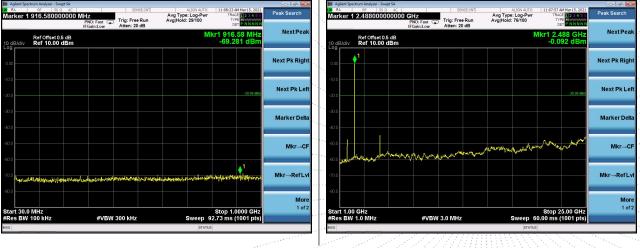

Edition: A.3


R Agen Spectrum Anager - Wappens RL SS 0 AC Jarker 1 922,4000000000 MHz PNC: Fast Car Atten: 20 dB Magient Spectrum Analyzer - Swept SA Μ RL RF 50 Ω AC Marker 1 2.39200000000000 GHz Peak Search Aug Type: Log-Pwr Avg|Hold: 80/100 Peak Search Avg Type: Log-Pwr Avg Hold: 50/100 Trig: Free Run Atten: 20 dB NextPea Next Pea Ref Offset 0.5 dB Ref 10.00 dBm Ref Offset 0.5 dB Ref 10.00 dBm 0 335 Next Pk Righ Next Pk Rig Next Pk Lef Next Pk Le Marker Delta Marker Delt Mkr→CF Mkr→C ♦1 Mkr→RefLv Mkr→RefL More 1 of 2 More 1 of 3 Stop 25.00 GHz Sweep 60.00 ms (1001 pts Stop 1.0000 GH Sweep 92.73 ms (1001 pt tart 1.00 GHz Res BW 1.0 MH; #VBW 3.0 MHz

Pi/4 DQPSK Low Channel

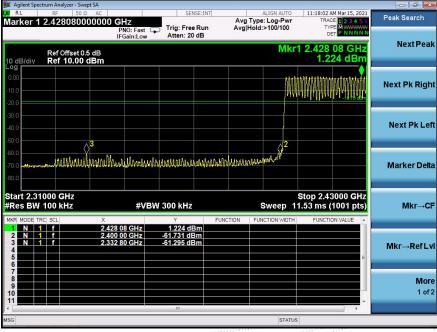


Pi/4 DQPSK High Channel


8DPSK Low Channel

8DPSK Middle Channel

8DPSK High Channel



	trum Analyzer -							
RL	RF 5	0 Ω AC	CH7	SENSE:I		ALIGN AUTO	11:18:43 AM Mar 15, 202 TRACE 1 2 3 4 5	Peak Search
larker 1	2.402200	5000000	PNO: Fast C IFGain:Low	Trig: Free Ru Atten: 20 dB		Hold:>100/100	DET P NNNN	Next Deck
0 dB/div	Ref Offsel Ref 10.0					Mk	r1 2.402 2 GHz 1.552 dBm	
.og 0.00							∮ 1	Next Pk Righ
10.0 20.0							-18.45 dBm	
30.0 40.0								Next Pk Le
i0.0	⊘ ³						2\	
0.0 	man	antha an	ประณาจำเกิดสารางการใน	mension	والاسترامة والموسور	mphaqueron and the b	worker and the share	Marker Del
	000 GHz 100 kHz		#\/B	W 300 kHz		Ciucon 0	Stop 2.41000 GHz 600 ms (1001 pts	Mkr→C
		X		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	I WIKI→C
1 N 1 2 N 1 3 N 1	f	2.4	402 2 GHz 00 00 GHz 321 9 GHz	1.552 dBm -57.546 dBm -62.543 dBm				Mine Deck
4							E	Mkr→RefL
7 8 9								Mor
10								1 of
-								-

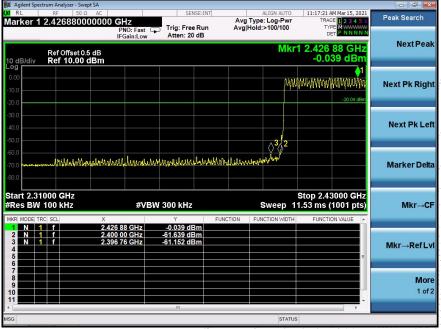
GFSK Transmitting Band edge-left side

GFSK Hopping Band edge-left side

🧾 Agilent Spec											
LXI RL	RF	50 Ω			SEI	NSE:INT		ALIGN AUTO		M Mar 15, 2021	Peak Search
Marker 1	2.47	98700	00000		Tria: Fre	Dun		ype: Log-Pwr old:>100/100	TRAC	E 1 2 3 4 5 6	i can Scarcii
				PNO: Fast	Atten: 20		Avgin	010.2100/100	DI	PNNNN	
	_			IT GUITTEON							Next Peak
	Ref	Offset 0	5 dB					MKr1		70 GHz	
10 dB/div	Ref	10.00	dBm						1.4	62 dBm	-
Log	1										
0.00	M										Next Pk Right
-10.0	$/ \langle$										Next PK Right
-20.0		\								-18.54 dBm	
10000		1									
-30.0		1									
-40.0		5									Next Pk Left
-50.0		1									
L 1		her		2\\ ³							
-60.0			Warmon A	- Thy							
-70.0				mann	manuna	man	month	~ Munump	Mh worthous with	month	Marker Delta
-80.0											
-60.0											
Start 2.47	000	<u>сц.</u>							Stop 2.5	0000 GHz	
#Res BW				#\/P	W 300 kHz			Sweep 2			Mkr→CF
"Res Dw	100	ATT2			WW JOO KHZ			oweep 2	i JJJ IIIS (1001 pts)	IVIRI→CI
MKR MODE TH			Х		Y		NCTION	FUNCTION WIDTH	FUNCTI	DN VALUE	
	f			870 GHz	1.462 dl	3m					
2 N 1 3 N 1				500 GHz	-62.027 di -60.057 di						
4			2.404		-00.001 41						Mkr→RefLv
5										11	
6											
8											More
9						کے تھ					
10											1 of 2
				-						-	
	_	_	_				_				
MSG								STATUS			

GFSK Transmitting Band edge-right side

GFSK Hopping Band edge-right side

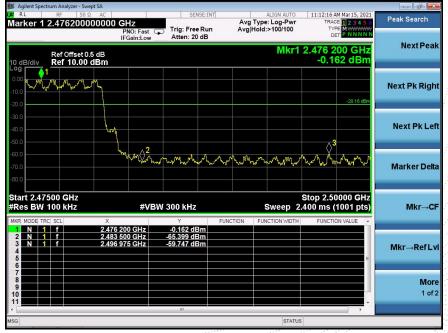


1 1/4		Ismilling band	i euge-ieit	Side
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC arker 1 2.40190000000 AC AC			11:19:10 AM Mar15, 2021 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N	Peak Search
Ref Offset 0.5 dB 0 dB/div Ref 10.00 dBm	IFGam.Low Attem 200		(r1 2.401 9 GHz -0.455 dBm	Next Peak
og 0.00 10.0			-20.45 dBm	Next Pk Righ
000 000 000			²	Next Pk Lef
50.0	vin neede litter in ander sterrenden frei der sterrenden einer vite	American and the start and the	man M	Marker Delta
tart 2.31000 GHz Res BW 100 KHz	#VBW 300 kHz	FUNCTION FUNCTION WIDTH	Stop 2.41000 GHz 0.600 ms (1001 pts) FUNCTION VALUE	Mkr→Cl
2 N 1 f 2.4	2.401 9 GHz -0.455 dBr 400 00 GHz -58.058 dBr 2.321 9 GHz -64.453 dBr	m		Mkr→RefLv
7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				Mon 1 of:
G		STATU	S	

Pi/4 DQPSK Transmitting Band edge-left side

Pi/4 DQPSK Hopping Band edge-left side

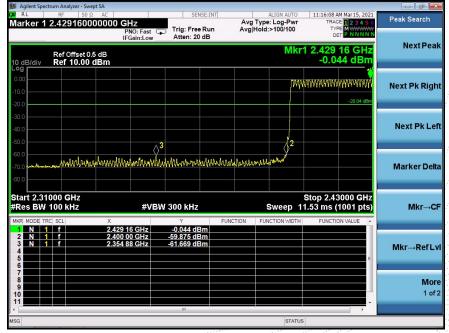
No.: BCTC/RF-EMC-007



Agilent Spectrum Analyzer - Swept SA				
RL RF 50 Ω AC arker 1 2.479870000000	I GHZ PNO: Fast IFGain:Low Not fast Atten: 20 dE	Avg Type: Log-Pwr Avg Hold:>100/100	11:20:30 AM Mar15, 2021 TRACE 1 2 3 4 5 0 TYPE M	Peak Search
Ref Offset 0.5 dB dB/div Ref 10.00 dBm		Mkr1	2.479 870 GHz -0.277 dBm	Next Pea
			-20 28 dBm	Next Pk Righ
	a 3		-20/20 001	Next Pk Le
	23	+nimilianoninanananoninananananananananananana	มามารถการการการการการการการการการการการการการก	Marker Delt
art 2.47800 GHz es BW 100 kHz	#VBW 300 kHz	Sweep 2	Stop 2.50000 GHz .133 ms (1001 pts)	Mkr→C
N 1 f 2.483 N 1 f 2.483	9 870 GHz -0.277 dBm 3 500 GHz -63.350 dBm 3 962 GHz -61.762 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Mkr→RefL
				Mor 1 of
		STATUS	•	

Pi/4 DQPSK Transmitting Band edge-right side

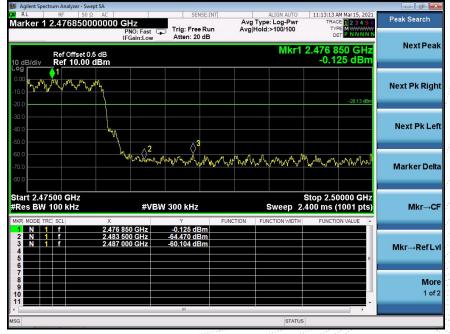
Pi/4 DQPSK Hopping Band edge-right side



6 4 3 10	trum Analyzer - Swe	100					<u> </u>		
RL RL	RF 50 G			SENSE:INT		ALIGN AUTO	11.10.20 444 44		
		00000 GHz		SENSE:IN		Type: Log-Pwr	11:19:38 AM M TRACE		Peak Search
arker i	2.4019000		Fast 🗔 Tr	ig: Free Run		Hold:>100/100	TYPE	WWWWW	
		IFGain		tten: 20 dB			DET	NNNN	
				_				TOTAL OF	NextPea
	Ref Offset 0.	5 dB				MK	r1 2.401 9		
0 dB/div	Ref 10.00						-0.440	dBm	
og									
.00						المسمع المعا			
							- Λ		Next Pk Righ
3.0									
0.0								-20.44 dBm	
							المحمد		
).0							i		
D.O									Next Pk Le
							12		
3.0								i and a	
).0							X	4	
							manar	www	
1.0 Minimu	whenevel businesses	and the second second second	romonal states of the Article A	south marks Made	ar and the second s	and the second sec			Marker Del
J.O									
art 2 31	000 GHz						Stop 2.4100	O CHZ	
	100 kHz		#VBW 30	0 64			.600 ms (10		Mkr→C
Les DW	100 KH2		#VEVV JU	U KHZ		Sweep 9.	000 IIIS (10	o i pisj	IVINI→C
R MODE TH	RC SCL	X		Y	FUNCTION	FUNCTION WIDTH	FUNCTION V	ALUE 🔺	
N 1	f	2.401 9 G		.440 dBm					
N 1	f	2.400 00 G		.979 dBm		المحمد المحمد			
3 N 1	f	2.322 2 G	Hz -65	.186 dBm					Mkr→RefL
			-						
									Мо
				ا تعديد		الأيحدي			1 of
				و المحدث				-	
	- 10 20. 			m				•	
							1		
						STATUS			

8DPSK Transmitting Band edge-left side

8DPSK Hopping Band edge-left side



gilent Spectrum Analyzer - Swept S/					
rker 1 2.479870000		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	11:09:05 AM Mar 15, 2021 TRACE 1 2 3 4 5 6	Peak Search
rker 1 2.479870000	PNO: Fast G IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Hold:>100/100		
Ref Offset 0.5 d dB/div Ref 10.00 dB			Mkr1	2.479 870 GHz -0.367 dBm	NextPea
				-20.37 dBm	Next Pk Rigi
	- 2				Next Pk Le
	23	ᠬᡃ᠕᠆ᡁᠬᠬᡢᡍᡅᠰᠧ	- Introduction	And a long of the state of the	Marker Del
nrt 2.47800 GHz es BW 100 kHz		/ 300 kHz		Stop 2.50000 GHz 2.133 ms (1001 pts)	Mkr→C
N 1 f	× 2.479 870 GHz 2.483 500 GHz 2.483 852 GHz	-0.367 dBm -63.449 dBm -62.154 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Mkr→RefL
					Mo r 1 of

8DPSK Transmitting Band edge-right side

8DPSK Hopping Band edge-right side

