

Report No: JYTSZB-R12-2102486

FCC REPORT

Applicant:	PCD, LLC
	100, 220
Address of Applicant:	1500 Trade port Drive, Suite A, Orlando. FI 32824
Equipment Under Test (E	EUT)
Product Name:	4G LTE smart phone
Model No.:	P50
Trade mark:	PCD
FCC ID:	2ALJJP50
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	08 Nov., 2021
Date of Test:	09 Nov., to 13 Dec., 2021
Date of report issued:	16 Dec., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	16 Dec., 2021	Original

Tested by:

Mike.DU Test Engineer

Date: 16 Dec., 2021

Winner Thang

Reviewed by:

Project Engineer

Date:

16 Dec., 2021

Project No.: JYTSZE2111028

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	
-	CONTENTS	
		-
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
5	5.1 Client Information	5
5	5.2 GENERAL DESCRIPTION OF E.U.T.	5
5	5.3 TEST ENVIRONMENT AND MODE	
•	5.4 DESCRIPTION OF SUPPORT UNITS	
-	5.5 MEASUREMENT UNCERTAINTY	-
-	 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 5.7 LABORATORY FACILITY 	
-	5.8 LABORATORY FACILITY	
-	5.9 Test Instruments List	
6	TEST RESULTS AND MEASUREMENT DATA	٥
•		
•		-
•	 6.2 CONDUCTED EMISSION 6.3 CONDUCTED OUTPUT POWER	
-	5.4 Occupy Bandwidth	
-	6.5 Power Spectral Density	
-	δ.6 Band Edge	-
	6.6.1 Conducted Emission Method	16
	6.6.2 Radiated Emission Method	
6	6.7 SPURIOUS EMISSION	
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	-
7	TEST SETUP PHOTO	27
8	EUT CONSTRUCTIONAL DETAILS	28

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2) Appendix A - BLE		Pass
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge		Appendix A - BLE	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission		Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass
Remark: 1. Pass: The EUT complies with the essen 2. The cable insertion loss used by "RF Ou	-		B (provided by

the customer).

Test	Method:
1031	methou.

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	PCD, LLC
Address:	1500 Trade port Drive, Suite A, Orlando. Fl 32824
Manufacturer:	SHENZHEN TOPWELL TECHNOLOGY CO., LTD.
Address:	15/F, Building A1, Qiaode Science & Technology Park, No.7 Road, Hi- Tech Industry Park ,Guangming new district, Shenzhen, China.

5.2 General Description of E.U.T.

Product Name:	4G LTE smart phone
Model No.:	P50
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 2000mAh
AC adapter:	Model: P50
	Input: AC100-240V, 50/60Hz, 0.3A
	Output: DC 5.0V, 1.0A
Test Sample Condition:	The test samples provided were in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission (Below 1 GHz):							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
10m SAC	ETS-Lindgren	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022		
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022		
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022		
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022		
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022		
Test Software	R&S	EMC32	Version: 10.50.40				

Radiated Emission (Above 1 GHz):						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS-Lindgren	RFD-100	Q1984	04-14-2021	04-13-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-916	03-07-2021	03-06-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-1805	06-26-2021	06-25-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+	Version:3.0.0.1			

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022		
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022		
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b		

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: JYTSZE2111028

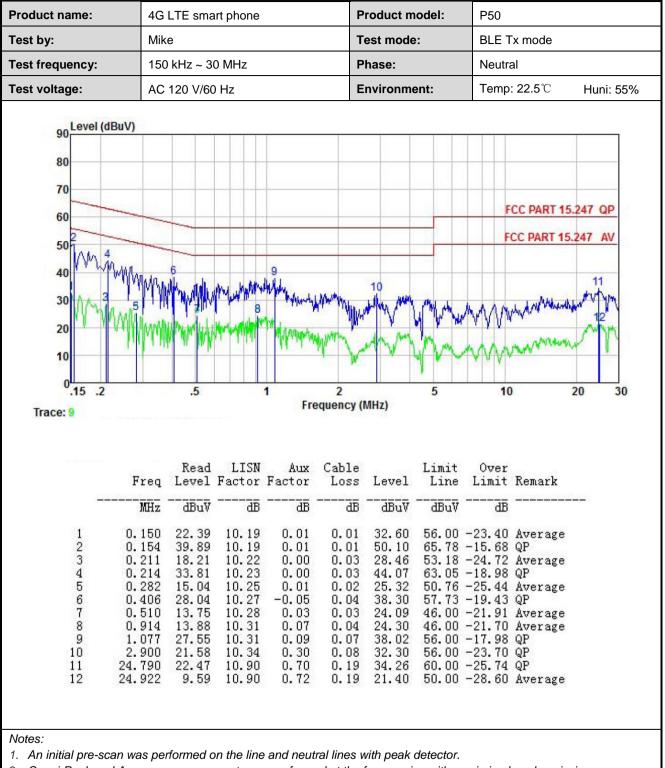
Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-test	MTS 8310		Version: 2.0.0.0	

6 Test results and Measurement Data

6.1 Antenna requirement:

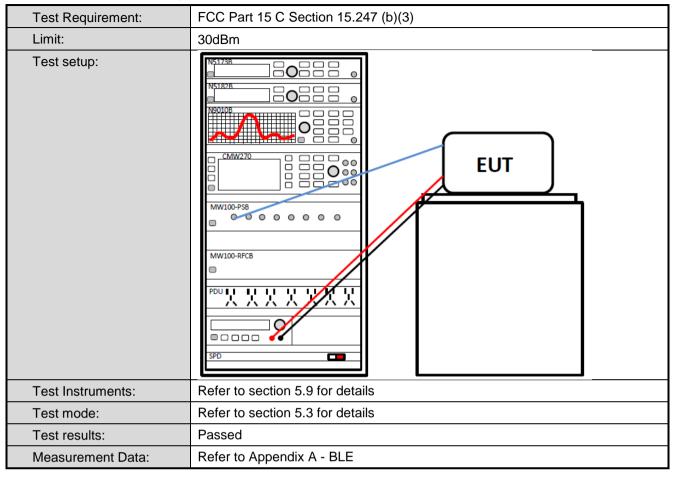
Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
15.203 requirement: An intentional radiator shall responsible party shall be u antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anter power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or
E.U.T Antenna:	
The BLE antenna is an Interr antenna is 1.0 dBi.	hal antenna which cannot replace by end-user, the best-case gain of the

6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.207	7	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (,
	· · · · · · · · · · · · · · · · · · ·	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logarithm	60	50
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices ar LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line ard interference. In order to fi positions of equipment ar according to ANSI C63.10 	are connected to the ma on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab	hich provides a ng equipment. main power through a ance with 500hm the test setup and conducted on, the relative les must be changed
Test setup:	Reference	80cm Filter EMI Receiver	– AC power
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

	4G LTE smart phone		Pro	oduct mo	del:	P50			
Test by:	Mike			Те	st mode:		BLE Tx	mode	
Test frequency:	150 kHz	~ 30 MHz		Ph	ase:		Line		
Test voltage:	AC 120 \	√/60 Hz		En	Environment:		Temp:	22.5 ℃	Huni: 55%
90 Level (dBuV) 80 70 60 50 40 20 10 0.15 .2							FC	CC PART 15.	247 QP 247 AV 12
Trace: 11									
	Freq Le	ead LISN vel Factor BuV dB		Cable Loss 	Level dBuV	Limit Line dBuV	Over Limit dB	Remark	



2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Limit:	>500kHz
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - BLE

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8 dBm/3kHz
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - BLE

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - BLE

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	205 and 15.20	9		
Test Frequency Range:	2310 MHz to 2	390 MHz ar	d 2483.5MHz	o 2500	MHz	
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	\	/BW	Remark
· ·	Above 1GHz	Peak	1MHz		MHz	Peak Value
		RMS	1MHz		MHz	Average Value
Limit:	Frequen	icy	Limit (dBuV/m 54.00	@3m)	Δ	Remark verage Value
	Above 10	GHz –	74.00			Peak Value
Test Procedure:	 the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emist the limit s of the EU have 10 c 	d at a 3 met ine the posit was set 3 m which was m and height is d to determine contal and ver measureme suspected e then the ant d the rota ta e maximum r receiver syst Bandwidth v ssion level o pecified, the T would be r	er camber. The ion of the highe eters away from nounted on the varied from or ne the maximu ertical polarizat nt. mission, the El enna was tune ading. em was set to ble was set to the EUT in per n testing could eported. Other	e table w est radia n the int top of a e meter m value ions of t JT was d to heig from 0 Peak De Hold Mod be stop wise the ed one b	as rotate tion. erference variable to four to of the fi he anter arranged ghts fron degrees etect Fur de. e was 10 ped and e emission y one us	e-height antenna meters above eld strength. nna are set to d to its worst n 1 meter to 4 to 360 degrees nction and 0 dB lower than the peak values ons that did not sing peak, quasi-
Test setup:		LEUT urntable) Gn Test Receiv	Horn Antenna Born	Antenna T	ower	
Test Instruments:	Refer to section	on 5.9 for det	ails			
Test mode:	Refer to section	on 5.3 for det	ails			
Test results:	Passed					

Measurement Data:

louuci	Name:	4G LIE sn	nart phone		Product Mode	el: P5	60		
est By:	:	Mike			Test mode:	BL	.E Tx mode	1	
est Ch	annel:	Lowest cha				Ve	Vertical		
est Vo	Itage:	AC 120/60				mp: 24 ℃	p: 24°C Huni: 57%		
Level[dBµV/m]	120 110 90 80 70 60 50 40			FCC PART 15	C		FCC PAR	T 15 C-PK Limit	
	30 20 10 0 2.31G 2.31G 2.3 C PK Limit • PK Detect		2.3382G 2.34 – Vertical PK –– Vertica	176G 2.357G Frequency[H; al AV		2.3758G 2.385	i2G 2.3946(G 2.404G	
NO.ª	PK Limit PK Detect	AV Limit		Frequency[H		2.3758G 2.385 Margin⊮ [dB]₽	2G 2.39460	3 2.404G Polarity	
1 ₽	20 10 2.31G 2.3 PK Limit PK Detect Freq4 [MHz]-9 2330.00	AV Limit → AV Detector Reading [dBµV/m] 22.41	Vertical PK → Vertica Level [dBµV/m] 57.82+	Frequency[H: al AV Factor [dB] 35.41	Limit⊷ [dBµV/m]⊷ 74.00⊷	Margin⊮ [dB]⊮ 16.18₽	Trace.₀ PK.₀	Polarity.₀ Vertical.₀	
1∉ 2∉	20 10 231G 23 → PK Limit ◆ PK Detect Freq.44 [MHz]42 2330.00 2330.00	AV Limit	- Vertical PK Vertica Level [dBµV/m] 57.82 49.14	Frequency[H: al AV Factor ← [dB] ← 35.41 ← 35.41 ←	Limit [dBµV/m]↔ 74.00↔ 54.00↔	Margin.e [dB]e 16.18e 4.86e	Trace. PK. AV.	Polarity Vertical Vertical	
1∉ 2∉ 3∉	20- 10- 2.31G 2.3 → PK Limit ◆ PK Detect Freqe ² [MHz]- ² 2330.00 2330.00 2360.00	AV Limit AV Detector Reading [dBµV/m] 22.41 13.73 14.05	- Vertical PK → Vertica Level [dBµV/m] 57.82 49.14 49.68	Frequency[H: al AV Factor [dB] 35.41 35.41 35.63 35.63	Limit [dBµV/m]↔ 74.00↔ 54.00↔ 54.00↔	Margin.⊌ [dB]⊎ 16.18+3 4.86+3 4.32+3	Trace. PK. AV. AV.	Polarity Vertical₊ Vertical₊ Vertical₊	
1∉ 2∉ 3∉ 4∉	20 10 2.316 2.3 → PK Limit ◆ PK Detect Freq. 4 [MHz] -9 2.330.00 2.330.00 2.360.00 2.360.00	AV Limit	- Vertical PK Vertical Level [dBµV/m] 57.82+ 49.14+ 49.68+ 57.90+	Frequency[H: al AV Factor [dB] 35.41 35.41 35.63 35.63 35.63 35.63	Limit [dBµV/m]• 74.00• 54.00• 54.00• 74.00•	Margin [dB] 16.18 4.86 4.32 16.10	Trace PK AV AV PK	Polarity Vertical Vertical Vertical Vertical	
1.₽ 2₽ 3₽	20- 10- 2.31G 2.3 → PK Limit ◆ PK Detect Freqe ² [MHz]- ² 2330.00 2330.00 2360.00	AV Limit AV Detector Reading [dBµV/m] 22.41 13.73 14.05	- Vertical PK → Vertica Level [dBµV/m] 57.82 49.14 49.68	Frequency[H: AAV Factor [dB] 35.41 35.41 35.63 35.63	Limit [dBµV/m]↔ 74.00↔ 54.00↔ 54.00↔	Margin.⊌ [dB]⊎ 16.18₊9 4.86₊9 4.32₊9	Trace. PK. AV. AV.		

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

	Name.	ame: 4G LTE smart phone			Product Mod	roduct Model: P50		
est By:		Mike					E Tx mode	!
est Cha	annel:	Highest ch	nannel				/ertical	
est Vol	tage:	AC 120/60	AC 120/60Hz			: Te	emp: 24°C Huni: 57%	
Level[dB,LV/m]	120 110 100 90 80 70 60 50			FCC PART 15	C	5	FCC PAR	T 15 C-PK Limit
Le	40 30 20 10 0 2.478G 2.4 PK Limit • PK Detec		2.4846G 2.48 - Vertical PK Vertical	368G 2.489G Frequency[H cal AV		2.4934G 2.495	6G 2.49780	3 25G
NO.~	30 20 10 2.478G 2.4 PK Limit	AV Limit		Frequency[H		2.4934G 2.495 Margin≁ [dB]∛	6G 2.49780	
	30 20 10 0 2.478G 2.4 → PK Limit ◆ PK Detec		- Vertical PK Vertic	Frequency(H al AV Factor+	z] Limite	Margine		Polarity₀
NO.#	30 20 10 0 2.478G 2.4 → PK Limit ◆ PK Detec	AV Limit → AV Detector Reading → [dBµV/m] →	Vertical PK — Vertic Level⊷ [dBuV/m]⊷	Frequency(H al AV Factor	z] Limit⊮ [dBµV/m]⊷	Margin⊭ [dB]∉	Trace	Polarity Vertical Vertical
NO.@ 1@	30 20 10 0 2.478G 2.4 → PK Limit → PK Detector Freq.+4 [MHz]-2 2483.50	AV Limit → AV Detector Reading	– Vertical PK – Vertic Level [dBµV/m]-> 56.64+->	Frequency(H al AV Factor [dB] 35.724	Limit. [dBuV/m]. 74.00.	Margin⊮ [dB]⊮ 17.36₽	Trace. PK+	Polarity Vertical Vertical
NO.₽ 1₽ 2₽	30 20 10 0 2.478G 2.4 → PK Limit ◆ PK Detec Freq.44 [MHZ]-2 2483.50 2483.50	AV Limit AV Detector AV Detector AV Detector Reading [dBµV/m] 20.92+ 14.27+	- Vertical PK	Frequency(H al AV Factor [dB] 35.72,2 35.72,2	Limit [dBµV/m]• 74.00• 54.00•	Margin⊷ [dB]₀ 17.36₀ 4.01₀	Trace PK AV	Polarity Vertical Vertical Vertical
NO.~ 1~ 2~ 3~	30 20 10 0 2.478G 2.4 → PK Limit ◆ PK Detec Freq.4 [MHz] → 2483.50 2483.50 2483.50 2489.00	AV Limit AV Detector Reading → [dBµV/m] ↔ 20.92 ↔ 14.27 ↔ 14.12 ↔	Vertical PK	Frequency(H al AV Factor [dB] 35.72 35.72 35.71 2	Limite [dBµV/m]e 74.00e 54.00e 54.00e	Margin⊮ [dB]∛ 17.36₽ 4.01₽ 4.17₽	Trace PK AV AV	Polarity Vertical₊

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - BLE

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	and 15.209			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
	Frequency Detector RBW VBW Remark						
Receiver setup:	30MHz-1GHz	Quasi-pea			300ł		Quasi-peak Value
	Pea				Hz Peak Value		
	Above 1GHz	RMS		1MHz 3MI			
Limit:	Frequency	/	Limit (dBuV/m @10m)		Remark		
	30MHz-88M	Hz		30.0		G	luasi-peak Value
	88MHz-216N	1Hz		33.5			uasi-peak Value
	216MHz-960		36.0		Quasi-peak Value		
	960MHz-1G			44.0		G	luasi-peak Value
	Frequency	/	Lim	nit (dBuV/m @	3m)		Remark
	Above 1GF	lz		54.0			Average Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 10 meter chamber (below 1GHz)or 3 meter chamber(above 1GHz). The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 10 meters(below 1GHz) or 3 meters(above 1GHz) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:		10m <	.		S A RF	Antenna To earch intenna Test ceiver —	wer

Project No.: JYTSZE2111028

	Above 1GHz
	Horn Artianna Horn Artianna Antenna Tower (Turntable) Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Proc	duct Name:	4G LTE sn	nart phone		Product Mo	del:	P50			
Test	By:	Mike			Test mode:		BLE Tx mode			
Test	Frequency:	30 MHz ~ 1	1 GHz		Polarization	ı:	Vertical & Horizontal			
Test	Voltage:	AC 120/60	Hz		Environme	nt:	Temp: 24 ℃	Huni: 57%		
				E.I. Craste						
				Full Spectr	um					
	45 T			*****			CC PART 15.247	10m		
	40			*****						
	≥ 30									
	e t									
	20 Participation of the second				*		The Office And			
		When the t		*		e	1 Annual Providence			
	10-	עויז איי די י	M							
	MAN	1. Whendell		a la serie de la						
	0 30M	+ + + + 50 60	80 100	<u>л</u>	200 3	+ + 300 400	500 800			
	00111	00 00	00 1001	Frequen			000 000			
				rioquori	0, 1112					
-		MaxPeak↓ dB ዞ V/m) ⊮	Limit↓ (dB ዞ V/m)⊮	Margin↓ (dB)∉	Height↓ (cm)⊮	Pol₽	Azimuth↓ (deg)⊮	Corr.↓ (dB/m)⊮		
•	30.000004	24.77+	30.00+	5.23	100.0	V.₽	337.04	-17.6		
	36.499000+3 58.906000+3	20.09∉ 16.29∉	30.00↔ 30.00↔	9.91 <i>↩</i> 13.71↩	100.0↩ 100.0↩	V.₽ V.₽	62.0≓ 208.0≓	-16.3+ -16.3+		
E		14.25	<u>33.50</u> ₽	19.25	100.0∉ 100.0∉	V.	135.0+	-10.3*		
	158./19000 ↔1			15.19∉	100.04	V.₽	0.043	-16.1+		
	158.719000↔ 233.991000↔ 285.983000↔	20.81 ₽	36.00∉ 36.00∉	20.56∉	100.0	V +-	0.0⊷	-10.1*		

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz

		Test ch	annel: Lowest ch	annel						
			tector: Peak Valu							
Fraguanay	Deedlevel	De			Morgin					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4804.00	56.72	-9.60	47.12	74.00	26.88	Vertical				
4804.00	55.95	-9.60	46.35	74.00	27.65	Horizontal				
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4804.00	48.79	-9.60	39.19	54.00	14.81	Vertical				
4804.00	49.29	-9.60	39.69	54.00	14.31	Horizontal				
Test channel: Middle channel										
		Det	tector: Peak Valu	le						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	56.75	-9.04	47.71	74.00	26.29	Vertical				
4884.00	55.89	-9.04	46.85	74.00	27.15	Horizontal				
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	48.32	-9.04	39.28	54.00	14.72	Vertical				
4884.00	48.89	-9.04	39.85	54.00	14.15	Horizontal				
		Test ch	annel: Highest cl	nannel						
		Det	tector: Peak Valu	le						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	56.57	-8.45	48.12	74.00	25.88	Vertical				
4960.00	56.21	-8.45	47.76	74.00	26.24	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	48.88	-8.45	40.43	54.00	13.57	Vertical				
4960.00	49.58	-8.45	41.13	54.00	12.87	Horizontal				
Remark: 1. Final Level =F	Receiver Read level	+ Factor.								

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.