FCC Test Report

Report No.: AGC05177200504FE03

FCC ID	:	2ALHZBT-1094
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Bluetooth headphones
BRAND NAME	:	N/A
MODEL NAME	:	MZX570, MZX570-BLK, BT-1090B, BT-1090, BT-2020, BT-1100B, BT-1100BF, BT-1100, BT-1300, BT-1300B, BT-1300BF, BT-686, BT-102, BT-685, BT-1102, BT-1103, BT-937, BT-739, BT-1108, BT-1106, BT-936, BT-1060F, BT-1060, BT-1092, BT-1094, BT-1080, BT-229, BT-1104, BT-1500, BT-1600
APPLICANT	:	KO-STAR DEVELOPMENT CO.,LTD
DATE OF ISSUE	:	May 20, 2020
STANDARD(S)	:	FCC Part 15.247
REPORT VERSION	:	V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	May 20, 2020	Valid	Initial Release

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3. RECEIVER INPUT BANDWIDTH	7
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	7
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	
2.6. RELATED SUBMITTAL(S) / GRANT (S)	
2.7. TEST METHODOLOGY	
2.8. SPECIAL ACCESSORIES	
2.9. EQUIPMENT MODIFICATIONS	
3. MEASUREMENT UNCERTAINTY	9
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	11
5.1. CONFIGURATION OF EUT SYSTEM	11
5.2. EQUIPMENT USED IN TESTED SYSTEM	11
5.3. SUMMARY OF TEST RESULTS	11
6. TEST FACILITY	
7. PEAK OUTPUT POWER	
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3. LIMITS AND MEASUREMENT RESULT	
8. 20DB BANDWIDTH	
8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	
9.1. MEASUREMENT PROCEDURE	
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	

Report No.: AGC05177200504FE03 Page 4 of 59

10. RADIATED EMISSION	31
10.1. MEASUREMENT PROCEDURE	31
10.2. TEST SETUP	33
10.3. LIMITS AND MEASUREMENT RESULT	34
10.4. TEST RESULT	34
11. NUMBER OF HOPPING FREQUENCY	44
11.1. MEASUREMENT PROCEDURE	44
11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	44
11.3. MEASUREMENT EQUIPMENT USED	44
11.4. LIMITS AND MEASUREMENT RESULT	44
12. TIME OF OCCUPANCY (DWELL TIME)	45
12.1. MEASUREMENT PROCEDURE	45
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	45
12.3. MEASUREMENT EQUIPMENT USED	45
12.4. LIMITS AND MEASUREMENT RESULT	45
13. FREQUENCY SEPARATION	49
13.1. MEASUREMENT PROCEDURE	49
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	49
13.3. MEASUREMENT EQUIPMENT USED	49
13.4. LIMITS AND MEASUREMENT RESULT	49
14. FCC LINE CONDUCTED EMISSION TEST	50
14.1. LIMITS OF LINE CONDUCTED EMISSION TEST	50
14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	50
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	51
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	51
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	51
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	52
APPENDIX B: PHOTOGRAPHS OF EUT	52

1. VERIFICATION OF CO		
Applicant	KO-STAR DEVELOPMENT CO.,LTD	
Address	No.3, Yicun Industrial Area, Xikeng, Henggang Town, Longgang District Shenzhen, China	
Manufacturer	SHENZHEN BASSWORLD TECHNOLOGY CO.,LTD	
Address	No.3, Yicun Industrial Area, Xikeng, Henggang Town, Longgang District Shenzhen, China	
Factory	SHENZHEN BASSWORLD TECHNOLOGY CO.,LTD	
Address	No.3, Yicun Industrial Area, Xikeng, Henggang Town, Longgang District Shenzhen, China	
Product Designation	Bluetooth headphones	
Brand Name	N/A	
Test Model	MZX570	
Series Model	MZX570-BLK, BT-1090B, BT-1090, BT-2020, BT-1100B, BT-1100BF, BT-1100, BT-1300, BT-1300B, BT-1300BF, BT-686, BT-102, BT-685, BT-1102, BT-1103, BT-937, BT-739, BT-1108, BT-1106, BT-936, BT-1060F, BT-1060, BT-1092, BT-1094, BT-1080, BT-229, BT-1104, BT-1500, BT-1600	
Difference Description	All the same except for the appearance color.	
Date of test	May 14, 2020 to May 15, 2020	
Deviation	No any deviation from the test method	
Condition of Test Sample	Normal	
Test Result	Pass	
Report Template	AGCRT-US-BR/RF	

1. VERIFICATION OF CONFORMITY

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC PART 15.247.

Then Hurry Prepared By Thea Huang May 15, 2020 **Project Engineer** Max Zha **Reviewed By** Max Zhang May 20, 2020 Reviewer Approved By Forrest Lei May 20, 2020 Authorized Officer

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Bluetooth headphones". It is designed by way of utilizing the GFSK, Pi/4 DQPSK, technology to achieve the system operation.

A major technical description of EOT is described as following		
Operation Frequency	2.402 GHz to 2.480GHz	
RF Output Power	-3.123dBm(Max)	
Bluetooth Version	V5.0	
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, □8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps	
Number of channels	79 Channels	
Hardware Version	V1.1	
Software Version	V1.1	
Antenna Designation	PCB Antenna(Comply with requirements of the FCC part 15.203)	
Antenna Gain	-0.58dBi	
Power Supply	DC 3.7V by battery or DC 5V by adapter	
Note: The EUT doesn't support 8DPSK and BLE.		

A major technical description of EUT is described as following

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402MHZ
	1	2403MHZ
	:	:
	38	2440 MHZ
2402~2480MHZ	39	2441 MHZ
	40	2442 MHZ
	:	:
	77	2479 MHZ
	78	2480 MHZ

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ, In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the

connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values: 1. LAP/UAP of the master of the connection.

2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us.The clock has a cycle of about one day(23h30).In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations)are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us).The hopping sequence will always Differ from the first one.

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2ALHZBT-1094** filing to comply with the FCC PART 15.247 requirements.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, $Uc = \pm 3.1 \text{ dB}$
- Uncertainty of Radiated Emission below 1GHz, Uc = ±4.0 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8$ dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ± 2 %
- Uncertainty of Dwell Time: Uc = ± 2 %
- Uncertainty of Frequency: $Uc = \pm 2 \%$

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Low channel π/4-DQPSK
5	Middle channel π/4-DQPSK
6	High channel π/4-DQPSK
7	Hopping mode GFSK
8	Hopping mode π/4-DQPSK

Note: 1. Only the result of the worst case was recorded in the report, if no other cases.

- For Conducted Test method, a temporary antenna connector is provided by the manufacture.
 For Radiated Emission, 3axis were chosen for testing for each applicable mode.

FCC Assist 1.0.1.2		
₩助(H)		
ACC 本助(H) 本田山设置 串口设置 串口での(USB-SERIAL CH340) 一 液特率 115200 対据位 8 ・ 校验位 None 停止位 1 ・ 花枝 None 停止位 1 ・ 茶技 NoFlow を た 日 を の た 日 を の た 大田 日 の の を で の た 大田 日 の の の で で の た か 来 し の の の で の た の た の の の で の た の の の で の の の で の の の の の の の の の の の の の	配置数据发送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 配置数据发送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 配置数据发送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 配置数据发送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 配置数据发送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 配置数据发送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 配置数据发送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 配置数据发送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 配置数据发送成功!	R
大小:S. Send configuration	reply data: 04 0E 04 01 01 FC 00 return code: 0x0 問題要求解決送成功! reply data: 04 0E 04 01 01 FC 00 return code: 0x0 能量要求解決法成功!	
	南於曰志	

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure :

5.2. EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Bluetooth headphones	MZX570	2ALHZBT-1094	EUT
2	Control Box	N/A	USB-TTL	AE
3	USB Cable	N/A	1m unshielded	AE
4	AUX Cable	N/A	1m unshielded	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(1)	Peak Output Power	Compliant
15.247 (a)(1)	20 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.209	Radiated Emission	Compliant
15.247 (a)(1)(iii)	Number of Hopping Frequency	Compliant
15.247 (a)(1)(iii)	Time of Occupancy	Compliant
15.247 (a)(1)	Frequency Separation	Compliant
15.207	Conducted Emission	N/A

Note: The BT function of EUT didn't work when charging.

6. TEST FACILITY

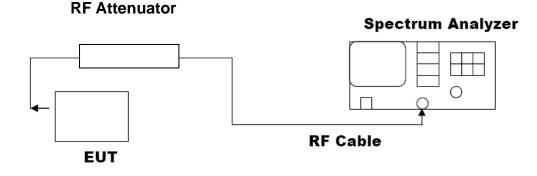
Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 12, 2019	Dec. 11, 2020
2.4GHz Fliter	EM Electronics	2400-2500MHz	N/A	Mar. 23, 2020	Mar. 22, 2022
Attenuator	ZHINAN	E-002	N/A	Sep. 09, 2019	Sep. 08, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2019	Sep. 20, 2021
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 13, 2018	Jun. 12, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 17, 2018	May 16, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 15, 2019	Oct. 16, 2020
ANTENNA	SCHWARZBECK	VULB9168	494	Sep. 20, 2019	Sep. 19, 2021
Test software	FARA	EZ-EMC (Ver RA-03A)	N/A	N/A	N/A

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE


For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW \geq RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

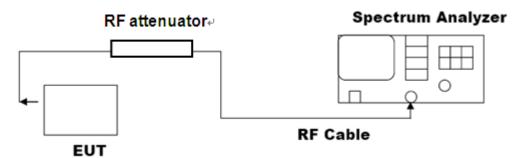
PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION						
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail			
2.402	-4.002	30	Pass			
2.441	-4.010	30	Pass			
2.480	-4.640	30	Pass			

7.3. LIMITS AND MEASUREMENT RESULT

CH39

PEAK OUTPUT POWER MEASUREMENT RESULT FOR II /4-DQPSK MODULATION					
Frequency (GHz)Peak Power (dBm)Applicable Limits (dBm)Pass or Fail					
2.402	-3.123	21	Pass		
2.441	-3.158	21	Pass		
2.480	-3.760	21	Pass		

CH39


Agilent Spectrum Analy. XI RF Marker 1 2.48	50 Ω AC		SENSE	A۱	ALIGNAUTO g Type: Log-Pw g Hold: 100/100	r TRA	M May 15, 2020 CE <mark>1 2 3 4 5 6</mark> PE M WWWWW	Peak Search
10 dB/div Ref	10.00 dBm	PNO: Fast ++ IFGain:Low	Atten: 20 dl			⊓ 1 2.480 1	et <mark>PNNNNN</mark>	Next Peak
0.00				1				Next Pk Righ
-10.0	and a share a					and the second second		Next Pk Lef
-30.0								Marker Delta
-50.0								Mkr→Cf
-60.0								Mkr→RefLv
-80.0	00 GHz					Span 5	.000 MHz	More 1 of 2
#Res BW 1.5 N	IHz	#VBW	5.0 MHz		Sweep	1.000 ms (1001 pts)	

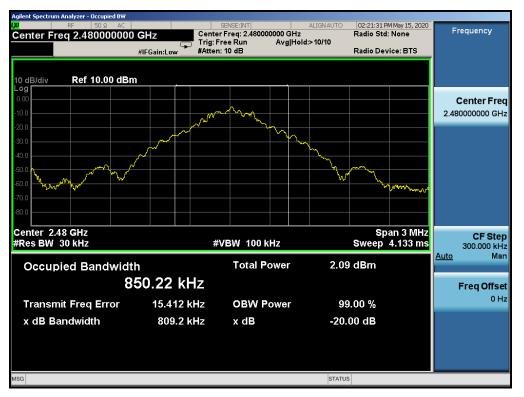
8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

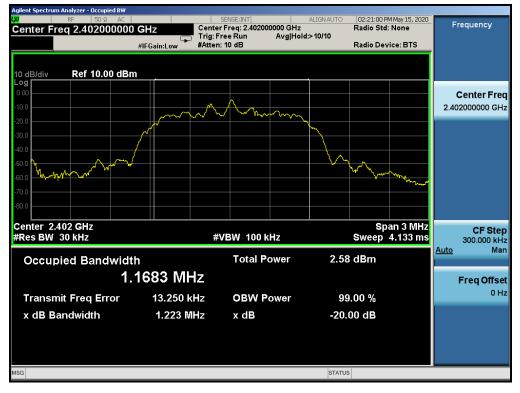
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)


8.3. LIMITS AND MEASUREMENT RESULTS


MEASUREMENT RESULT FOR GFSK MOUDULATION						
Appliechie Limite	Measurement Result					
Applicable Limits	Test Da	Criteria				
	Low Channel	0.9103	PASS			
N/A	Middle Channel	0.9154	PASS			
	High Channel	0.8092	PASS			

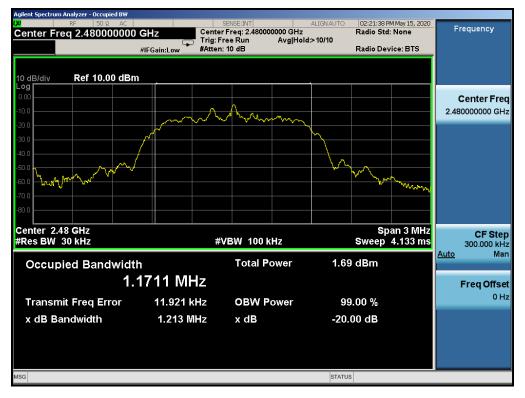
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL



TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

MEASUREMENT RESULT FOR II /4-DQPSK MODULATION						
Applicable Limite	Measurement Result					
Applicable Limits	Test Da	Criteria				
	Low Channel	1.223	PASS			
N/A	Middle Channel	1.225	PASS			
	High Channel	1.213	PASS			


TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

9. CONDUCTED SPURIOUS EMISSION

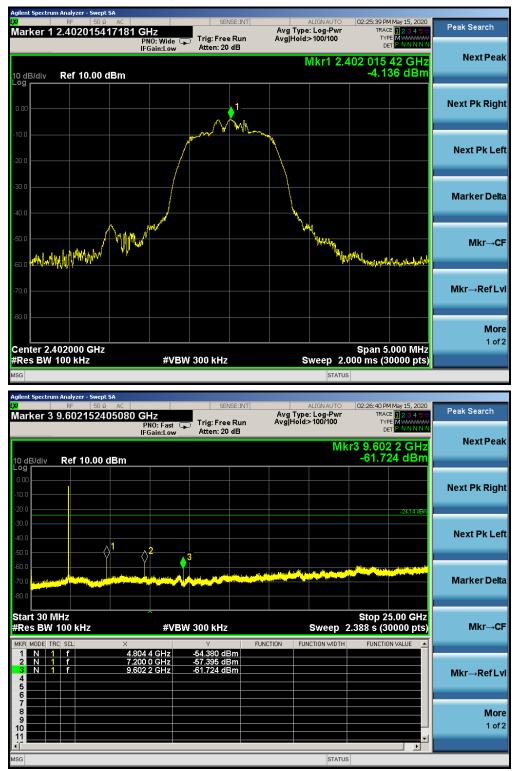
9.1. MEASUREMENT PROCEDURE

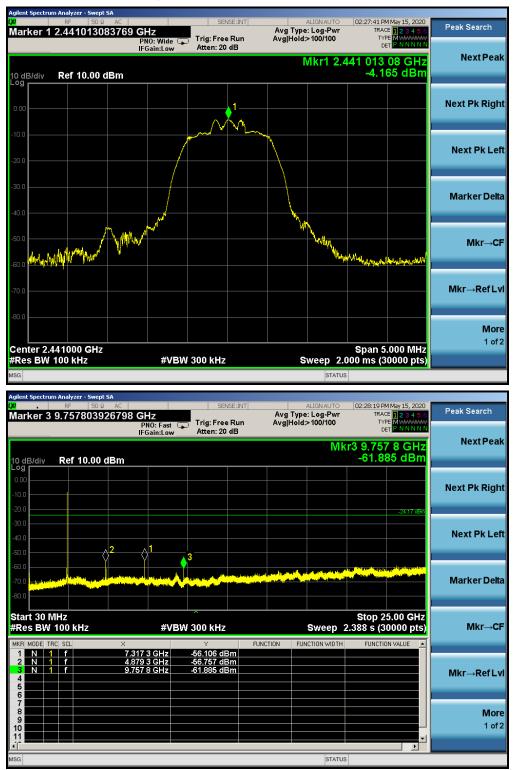
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

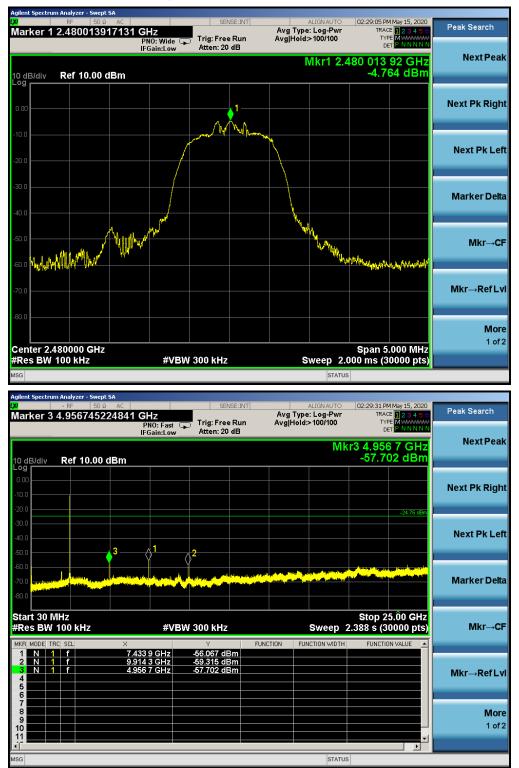
The same as described in section 8.2

9.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6

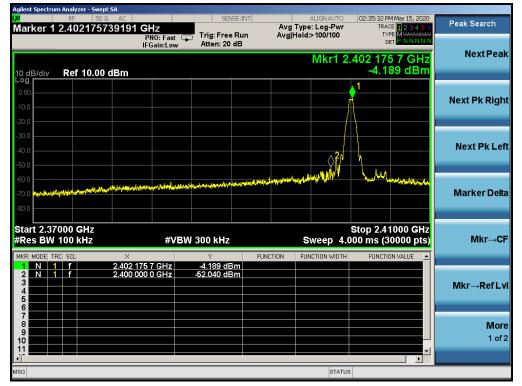

9.4. LIMITS AND MEASUREMENT RESULT

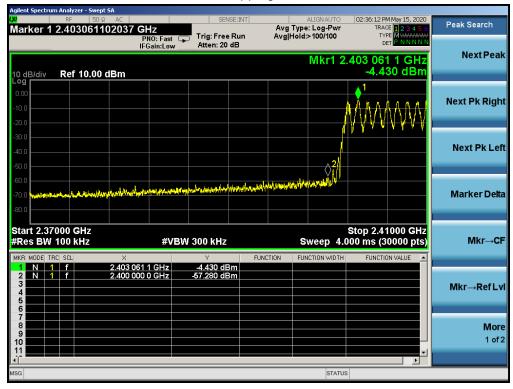
LIMITS AND MEASUREMENT RESULT					
Applicable Limite	Measurement Result				
Applicable Limits	Test Data	Criteria			
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit				
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS			
intentional radiator is operating, the radio frequency	Channel				
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS			

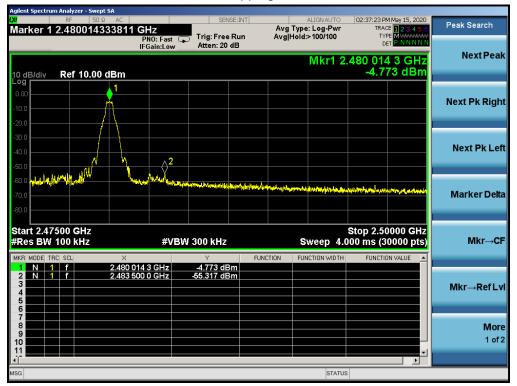

TEST RESULT FOR ENTIRE FREQUENCY RANGE

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF π /4-DQPSK MODULATION IN LOW CHANNEL

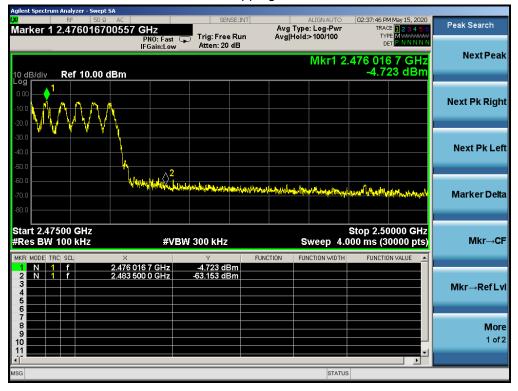
TEST PLOT OF OUT OF BAND EMISSIONS OF π /4-DQPSK MODULATION IN MIDDLE CHANNEL

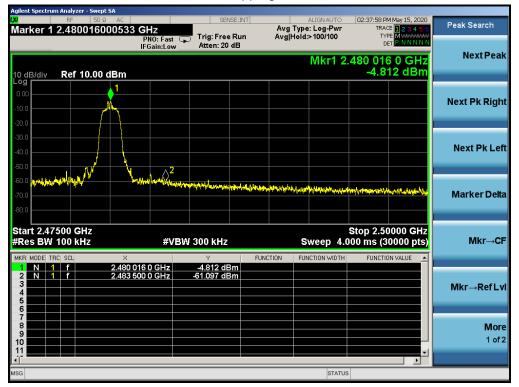

TEST PLOT OF OUT OF BAND EMISSIONS OF π /4-DQPSK MODULATION IN HIGH CHANNEL

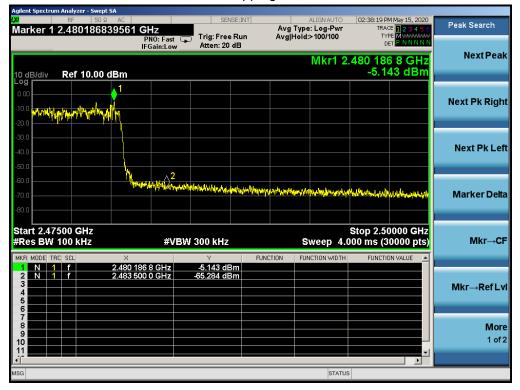

Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit. The π /4-DQPSK modulation is the worst case and only those data recorded in the report.


TEST RESULT FOR BAND EDGE

GFSK MODULATION IN LOW CHANNEL


Hopping off


GFSK MODULATION IN HIGH CHANNEL Hopping off


gilent Spectrum Analyzer - Swept SA				
RF 50Ω AC	SENSE:INT	ALIGNAUTO	02:36:27 PM May 15, 2020	Peak Search
larker 1 2.402018400613		Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 123456	r our oouron
	PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB	Arginola. Toorioo	TYPE MWWWWW DET P N N N N	
		Milend O	400.040.4.011-	Next Peak
		IVIKE'I 2	.402 018 4 GHz	
IO dB/div Ref 10.00 dBm			-4.213 dBm	
og			1	
0.00				Next Pk Right
10.0			Δ <u></u>	NEXTERNISI
20.0				
30.0				
40.0				Next Pk Left
50.0				
			l	
.60.0	lagen figinal valuation production (10 second states)	al transmission and the second second	Mary Mary Martines Loss and	
70.0 with with at stand with the second stand	AND A CONTRACTOR OF A CONTRACT OF			Marker Delta
80.0				
-80.0				
Start 2.37000 GHz			Stop 2.41000 GHz	
Res BW 100 kHz	#VBW 300 kHz	Swoon 4	000 ms (30000 pts)	Mkr→CF
	#VBVV 300 KH2	Sweep 4.	000 ms (30000 pts)	
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
	018 4 GHz -4.213 dBm			
2 N 1 f 2.400 (000 0 GHz -59.689 dBm			
4				Mkr→RefLv
5				
6				
8				More
9				
10				1 of 2
11			 _	
		STATU		

$\pi~$ /4-DQPSK MODULATION IN LOW CHANNEL Hopping off

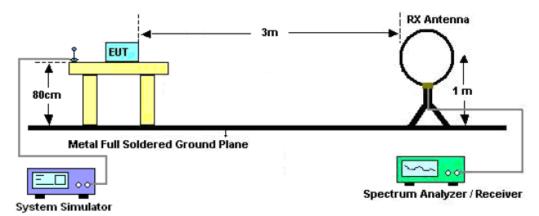
Agilent Spectrum Analyzer - Swept SA (X) RF 50 Ω AC Marker 1 2.4050358345	28 GHz	Avg Type: Log-Pwr TRACE	3 4 5 6 Peak Search
10 dB/div Ref 10.00 dBn	PNO: Fast 🆵 Trig: Free Rui IFGain:Low Atten: 20 dB	Avg Hold:>100/100 TVPE MU Det M Mkr1 2.405 035 8 -6.049 (GHZ NextPeak
-10.0		phullisten hadorite	Next Pk Right
-30.0		A2/	Next Pk Left
-60.0 -70.0	had an owned with a start of the second start of the second start of the second start of the second start of the	www.www.	Marker Delta
	#VBW 300 kHz	Stop 2.41000 Sweep 4.000 ms (3000	0 pts) Mkr→CF
	05 035 8 GHz -6.049 dBm 00 000 0 GHz -58.697 dBm		Mkr→RefLvl
7 8 9 10 11			More 1 of 2
MSG		STATUS	

π /4-DQPSK MODULATION IN HIGH CHANNEL Hopping off

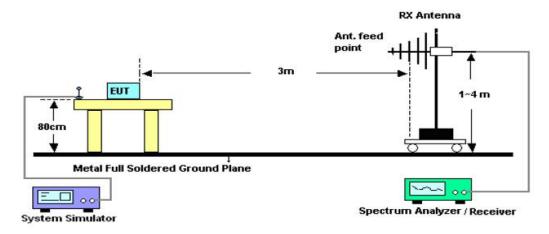
10. RADIATED EMISSION

10.1. MEASUREMENT PROCEDURE

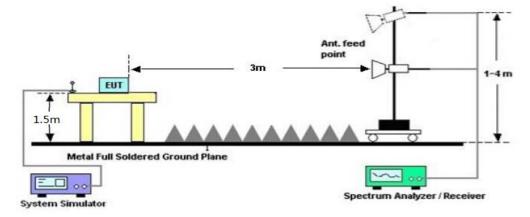
- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting	
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP	
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP	
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP	
Start ~Stop Frequency	1GHz~26.5GHz	
	1MHz/3MHz for Peak, 1MHz/3MHz for Average	


Receiver Parameter	Setting	
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP	
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP	
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP	

10.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

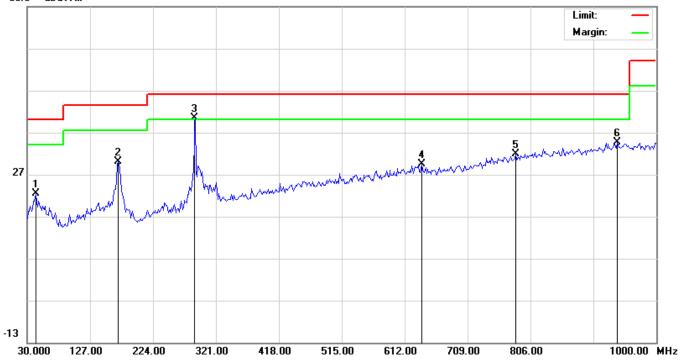
10.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission, the test records reported below are the worst result compared to other modes.

10.4. TEST RESULT

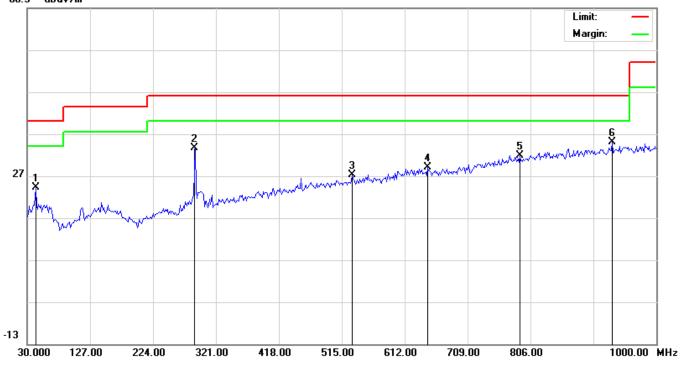

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ

EUT	Bluetooth headphones	Model Name	MZX570	
Temperature	25°C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 4	Antenna	Horizontal	

66.9 dBuV/m


No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		42.9333	2.35	19.98	22.33	40.00	-17.67	peak			
2		170.6500	11.89	18.09	29.98	43.50	-13.52	peak			
3	*	288.6666	20.57	19.74	40.31	46.00	-5.69	peak			
4		637.8667	1.91	27.40	29.31	46.00	-16.69	peak			
5		783.3667	1.84	30.03	31.87	46.00	-14.13	peak			
6		940.1833	2.53	32.05	34.58	46.00	-11.42	peak			

RESULT: PASS

Report No.: AGC05177200504FE03 Page 36 of 59

EUT	Bluetooth headphones	Model Name	MZX570	
Temperature	25°C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 4	Antenna	Vertical	

^{66.9} dBuV/m

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		42.9333	4.25	19.98	24.23	40.00	-15.77	peak			
2		288.6666	13.87	19.74	33.61	46.00	-12.39	peak			
3		531.1667	1.68	25.60	27.28	46.00	-18.72	peak			
4		647.5667	1.51	27.52	29.03	46.00	-16.97	peak			
5		789.8333	1.60	30.18	31.78	46.00	-14.22	peak			
6	*	932.1000	2.95	31.98	34.93	46.00	-11.07	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 4 is the worst case and recorded in the report.

RADIATED EMISSION ABOVE 1GHZ

EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	55.75	0.08	55.83	74	-18.17	peak
4804.000	44.36	0.08	44.44	54	-9.56	AVG
7206.000	55.01	2.21	57.22	74	-16.78	peak
7206.000	44.23	2.21	46.44	54	-7.56	AVG
Remark:						
actor = Anter	nna Factor + Cabl	e Loss – Pre-	amplifier.			

EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	55.21	0.08	55.29	74	-18.71	peak
4804.000	45.18	0.08	45.26	54	-8.74	AVG
7206.000	54.73	2.21	56.94	74	-17.06	peak
7206.000	44.86	2.21	47.07	54	-6.93	AVG
Remark:	1		1		1	
Factor = Anter	nna Factor + Cabl	e Loss – Pre-	amplifier.			

EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4882.000	54.43	0.14	54.57	74	-19.43	peak
4882.000	43.71	0.14	43.85	54	-10.15	AVG
7323.000	54.11	2.36	56.47	74	-17.53	peak
7323.000	42.98	2.36	45.34	54	-8.66	AVG
Remark:	•					•
actor = Anter	nna Factor + Cable	Loss – Pre-	amplifier.			

EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4882.000	53.89	0.14	54.03	74	-19.97	peak
4882.000	43.48	0.14	43.62	54	-10.38	AVG
7323.000	53.22	2.36	55.58	74	-18.42	peak
7323.000	42.79	2.36	45.15	54	-8.85	AVG
Remark:						
actor = Anter	nna Factor + Cabl	e Loss – Pre-	amplifier.			

Report No.: AGC05177200504FE03 Page 39 of 59

EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.000	53.26	0.22	53.48	74	-20.52	peak
4960.000	42.79	0.22	43.01	54	-10.99	AVG
7440.000	52.87	2.64	55.51	74	-18.49	peak
7440.000	42.43	2.64	45.07	54	-8.93	AVG
Remark:						
-actor = Anter	na Factor + Cabl	e Loss – Pre-a	amplifier.			

EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.000	52.49	0.22	52.71	74	-21.29	peak
4960.000	41.17	0.22	41.39	54	-12.61	AVG
7440.000	51.99	2.64	54.63	74	-19.37	peak
7440.000	41.01	2.64	43.65	54	-10.35	AVG
lemark:						

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

RESULT: PASS

Note: Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The π /4-DQPSK modulation is the worst case and recorded in the report.

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

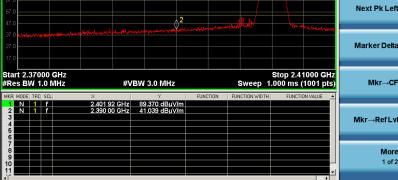
EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal

ΡK

RESULT: PASS

Report No.: AGC05177200504FE03 Page 41 of 59

Peak Search


Next Peak

Next Pk Right


EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

ΡK

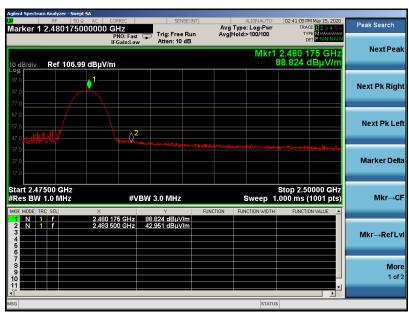
 Inter
 Server
 Server
 Automation
 Opened at the server
 Server
 Automation
 Opened at the server
 Opened at

RESULT: PASS

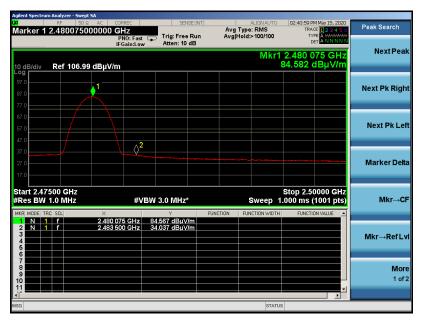
Report No.: AGC05177200504FE03 Page 42 of 59

EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Horizontal

ΡK


AV

RESULT: PASS


Report No.: AGC05177200504FE03 Page 43 of 59

EUT	Bluetooth headphones	Model Name	MZX570
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Vertical

ΡK

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F. All test modes had been pre-tested. The π /4-DQPSK modulation is the worst case and recorded in the report.

11. NUMBER OF HOPPING FREQUENCY

11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

3. VBW \geq RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.

4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

Marker Avg Type: Log-Pw Avg|Hold:>100/100 A 77 989000000 MH Trig: Free Run Atten: 20 dB PNO: Fast IFGain:Low Select Marker ΔMkr1 1.236 dE Ref 10.00 dBm Norma Delta Fixed Stop 2.48350 GHz 8.000 ms (1001 pts 2.40000 GHz BW 100 kHz Off #VBW 300 kHz Sweep 77.989 0 MH 2.401 920 5 GH **Properties** More 1 of 2

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: Zero span, centered on a hopping channel.

2. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

4. Detector function: Peak. Trace: Max hold.

5. Use the marker-delta function to determine the transmit time per hop.

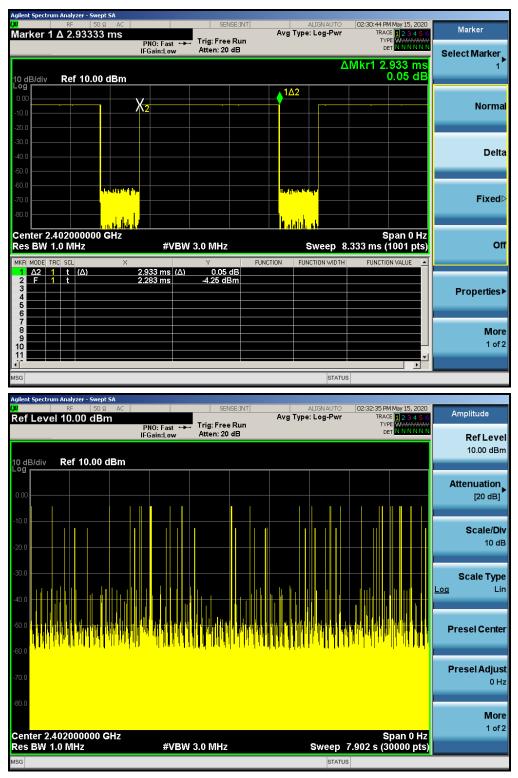
6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

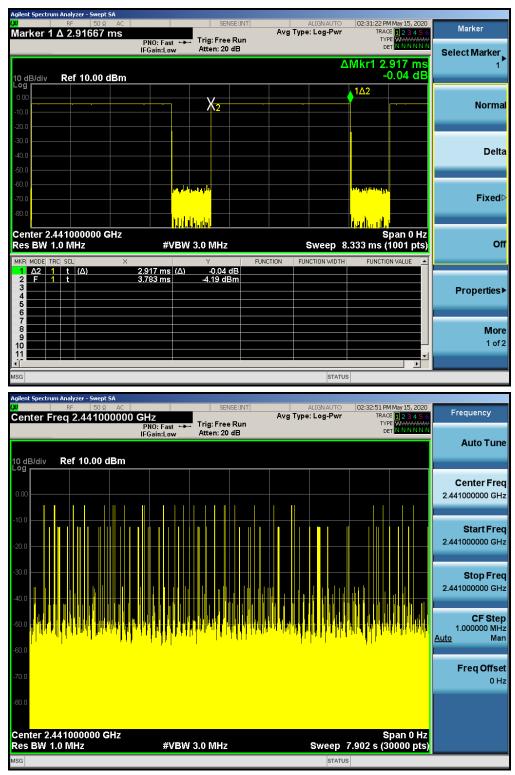
7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

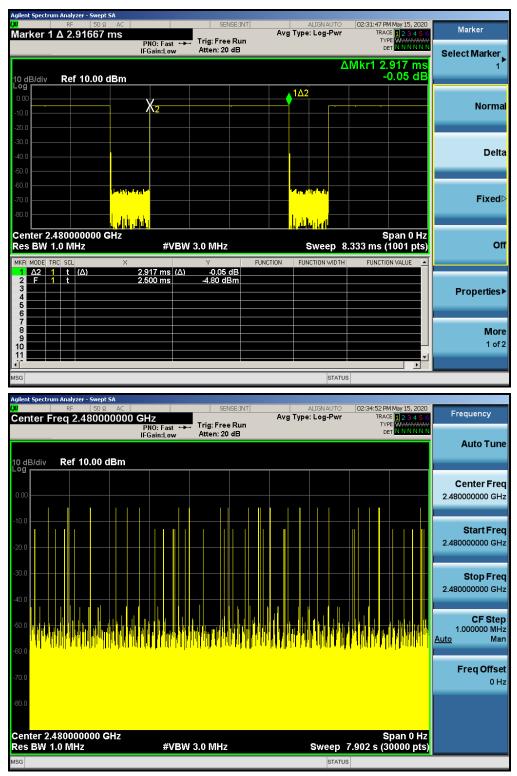
Same as described in section 8.2


12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6


12.4. LIMITS AND MEASUREMENT RESULT

Channel	Time of Pulse for DH5 (ms)	Number of hops in the period specified in the requirements	Sweep Time (ms)	Limit (ms)
Low	2.933	25*4	293.300	400
Middle	2.917	28*4	326.704	400
High	2.917	22*4	256.696	400


Note: The π /4-DQPSK modulation is the worst case and recorded in the report.

TEST PLOT OF LOW CHANNEL

TEST PLOT OF MIDDLE CHANNEL

TEST PLOT OF HIGH CHANNEL

13. FREQUENCY SEPARATION

13.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: Wide enough to capture the peaks of two adjacent channels.

2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

3. Video (or average) bandwidth (VBW) \geq RBW.

4. Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

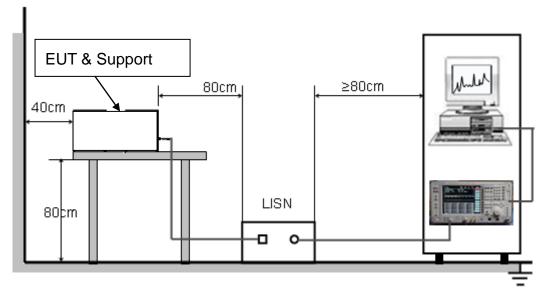
13.4. LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION KHz	LIMIT (KHz)	RESULT
CH01-CH02	1000	>=25 KHz or 2/3 20 dB BW	PASS

TEST PLOT FOR FREQUENCY SEPARATION

Note: The π /4-DQPSK modulation is the worst case and recorded in the report.

14. FCC LINE CONDUCTED EMISSION TEST


14.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Frequency	Maximum RF Line Voltage		
Frequency	Q.P.(dBuV)	Average(dBuV)	
150kHz~500kHz	66-56	56-46	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter which received AC120V/60Hz power by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

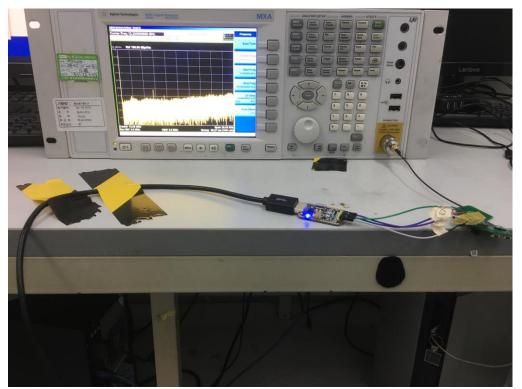
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

N/A

Note: The BT function of EUT didn't work when charging.


APPENDIX A: PHOTOGRAPHS OF TEST SETUP RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

Report No.: AGC05177200504FE03 Page 53 of 59

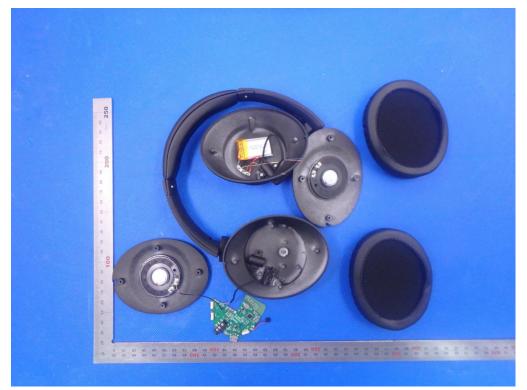
CONDUCTED TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT TOP VIEW OF EUT

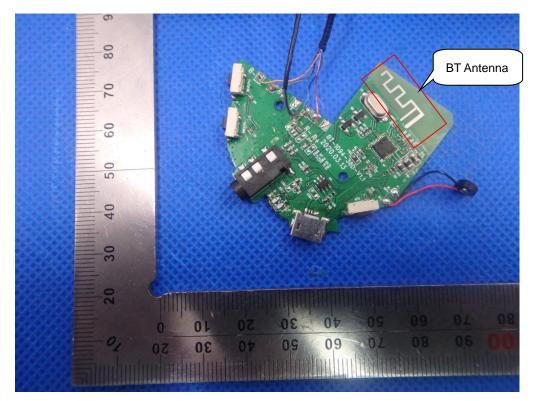
BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

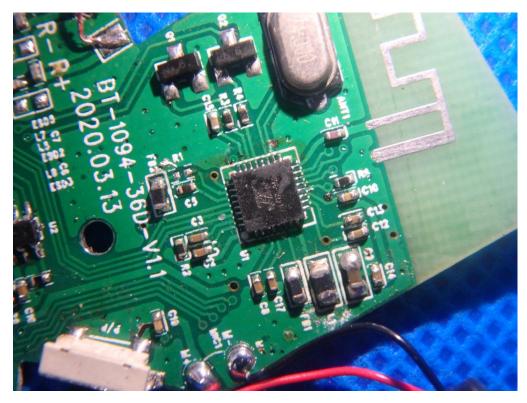
BACK VIEW OF EUT



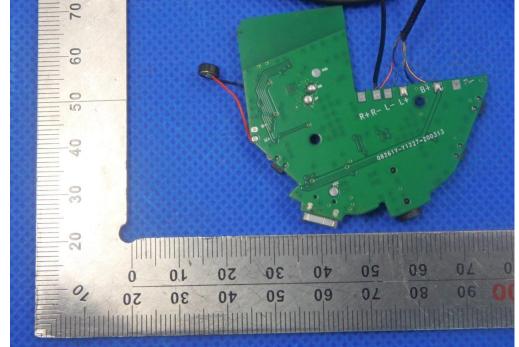
LEFT VIEW OF EUT



OPEN VIEW OF EUT



INTERNAL VIEW OF EUT-1



VIEW OF BATTERY

----END OF REPORT----

INTERNAL VIEW OF EUT-3

INTERNAL VIEW OF EUT-2