

Global United Technology Services Co., Ltd.

Report No.: GTS2023050328F01

TEST REPORT

Applicant: Unit Connection Technology Co., Ltd

5/F., Block J, Shifeng Technology Park, Loucun, Guangming **Address of Applicant:**

New District, Shenzhen, China

Unit Connection Technology Co., Ltd Manufacturer/Factory:

Address of 5/F., Block J, Shifeng Technology Park, Loucun, Guangming

New District, Shenzhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Wireless Weather Station Transmitter

Model No.: WS025, WS025T, WS026, WS026T, WS027, WS027T, MK-

WS-103-UC

FCC ID: 2ALHJ-WS025T

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.231

Date of sample receipt: May 19, 2023

Date of Test: May 19, 2023-June 19, 2023

June 19, 2023 Date of report issued:

Test Result: PASS *

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description			
00	June 19, 2023	Original			

Prepared By:	Trankly	Date:	June 19, 2023
	Project Engineer		
Check By:	Reviewer	Date:	June 19, 2023

3 Contents

			Page
1	COVI	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	6
	5.3	TEST FACILITY	6
	5.4	TEST LOCATION	
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	DEVIATION FROM STANDARDS	
	5.7	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	0
	7.2	RADIATED EMISSION METHOD	
		1 Field Strength of The Fundamental Signal	
	7.2.2		
	7.3	OCCUPY BANDWIDTH	
	7.4	DWELL TIME	
	7.5	SILENT PERIOD	19
8	TES	T SETUP PHOTO	20
9	FIIT	CONSTRUCTIONAL DETAILS	20
J	LUI		EU

4 Test Summary

Test Item	Section in	Result
Antenna requirement	CFR 47 15.203	Pass
Conduction Emission	CFR 47 15.207	N/A
Field strength of the fundamental signal	CFR 47 15.231(e)	Pass
Spurious emissions	CFR 47 15.231(e) &15.209	Pass
Occupy Bandwidth	CFR 47 15.231(c)	Pass
Dwell time	CFR 47 15.231(e)	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Wireless Weather Station Transmitter
Model No.:	WS025, WS025T, WS026, WS026T, WS027, WS027T, MK-WS-103-UC
Test Model No:	WS026T
	identical in the same PCB layout, interior structure and electrical circuits. se color and model name for commercial purpose.
Serial No.:	0025T-0001
Test sample(s) ID:	GTS2023050328-1
Sample(s) Status	Engineer sample
Operation Frequency:	433.92MHz
Modulation type:	ASK
Antenna Type:	Integral Antenna
Antenna gain:	-3.92dBi(Declared by applicant)
Power supply:	DC 4.5V(3*1.5V Size"AA" Battery)

5.2 Test mode

Transmitting mode Keep the EUT in transmitting mode.

Remark: New battery is used during all test.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

433.92MHz	Axis	X	Υ	Z	
	Field Strength(dBuV/m)	77.18	78.80	76.24	

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup":

Y axis (see the test setup photo)

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None

5.7 Abnormalities from Standard Conditions

None.

5.8 Other Information Requested by the Customer

None.

6 Test Instruments list

	o rest instruments hat								
Rad	iated Emission:								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Coaxial Cable	GTS	N/A	GTS213	April 21, 2023	April 20, 2024			
8	Coaxial Cable	GTS	N/A	GTS211	April 21, 2023	April 20, 2024			
9	Coaxial cable	GTS	N/A	GTS210	April 21, 2023	April 20, 2024			
10	Coaxial Cable	GTS	N/A	GTS212	April 21, 2023	April 20, 2024			
11	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024			
12	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023			
13	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024			
14	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024			
15	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023			
16	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023			
17	FSV-Signal Analyzer (10Hz- 40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024			
18	Amplifier	1	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024			
19	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS668	Dec. 20,2022	Dec.19,2023			

RF C	RF Conducted Test:									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024				
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024				
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024				
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024				
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024				
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024				
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024				
9	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 04, 2022	Nov. 03, 2023				

I	General used equipment:								
	tem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
	1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 18, 2023	April 17, 2024		
	2	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024		

7 Test results and Measurement Data

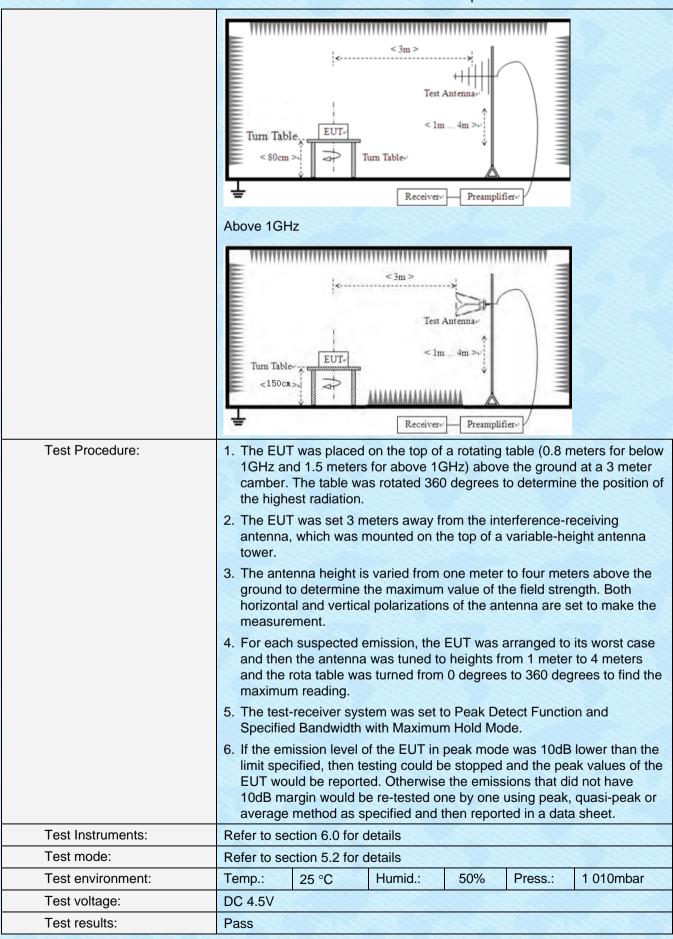
7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:


The antenna is integral antenna, reference to the appendix II for details.

7.2 Radiated Emission Method

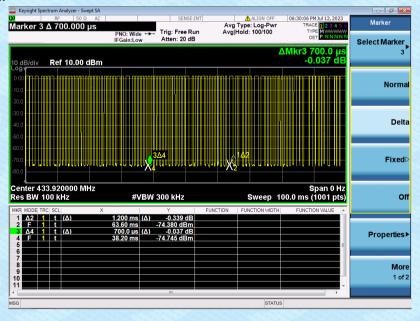
							7.2 Radiated Emission Method								
Test Requirement:	FCC Part15 C Section	on 15.	209												
Test Method:	ANSI C63.10:2013														
Test Frequency Range:	9kHz to 6000MHz														
Test site:	Measurement Distance: 3m														
Receiver setup:	Frequency	De	etector	RB\	N	VBW	/	Value							
	9KHz-150KHz	Qua	asi-peak	200H	Ηz	600H	z	Quasi-peak							
	150KHz-30MHz	Qua	asi-peak	9KH	lz	30KH	z	Quasi-peak							
	30MHz-1GHz	Qua	asi-peak	120K	Hz	300KH	Ηz	Quasi-peak							
	Above 1GHz		Peak	1MH	łz	3MH:	Z	Peak							
	Above 1G112		Peak	1MH	łz	10Hz	Z	Average							
Limit:	Frequency		Limit ((dBuV/		3m)		Remark							
(Field strength of the	433.92MHz			72.87 92.87		28838		verage Value Peak Value							
fundamental signal)				32.0											
Limit: (Spurious Emissions)	Frequency		Limit (uV			alue	N	Measurement Distance							
	0.009MHz-0.490M		2400/F(K			QP		300m							
	0.490MHz-1.705M		24000/F(H	(Hz)	QP			30m							
		1.705MHz-30MHz 30			QP		30m								
		30MHz-88MHz 100				QP									
		88MHz-216MHz 150			QP										
	216MHz-960MH		200		QP			3m							
	960MHz-1GHz		500			QP									
	Above 1GHz		500		Average Peak										
			5000												
Test setup:	Or The maximum pe maximum permitted f strength.														
Γενί νειαμ.	Below 30MHz														
	Turn Table EUT		< 3m > Test A n Table-	ntenna lm											
	Below 1GHz														

Measurement data:

7.2.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
433.92	83.52	16.40	3.02	30.00	72.94	92.87	-19.93	Vertical
433.92	83.65	16.40	3.02	30.00	73.07	92.87	-19.80	Horizontal


Average value:

Frequency (MHz)	Peak Value (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
433.92	72.94	-3.30	69.64	72.87	-3.23	Vertical
433.92	73.07	-3.30	69.77	72.87	-3.10	Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. PK Value under PK limit more than 20db, then pass for AV value.

Average value:						
	Average value=Peak value + Duty Cycle Factor					
Calculate Formula:	Duty cycle factor=20 log(Duty cycle)					
	Duty cycle=on time/100 milliseconds or period, whichever is less					
	T on time =68.4(ms)					
Test data:	T period =100(ms)					
Test data.	Duty cycle=0.684					
	duty cycle factor=-3.30					

7.2.2 Spurious emissions

Measurement data:

9 kHz ~ 30 MHz

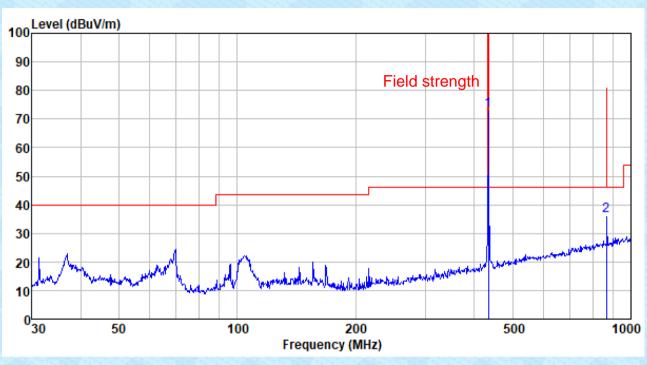
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz:

Test channel:	433.92MH	z		Polarization:	Horizontal
Level (dBuV/m)					
90					
ВО				1	
70			Field	strength	
50					2
40					
30					the state of the s
10	market market water	down and the same of the same	Marine market and the second	Mulanterman	apara de la companya
030 50)	100	200	5	00 100

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
867.84	54.63	23.54	4.74	30.00	52.91	72.87	-19.96	Horizontal


Frequency (MHz)

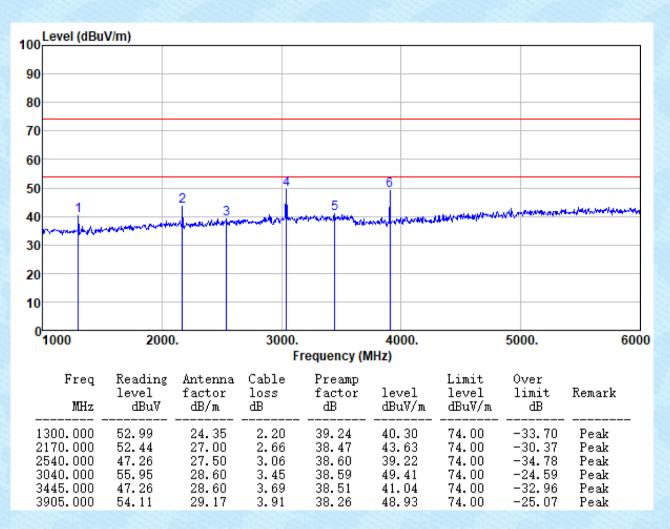
Average value:

Frequency (MHz)	Peak Value (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
867.84	52.91	-3.30	49.61	52.87	-3.26	Horizontal

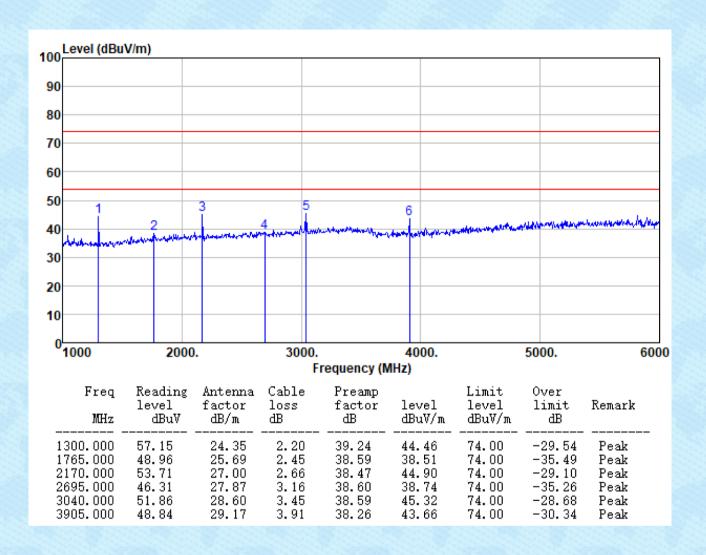
Test channel:	433.92MHz	Polarization:	Vertical
rest channel.	433.92IVITZ	Polarization:	vertical

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
867.84	37.76	23.54	4.74	30.00	36.04	72.87	-36.83	Vertical


Average value:

Frequency (MHz)	Peak Value (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
867.84	36.04	-3.30	32.74	52.87	-20.13	Vertical



Above 1G:

Test channel:	433.92MHz	Polarization:	Horizontal
100t onamon	100102111112	I Old ILation.	Horizontal

Remarks

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

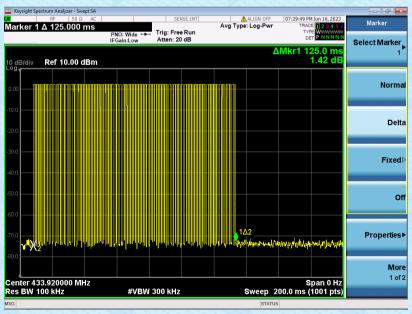
7.3 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.231 (c)			
Test Method:	ANSI C63.10:2013			
Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.			
Test setup:				
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement Data

Test Frequency (MHz)	20dB bandwidth (kHz)	99% bandwidth(kHz)	Limit (MHz)	Result
433.92	29.06	236.72	1.0848	Pass

Note: Limit= Fundamental frequency×0.25%



7.4 Dwell time

Test Requirement:	FCC Part15 C Section 15.231 (e)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=1MHz, span=0Hz, detector: Peak		
Limit:	Not more than 1 seconds		
Test setup:	Not more than 1 seconds Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement data:

Test Frequency	Duration of each TX	Limit	Result
(MHz)	(second)	(second)	
433.92	0.125	<1.0	Pass

7.5 Silent period

Test Requirement:	FCC Part15 C Section 15.231 (e)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=1MHz, VBW=1MHz, span=0Hz, detector: Peak			
Limit:	at least 30 times the duration of the transmission			
	or more than 10 seconds			
Test Procedure:	1. According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT.			
	2. Set the EUT to proper test channel.			
	3. Single scan the transmit, and read the transmission time.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details Refer to section 5.2 for details			
Test mode:				
Test results:	Pass			

Measurement data:

Test Frequency (MHz)	Silent period (second)	Limit (second)	Result
433.92	15.78	>10	Pass

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----