

Global United Technology Services Co., Ltd.

Report No.: GTS201702000092I01

IC REPORT

Applicant: Global Shopping Network Pty. Ltd.

Suite 204,2 Grosvenor Street Bondi Junction NSW 2022 **Address of Applicant:**

Australia

Shenzhen Intellink Technology Co.,Ltd Manufacturer:

Rm1609, Design Building Zhenhua Road, Futian District Address of

Shenzhen China Manufacturer:

Equipment Under Test (EUT)

Keyfinder **Product Name:**

ORBIT Model No.:

HButler Trade Mark:

IC: 22536-ORBIT

Applicable standards: RSS-Gen Issue 4: November 2014

RSS-247 Issue 2: Feb 2017

Date of sample receipt: March 03, 2017

Date of Test: March 03-07, 2017

Date of report issued: March 07, 2017

PASS * Test Result:

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	March 07, 2017	Original

Prepared By:	Jasan Du	Date:	March 07, 2017
	Project Engineer		
Check By:	Hady wa	Date:	March 07, 2017

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED OUTPUT POWER	
	7.3	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	12
	7.4	POWER SPECTRAL DENSITY	14
	7.5	BAND EDGES	16
	7.5.1		
	7.5.2		
	7.6	SPURIOUS EMISSION	
	7.6.1		
	7.6.2	Padiated Emission Method	21
8	TES	T SETUP PHOTO	27
9	EUT	CONSTRUCTIONAL DETAILS	28

4 Test Summary

Test Item	Section	Result
Antenna requirement	RSS-Gen 8.3	Pass
AC Power Line Conducted Emission	RSS-Gen 8.8	Pass
Conducted Peak Output Power	RSS-247 5.4.d	Pass
Channel Bandwidth	RSS-247 5.2.1	Pass
99% Occupy Bandwidth	RSS-Gen 6.6	Pass
Power Spectral Density	RSS-247 5.2.2	Pass
Band Edge	RSS-247 5.5	Pass
Spurious Emission	RSS-247 5.5 & RSS-Gen 8.9 8.10	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10: 2013 and ANSI C63.4: 2014

Measurement Uncertainty

<u> </u>					
Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission $0.15 \text{MHz} \sim 30 \text{MHz}$ $\pm 3.45 \text{dB}$ (1)					
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.		

5 General Information

5.1 General Description of EUT

Product Name:	Keyfinder
Model No.:	ORBIT
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB antenna
Antenna Gain:	4dBi
Power Supply:	DC3.0V (1 x 3.0V "CR2032" button cell)

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
	. !		• !	• !	• !		• !
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: New battery is used during all test.

5.3 Description of Support Units

N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

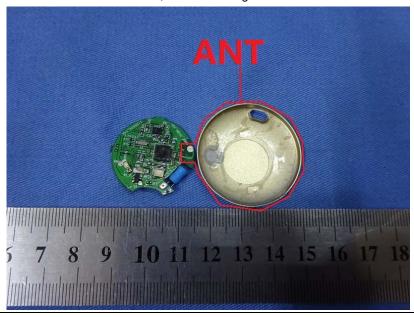
6 Test Instruments list

Rad	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 29 2016	June 28 2017
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2016	June 28 2017
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 29 2016	June 28 2017
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2016	June 28 2017
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 29 2016	June 28 2017
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	GTS	N/A	GTS213	June 29 2016	June 28 2017
10	Coaxial Cable	GTS	N/A	GTS211	June 29 2016	June 28 2017
11	Coaxial cable	GTS	N/A	GTS210	June 29 2016	June 28 2017
12	Coaxial Cable	GTS	N/A	GTS212	June 29 2016	June 28 2017
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 29 2016	June 28 2017
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 29 2016	June 28 2017
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 29 2016	June 28 2017
16	Band filter	Amindeon	82346	GTS219	June 29 2016	June 28 2017

Gen	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017

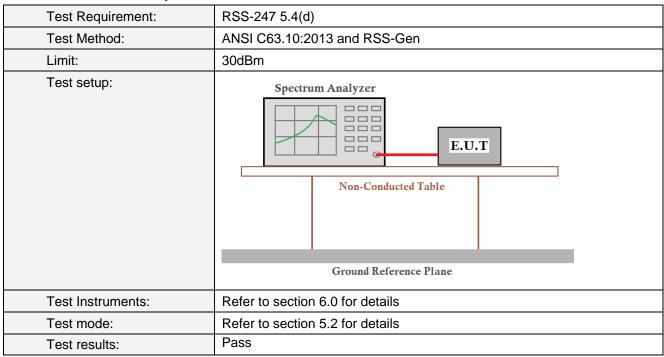
7 Test results and Measurement Data

7.1 Antenna requirement


Standard requirement: RSS-Gen 8.3

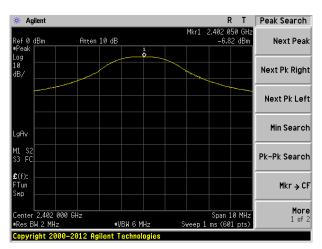
A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

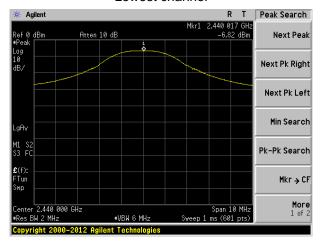

EUT Antenna:

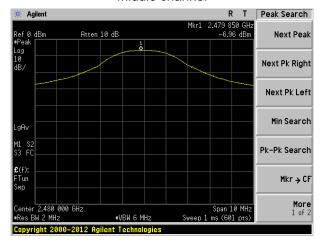
The antenna is PCB antenna, the best case gain of the antenna is 4dBi

7.2 Conducted Output Power



Measurement Data


Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-6.82		
Middle	-6.82	30.00	Pass
Highest	-6.96		


Test plot as follows:

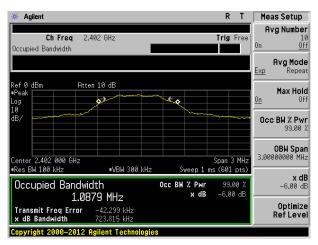
Lowest channel

Middle channel

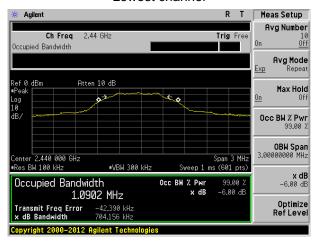
Highest channel

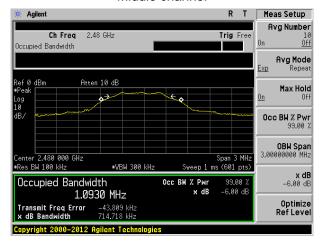
7.3 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement:	RSS-247 5.2.1		
Test Method:	ANSI C63.10:2013 and RSS-Gen		
Limit:	Channel Bandwidth >500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

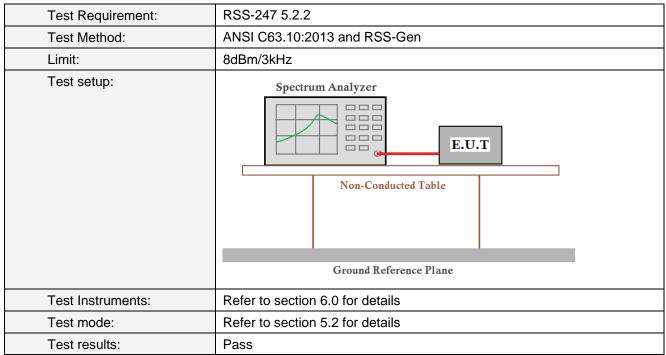

Measurement Data

Test channel	Channel Bandwidth (KHz)	Limit(KHz)	Result
Lowest	724		
Middle	704	>500	Pass
Highest	715		


Test channel	99% Bandwidth (MHz)	Result
Lowest	1.088	
Middle	1.090	Pass
Highest	1.093	

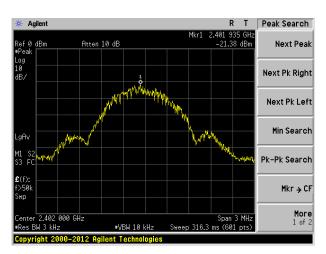

Test plot as follows:

Lowest channel

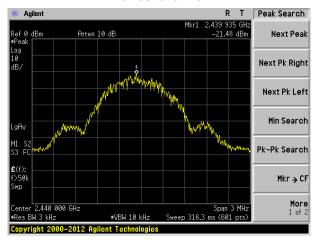

Middle channel

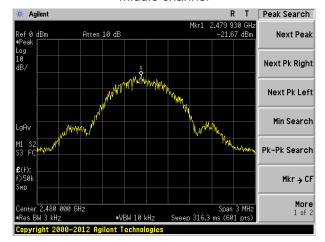
Highest channel

7.4 Power Spectral Density



Measurement Data

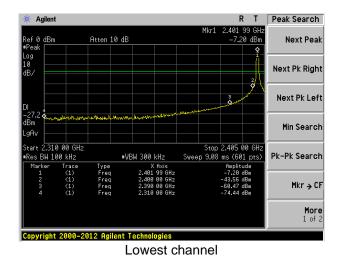

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-21.38		
Middle	-21.48	8.00	Pass
Highest	-21.67		


Test plot as follows:

Lowest channel

Middle channel

Highest channel



7.5 Band edges

7.5.1 Conducted Emission Method

Test Requirement:	RSS-247 5.5				
Test Method:	ANSI C63.10: 2013 & RSS-Gen				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Highest channel

7.5.2 Radiated Emission Method

Test Requirement:	RSS-247 5.5						
Test Method:	ANSI C63.10: 2	013 & RSS-G	en 8.9 8.10				
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	nd's (2310MHz to		
Test site:		Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
·		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Value		
	Above 1	GHz	54.0		Average		
Test setup:			74.0	0	Peak		
	EUT Turn Table	Horn Antenna Spectrum Analyzer					
	 The EUT was placed on the top of a rotating table 1.5m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. 						
	Specified Bar 6. If the emission the limit spect of the EUT we have 10dB me peak or avera sheet. 7. The radiation	ndwidth with Man level of the ified, then testould be report argin would be measuremen	Maximum Hole EUT in peak ting could be ted. Otherwis e re-tested or s specified ar ats are perforr	d Mode. mode was 10 stopped and e the emissione by one usind then report	OdB lower than the peak values ons that did not ing peak, quasited in a data		
	Specified Ba 6. If the emission the limit spector of the EUT with have 10dB might peak or average sheet. 7. The radiation And found the	ndwidth with Man level of the ified, then test ould be report argin would be age method as measuremente X axis position level of the test	Maximum Hole EUT in peak ting could be ted. Otherwis e re-tested or s specified ar are performoning which i	d Mode. mode was 10 stopped and e the emissione by one usind then report med in X, Y, Z it is worse cas	OdB lower than the peak values ons that did not ing peak, quasi- ted in a data		
Test Instruments:	Specified Ba 6. If the emission the limit specified of the EUT with have 10dB might peak or average sheet. 7. The radiation And found the worst case mission.	ndwidth with Man level of the ified, then test ould be report argin would bage method as measurement X axis positiode is recorder	Maximum Hole EUT in peak ting could be ted. Otherwis e re-tested or s specified ar tts are perform oning which i ed in the repo	d Mode. mode was 10 stopped and e the emissione by one usind then report med in X, Y, Z it is worse cas	OdB lower than the peak values ons that did not ing peak, quasited in a data		
Test Instruments: Test mode:	Specified Ba 6. If the emission the limit spector of the EUT with have 10dB might peak or average sheet. 7. The radiation And found the	ndwidth with Man level of the ified, then test ould be report argin would bage method as measurement X axis positiode is recorde 6.0 for details	Maximum Hole EUT in peak ting could be ted. Otherwis e re-tested or s specified ar ats are perform oning which is ed in the repo	d Mode. mode was 10 stopped and e the emissione by one usind then report med in X, Y, Z it is worse cas	OdB lower than the peak values ons that did not ing peak, quasited in a data		

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:	Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	42.17	27.59	5.38	30.18	44.96	74.00	-29.04	Horizontal
2400.00	58.85	27.58	5.39	30.18	61.64	74.00	-12.36	Horizontal
2390.00	42.65	27.59	5.38	30.18	45.44	74.00	-28.56	Vertical
2400.00	60.81	27.58	5.39	30.18	63.60	74.00	-10.40	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.88	27.59	5.38	30.18	35.67	54.00	-18.33	Horizontal
2400.00	44.07	27.58	5.39	30.18	46.86	54.00	-7.14	Horizontal
2390.00	32.77	27.59	5.38	30.18	35.56	54.00	-18.44	Vertical
2400.00	45.65	27.58	5.39	30.18	48.44	54.00	-5.56	Vertical

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	44.19	27.53	5.47	29.93	47.26	74.00	-26.74	Horizontal
2500.00	43.49	27.55	5.49	29.93	46.60	74.00	-27.40	Horizontal
2483.50	44.91	27.53	5.47	29.93	47.98	74.00	-26.02	Vertical
2500.00	44.43	27.55	5.49	29.93	47.54	74.00	-26.46	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	35.70	27.53	5.47	29.93	38.77	54.00	-15.23	Horizontal
2500.00	33.80	27.55	5.49	29.93	36.91	54.00	-17.09	Horizontal
2483.50	36.85	27.53	5.47	29.93	39.92	54.00	-14.08	Vertical
2500.00	33.66	27.55	5.49	29.93	36.77	54.00	-17.23	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

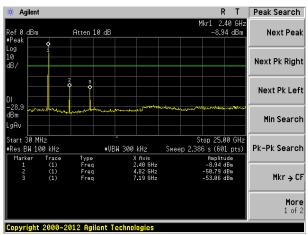
Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

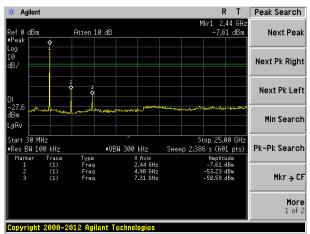
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

7.6 Spurious Emission

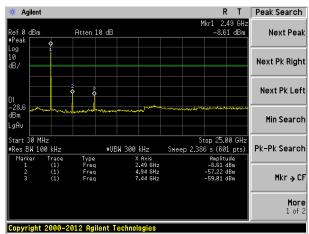
7.6.1 Conducted Emission Method


Test Requirement:	RSS-247 5.5				
Test Method:	ANSI C63.10: 2013				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	· ·				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102


Test plot as follows:

Lowest channel


30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

7.6.2 Radiated Emission Method

Test Requirement:	RSS-247 5.5 & R	RSS-247 5.5 & RSS-Gen 8.9 8.10								
Test Method:	ANSI C63.10: 2013									
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz								
Test site:	Measurement Dis	stance: 3m								
Receiver setup:	Frequency	Frequency Detector RBW VBW								
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above IGHZ	RMS	1MHz	3MHz	Average					
Limit:	Frequen	ісу	Limit (dBuV/	m @3m)	Value					
	30MHz-88	MHz	40.0	0	Quasi-peak					
	88MHz-216	6MHz	43.5	0	Quasi-peak					
	216MHz-96	0MHz	46.0	0	Quasi-peak					
	960MHz-1	GHz	54.0	Quasi-peak						
	Above 10	2H-7	54.00		Average					
	Above 10	JI 12	74.00		Peak					
Test setup:	Below 1GHz				اليا اليا					
Test setup:	Below 1GHz	EUT+		Antenna						

	Tum Table - Clm 4m > V
Test Procedure:	The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis which it is worse case.

Measurement Data

■ Below 1GHz

_ <u></u>								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
167.82	36.08	8.33	1.67	29.33	16.75	43.50	-26.75	Vertical
216.02	31.40	10.78	1.93	29.36	14.75	46.00	-31.25	Vertical
747.48	25.11	20.53	4.27	29.20	20.71	46.00	-25.29	Vertical
796.18	24.59	21.25	4.45	29.20	21.09	46.00	-24.91	Vertical
863.06	23.80	21.86	4.71	29.13	21.24	46.00	-24.76	Vertical
989.54	24.21	22.73	5.19	29.10	23.03	54.00	-30.97	Vertical
506.48	22.94	17.61	3.33	29.30	14.58	46.00	-31.42	Horizontal
574.63	23.64	18.82	3.63	29.30	16.79	46.00	-29.21	Horizontal
647.39	23.52	19.54	3.91	29.25	17.72	46.00	-28.28	Horizontal
739.66	23.01	20.39	4.24	29.20	18.44	46.00	-27.56	Horizontal
869.13	24.30	21.94	4.74	29.13	21.85	46.00	-24.15	Horizontal
975.75	23.69	22.64	5.14	29.10	22.37	54.00	-31.63	Horizontal

■ Above 1GHz

Test channel: Lowest								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	37.26	31.78	8.60	32.09	45.55	74.00	-28.45	Vertical
7206.00	31.80	36.15	11.65	32.00	47.60	74.00	-26.40	Vertical
9608.00	31.44	37.95	14.14	31.62	51.91	74.00	-22.09	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	41.53	31.78	8.60	32.09	49.82	74.00	-24.18	Horizontal
7206.00	33.55	36.15	11.65	32.00	49.35	74.00	-24.65	Horizontal
9608.00	30.86	37.95	14.14	31.62	51.33	74.00	-22.67	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Average var	uc.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	26.08	31.78	8.60	32.09	34.37	54.00	-19.63	Vertical
7206.00	20.49	36.15	11.65	32.00	36.29	54.00	-17.71	Vertical
9608.00	19.57	37.95	14.14	31.62	40.04	54.00	-13.96	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.30	31.78	8.60	32.09	38.59	54.00	-15.41	Horizontal
7206.00	22.66	36.15	11.65	32.00	38.46	54.00	-15.54	Horizontal
9608.00	19.30	37.95	14.14	31.62	39.77	54.00	-14.23	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	l:			Mid	dle			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	37.85	31.85	8.67	32.12	46.25	74.00	-27.75	Vertical
7320.00	32.19	36.37	11.72	31.89	48.39	74.00	-25.61	Vertical
9760.00	31.79	38.35	14.25	31.62	52.77	74.00	-21.23	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	42.24	31.85	8.67	32.12	50.64	74.00	-23.36	Horizontal
7320.00	33.99	36.37	11.72	31.89	50.19	74.00	-23.81	Horizontal
9760.00	31.26	38.35	14.25	31.62	52.24	74.00	-21.76	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	26.57	31.85	8.67	32.12	34.97	54.00	-19.03	Vertical
7320.00	20.82	36.37	11.72	31.89	37.02	54.00	-16.98	Vertical
9760.00	19.87	38.35	14.25	31.62	40.85	54.00	-13.15	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	30.86	31.85	8.67	32.12	39.26	54.00	-14.74	Horizontal
7320.00	23.03	36.37	11.72	31.89	39.23	54.00	-14.77	Horizontal
9760.00	19.64	38.35	14.25	31.62	40.62	54.00	-13.38	Horizontal
12200.00	*					54.00		Horizontal
14640.00	*					54.00		Horizontal

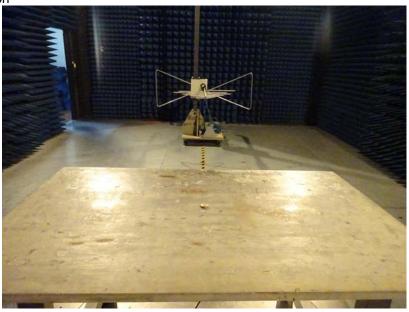
Remark:

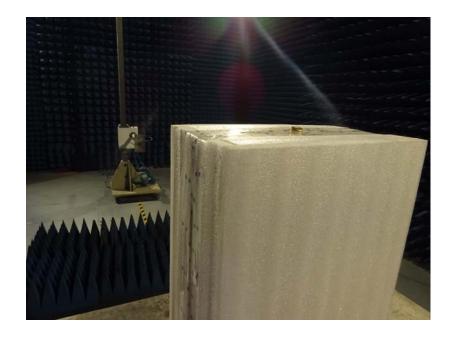
^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel: Highest									
Peak value:				,					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.81	31.93	8.73	32.10	6	45.31	74.00	-28.69	Vertical
7440.00	31.50	36.59	11.79	31.78	8	48.10	74.00	-25.90	Vertical
9920.00	31.18	38.81	14.38	31.88	8	52.49	74.00	-21.51	Vertical
12400.00	*						74.00		Vertical
14880.00	*						74.00		Vertical
4960.00	41.00	31.93	8.73	32.10	6	49.50	74.00	-24.50	Horizontal
7440.00	33.22	36.59	11.79	31.78	8	49.82	74.00	-24.18	Horizontal
9920.00	30.55	38.81	14.38	31.88	8	51.86	74.00	-22.14	Horizontal
12400.00	*						74.00		Horizontal
14880.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.79	31.93	8.73	32.10	6	34.29	54.00	-19.71	Vertical
7440.00	20.29	36.59	11.79	31.78	8	36.89	54.00	-17.11	Vertical
9920.00	19.40	38.81	14.38	31.88	8	40.71	54.00	-13.29	Vertical
12400.00	*						54.00		Vertical
14880.00	*						54.00		Vertical
4960.00	29.98	31.93	8.73	32.10	6	38.48	54.00	-15.52	Horizontal
7440.00	22.44	36.59	11.79	31.78	8	39.04	54.00	-14.96	Horizontal
9920.00	19.09	38.81	14.38	31.88	8	40.40	54.00	-13.60	Horizontal
12400.00	*						54.00		Horizontal
14880.00	*						54.00		Horizontal

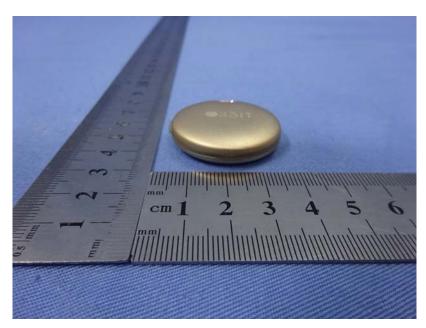
Remark:

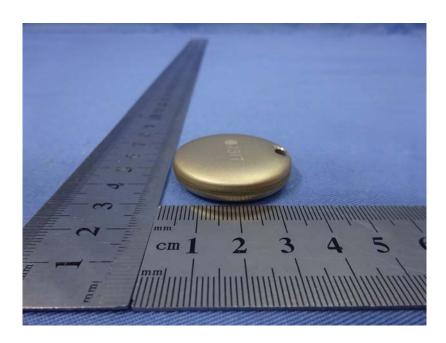

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

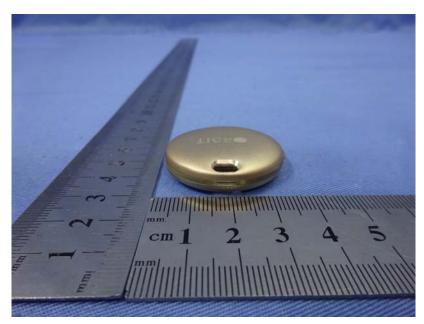

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

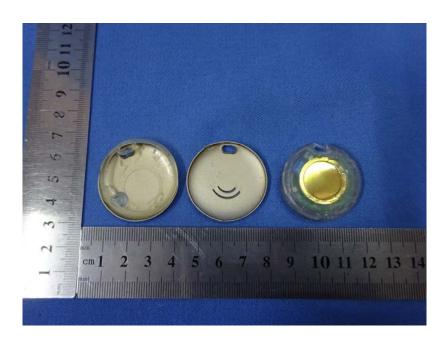
8 Test Setup Photo

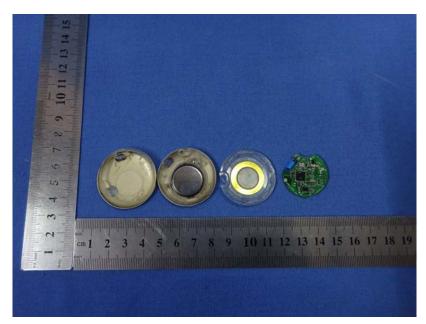
Radiated Emission

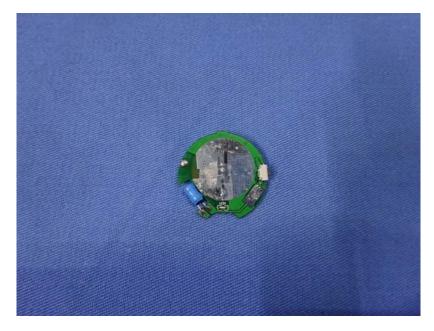

9 EUT Constructional Details











-----End-----