

FCC Part 15 Subpart C Test Report

Product Name : PIQS Virtual Touch Projector Model Name : TT

Prepared for: PIQS Technology(Shenzhen) Limited. West,6F Buiding 1,No.35 CuiJing Road,Pingshan New District,Shenzhen City,Guangdong,China. TEL: / FAX: /

Prepared by: Unilab (Shanghai) Co., Ltd FCC 2.948 register number is 714465 No.1350, Lianxi Rd. Pudong New District, Shanghai, China TEL: +86-21-50275125 FAX: +86-21-50275126

 Report Number
 :
 UL71220170302FCC-2

 Date of Report
 :
 04-19-2017

 Date of Test
 :
 03-03-2017~04-16-2017

Notes :

The test results only relate to these samples which have been tested. Partly using this report will not be admitted unless been allowed by Unilab. Unilab is only responsible for the complete report with the reported stamp of Unilab.

Unilab
Page 2 of 85

Applicant:	PIQS Technology(Shenzhen) Limited. West,6F Buiding 1,No.35 CuiJing Road,Pingshan New District,Shenzhen City,Guangdong,China.
Manufacturer:	PIQS Technology(Shenzhen) Limited. West,6F Buiding 1,No.35 CuiJing Road,Pingshan New District,Shenzhen City,Guangdong,China.
Product Name:	PIQS Virtual Touch Projector
Brand Name:	PIQS
Model Name:	TT
FCC ID:	2ALH2-PFAT100
Serial Number:	N/A
EUT Voltage:	MIN: 16V, NOR: 19V, MAX: 23V
Date of Receipt:	03-02-2017
Date of Test:	03-03-2017~04-16-2017
Test Standard:	FCC CFR Tile 47 Part 15 Subpart C KDB 558074 D01 V04 KDB 662911 DO1 V02R01 KDB 789033 DO2 V01R04
Toot Booulty	DASS

Test Result:

PASS

Prepared by :

(Technical Engineer: Wayne Wu)

Reviewed by :

(Senior Engineer: Forest Cao)

Approved by :

(Supervisor: Eva Wang)

TABLE OF CONTENTS

1.	GENE	RAL INFORMATION		.5
	1.1	EUT DESCRIPTION		.5
	1.2	TEST MODE		.6
2.	TEST	METHODOLOGY		.6
	2.1	EUT CONFIGURATION		.6
	2.2	EUT EXERCISE		.6
	2.3	GENERAL TEST PROCEDURES		.6
	2.4	FCC PART 15.205 RESTRICTED BANDS OF OPERA		
	2.5	Restricted Frequency Bands of RSS-GEN	错误!未定义书签	0
	2.6	DESCRIPTION OF TEST MODES		
3.		NIACL SUMMARY		
•	3.1	SUMMARY OF STANDARDS AND TEST RESULTS		.8
	3.2	TEST UNCERTAINTY		
	3.3	TEST EQUIPMENT LIST		
	3.4	SUPPORT EQUIPMENT		
	3.5	TEST FACILITY		
	3.6	TEST SETUP CONFIGURATION		
4.		NEL SEPARATION		-
	4.1	TEST SETUP		
	4.2	LIMITS		
	4.3	TEST PROCEDURE		
	4.4	TEST RESULT		
5.		IUM HOPPING CHANNELS		
0.	5.1	TEST SETUP		
	5.2	LIMITS		
	5.3	TEST PROCEDURE		-
	5.4	TEST RESULT		-
6.		PIED BANDWIDTH		
0.	6.1			-
	6.2	LIMITS		-
	6.3	TEST PROCEDURE		
	6.4	TEST RESULTS		
7.				
1.	7.1			
	7.1	LIMITS		
	7.2	TEST PROCEDURE		
		TEST RESULTS		
8.		OUTPUT POWER (CONDUCTION)		
0.	8.1	TEST SETUP		
	8.2	LIMITS		
	8.3	TEST PROCEDURE		
	8.4	RESULTS & PERFORMANCE		20
9.		IOUS EMISSIONS (CONDUCTION)		
J.	9.1	TEST SETUP		
	9.1 9.2	LIMITS		
	9.2 9.3	TEST PROCEDURE		
	9.3 9.4	RESULTS & PERFORMANCE		
	3.4			32

10.	BAND) EDGE MEASUREMENT	41
	10.1	TEST SETUP	41
	10.2	LIMITS	41
	10.3	TEST PROCEDURE	41
	10.4	RESULTS & PERFORMANCE	42
	GFSK	(CH0	55
	GFSK	(CH78	55
11.	SPUF	RIOUS EMISSIONS (RADIATION)	61
		TEST SETUP	
	11.2	LIMITS	62
	11.3	TEST PROCEDURE	62
		RESULTS & PERFORMANCE	
12.	AC P	OWER LINE CONDUCTED EMISSIONS	75
	12.1	TEST SETUP	
	12.2	LIMITS	75
	12.3	TEST PROCEDURE	
	12.4	RESULTS & PERFORMANCE	75
APPE			
APPE		2 PHOTOGRAPHS OF EUT	

Unil@b Page 4 of 85

1. GENERAL INFORMATION

1.1 EUT DESCRIPTION

Product Name:	PIQS Virtual Touch Projector	
Model Name:	ТТ	
Hardware Version:	M3_T826_ARM_V3	
Software Version:	TTCN20170224V001	
RF Exposure Environment:	Uncontrolled	
BT 3.0		
Frequency Range:	2402MHz~2480MHz	
Carrier Frequency of Each Channel	2402+N*1MHz(N=0~78)	
Type of Modulation:	GFSK, π/4-DQPSK, 8-DPSK	
Channel Separation:	1MHz	
Channel Number:	79	
Antenna Type:	Internal	
Antenna Peak Gain:	2dBi	
Component		
AC Adapter:	Input: AC 100-240V 50/60Hz 1.5A	
	Output: DC 19V 3.42A	

1.2 TEST MODE

Unilab has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode
Mode 1: GFSK CH0
Mode 2: GFSK CH39
Mode 3: GFSK CH78
Mode 4: 8-DPSK CH0
Mode 5: 8-DPSK CH39
Mode 6: 8-DPSK CH78
Mode 7: П/4-DQPSK CH0
Mode 8: П/4-DQPSK CH39
Mode 9: П/4-DQPSK CH78

Note:

1. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

2. For radiated emission test, every axis (X, Y, Z) was verified, and show the worst result on this report.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application

2.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4: 2014 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m

away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.4 of ANSI C63.4: 2014.

2.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

2.5 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

After verification, all tests were carried out with the worst case test modes as shown below GFSK(1Mbps), Π /4-DQPSK (2Mbps)and 8-DPSK(3 Mbps) Channel Low (2402MHz),Mid (2441MHz) and High (2480MHz), these were chosen for full testing.

3. TECHNIACL SUMMARY

3.1 SUMMARY OF STANDARDS AND TEST RESULTS

The EUT have been tested according to the applicable standards as referenced below:

Test Item	FCC	Result
Channel Separation	§15.247 (a)	Р
Minimum Hopping Channel	§15.247 (a)	Р
Occupied Bandwidth	§15.247 (a)	Р
Dwell Time	§15.247 (a)	Р
Peak Output Power (Conduction)	§15.247 (b)	Р
Unwanted Emissions (Conduction)	§15.247 (d)	Р
Band edge measurement	§15.247 (d)	Р
Unwanted Emissions (Radiation)	§15.247 (d) §15.35 (b) §15.209 (a)	Ρ
AC Power Line Conducted Emissions	§15.207 (a)	Р

Note: P means pass, F means failure, N/A means not applicable

3.2 TEST UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted disturbance	3.4
Radiated disturbance	4.2
Conducted RF Measurement	1.1

3.3 TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	Serial No.	Due Date		
Receiver	Agilent	N9038A	MY51210142	11/10/2017		
Wireless Connectivity Test Set	Agilent	N4010A	MY49080305	10/22/2017		
Loop Antenna	Schwarzbeck	FMZB1519	1519-020	03/24/2018		
LISN	R&S	ENV216	100069	08/21/2017		
3m Chamber & Accessory Equipment	ETS-LINDGREN	FACT-3	CT-0000336	11/26/2017		
Microwave Preamplifier	EM Electronics	EM30180	3008A02425	02/25/2018		

Power Splitter	Agilent	11667C/ 52401	MY53806148	02/25/2018
Bilog Antenna	Schwarzbeck	VULB9160	9160-3316	09/18/2017
VHF-UHF-Biconical Antenna	Schwarzbeck	VUBA9117	9117-263	09/18/2017
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-942	09/18/2017
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-943	09/18/2017
Horn Antenna(18-40GHz)	ETS	3116	00070497	07/17/2017.

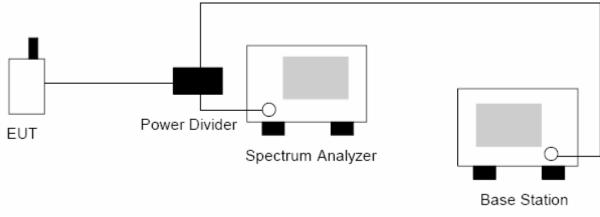
The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and has been calibrated by accredited calibration laboratories.

3.4 SUPPORT EQUIPMENT

Equipment	Manufacturer	Model	Serial No.	Due Date
Signal Generator	Agilent	N4010A	MY50140938	10/22/2017

3.5 TEST FACILITY

All test facilities used to collect the test data are located at Shanghai Institute of Measurement and Testing Technology EMC Lab., Shanghai, China.


The site and apparatus are constructed in conformance with the requirements of ANSI C63.4: 2014, CISPR 16-1-1 and other equivalent standards. The laboratory is compliance with the requirements of the ISO/IEC/E 17025.

3.6 TEST SETUP CONFIGURATION

The information contained within this report is intended to show verification of compliance of the EUT to the requirements of CFR 47 FCC Part 15.247. Unilab has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report.

4. CHANNEL SEPARATION

4.1 TEST SETUP

4.2 LIMITS

	Limits	\geqslant 25 kHz or 20 dB bandwidth of hopping channel
--	--------	--

4.3 TEST PROCEDURE

The EUT have its hopping function enabled. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) \geq 1% of the span

Video (or Average) Bandwidth (VBW) \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

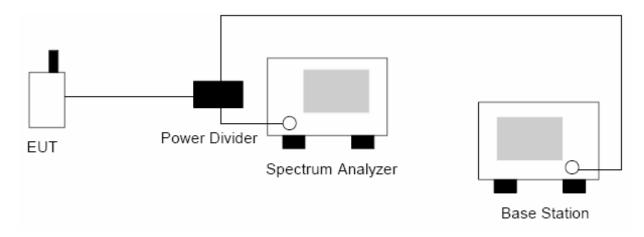
4.4 TEST RESULT

GFSK

Channel Separation: 1.000MHz

∏**/4-DQPSK**

Channel Separation: 1.000MHz


8-DPSK

Channel Separation: 1.000MHz

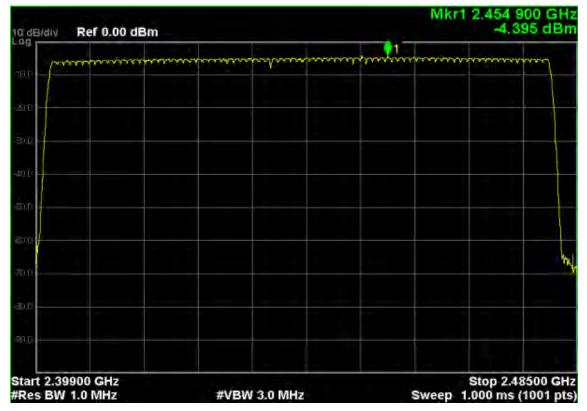
5. MINIMUM HOPPING CHANNELS

5.1 TEST SETUP

5.2 LIMITS

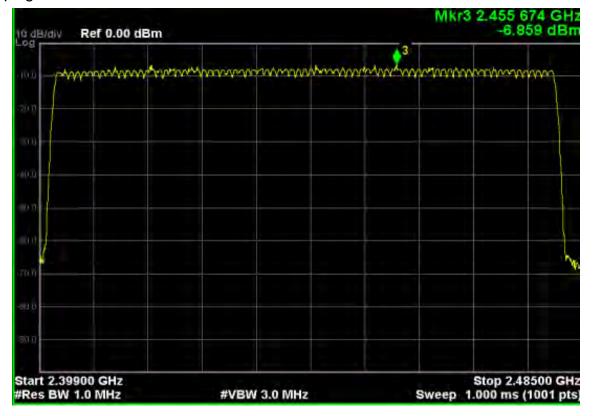
Limits	≥15 Channels
--------	--------------

5.3 TEST PROCEDURE

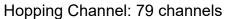

The EUT have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. It may prove neces

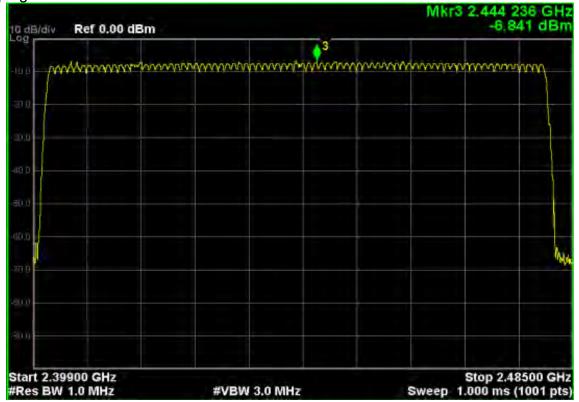
Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

5.4 TEST RESULT

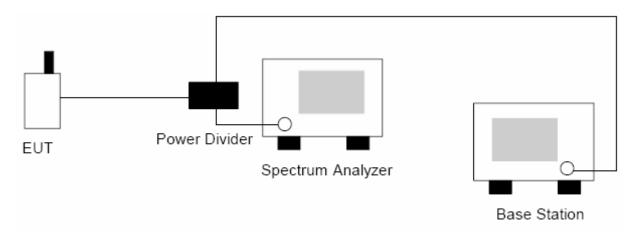

GFSK

Hopping Channel: 79 channels




∏**/4-DQPSK**

Hopping Channel: 79 channels



6. OCCUPIED BANDWIDTH

6.1 TEST SETUP

6.2 LIMITS

Limits	≥25 kHz or 2 to 3 times the 20 dB bandwidth
--------	---

6.3 TEST PROCEDURE

Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to spectrum analyzer. The loss between RF output port of the EUT and the input port of the tester will be taken into consideration.

The measurement will be conducted at three channels.

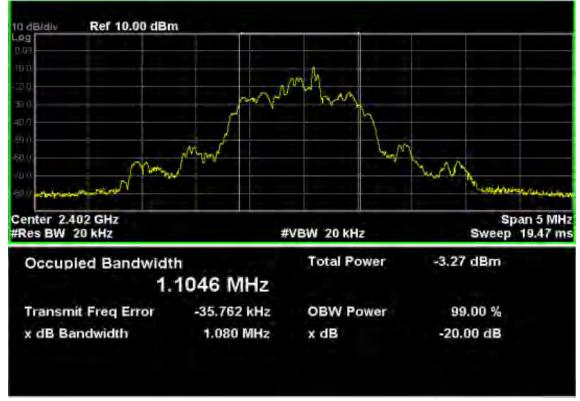
Bluetooth: Low(0), Middle(39) and High (78).

Using occupied BW measurement function of spectrum analyzer and settings are: XdB = -20dB RBW =20KHz VBW ≥RBW Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a channel Sweep = auto Detector function = peak Trace = max hold

6.4 TEST RESULTS

Channel	20dB bandwidth (MHz)	99% bandwidth (MHz)
GFSK		
BT CH0	1.019	0.941
BT CH39	1.019	0.940
BT CH79	1.019	0.941
П/4-DQPSK		
BT CH0	1.080	1.105
BT CH39	1.082	1.106
BT CH79	1.082	1.105
8-DPSK		
BT CH0	1.077	1.060
BT CH39	1.078	1.061
BT CH79	1.074	1.054

GFSK

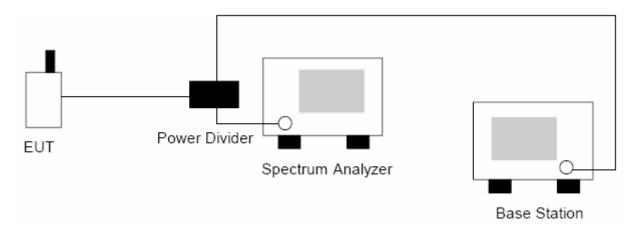

Bluetooth Channel 39

∏**/4-DQPSK**

Bluetooth Channel 0

Bluetooth Channel 78

8-DPSK Bluetooth Channel 0



7. DWELL TIME

7.1 TEST SETUP

7.2 LIMITS

Limits <400.00ms

7.3 TEST PROCEDURE

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

 $RBW \leq Channel Separation$

 $VBW \ge RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

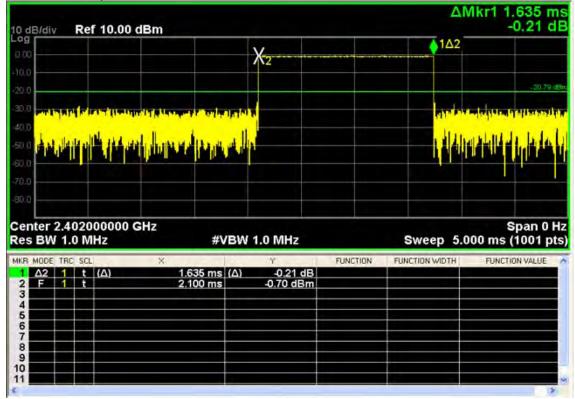
7.4 TEST RESULTS

			GFSK	
Packet	Ν	x(ms)	Calculation formula	Result(T)(ms)
DH1	2	0.382	$T = \frac{1600}{79 \times N} \times x \times (0.4 \times 79) = \frac{1600}{79 \times N} \times x \times 31.6$	122.24
DH3	4	1.635	DH1, N=2;	260.8
DH5	6	2.875	DH3, N=4; DH5, N=6	306.7

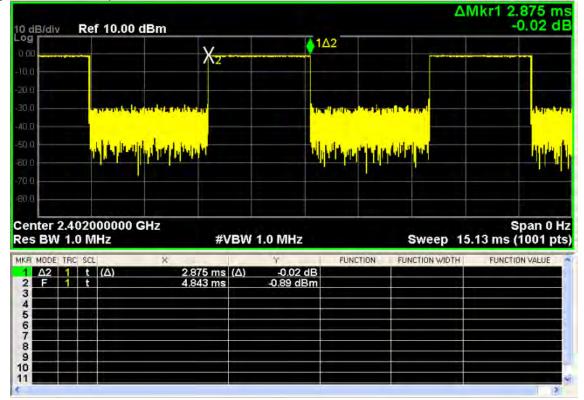
∏**/4-DQPSK**

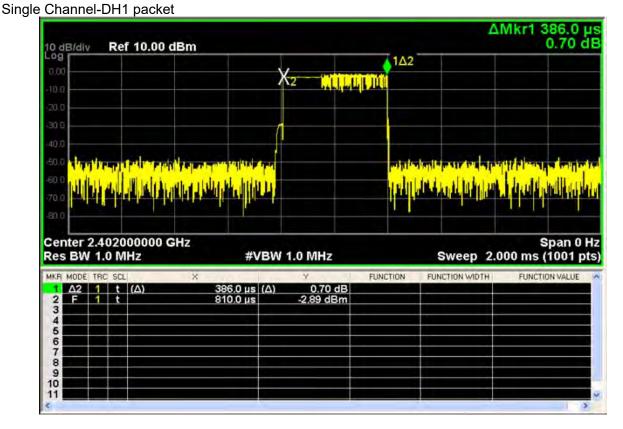
Packet	N	x(ms)	Calculation formula	Result(T)(ms)
DH1	2	0.386	$T = \frac{1600}{79 \times N} \times x \times (0.4 \times 79) = \frac{1600}{79 \times N} \times x \times 31.6$	123.5
DH3	4	1.640	DH1, N=2;	262.4
DH5	6	2.890	DH3, N=4; DH5, N=6	308.3

8-DPSK


Packet	Ν	x(ms)	Calculation formula	Result(T)(ms)
DH1	2	0.388	$T = \frac{1600}{79 \times N} \times x \times (0.4 \times 79) = \frac{1600}{79 \times N} \times x \times 31.6$	124.2
DH3	4	1.640	DH1, N=2;	262.4
DH5	6	2.890	DH3, N=4; DH5, N=6	308.3

GFSK


Single Channel-DH1 packet


Single Channel-DH3 packet

Single Channel-DH5 packet

Π /4-DQPSK

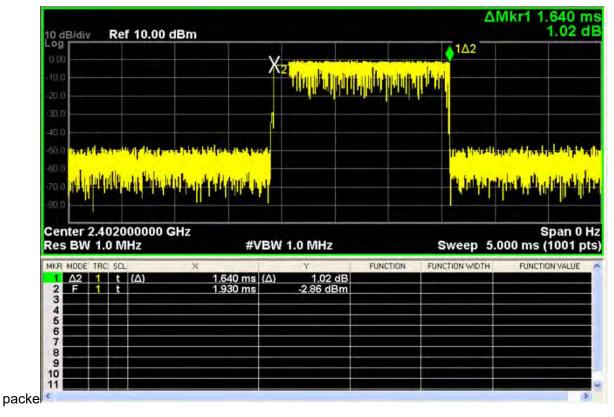
Single Channel-DH3 packet

0 dB/d	liv	Ref	10.00 d	IBm					Δι	Vikr1 1.640 ms 1.10 dE
0.00					,			1 ∆2		
10.0					2	and l	Land and a party			
0.0		_								
1.0				- 1	_					
0.0										
00 F	ill'pail	suti	H ipsheisth	a billion				in all the	trada frantise a latera de tarra	all any block of the shirt of
0.0 0.0 <mark>.</mark> 11	14a		AND AL	titutli.				Just	Allel a Laborer Di Han	ell, Jadden a stude the
3.0	1.44		1						and a distribution	
	r 2.40 W 1.0		00000 G	Hz	#\	/BW	1.0 MHz		Sweep 5.0	Span 0 H 000 ms (1001 pts
E MOD	E TRC	SCL		×			Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
at more		+	(Δ)		1.640 ms	(Δ)	1.10 dB			
Δ2	1	t			1.270 ms		-2.87 dBm			
1 Δ2 2 F 3		_					-2.87 dBm			
1 Δ2 2 F 3 4		_					-2.87 dBm			
1 Δ2 2 F 3 4 5 6 7		_					-2.87 dBm			
1 Δ2 2 F 3 4 5 6		_					-2.87 dBm			

Single Channel-DH5 packet

10 dB/div R	ef 10.00 (dBm					ΔN	1.39 1.39	ms dB
							1Δ2		
-10.0	X2 <mark>,1</mark> ,	and the second second		<mark>unal de la c</mark> ela	a surface of a	HILLING CONTRACTOR			
-20.0									
-30.0									
-5010 Minuted Item							Hittabard A	la harate Washington Ha	ци,
-50.0 -70.0	-						a Aspenso	<mark>inali ((11)) panj (la</mark>	ъq.
Center 2.402 Res BW 1.0			#VBW	1.0 MHz		SI	weep 5.0	Span 0 00 ms (1001	Hz pts)
MKR MODE TRC S		×	I.	Ŷ	FUNCTI	ON FUNC	ION WIDTH	FUNCTION VALUE	~
1 Δ2 1 2 F 1 1 3	(Δ)	2.890 r 710.0	ns (∆) µs	1.39 dE -3.69 dBm					
4									
67									
8 9 10									
11									1

Unilab(Shanghai) Co.,Ltd. Report No. : UL71220170302FCC -2

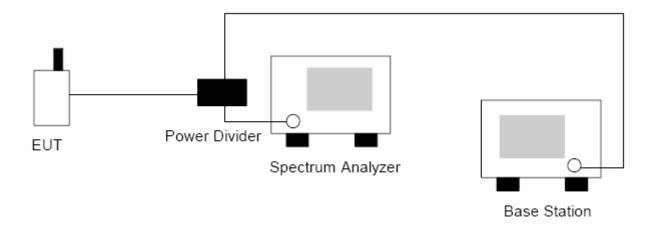

Unil@b Page 27 of 85

8-DPSK

Single Channel-DH1 packet

	B/div	/	Re	f 10.00 c	lBm								ΔMI	(r1 3	88.0 µ 0.69 d
-0g	η							Х <u>2</u>		r hir hi		1Δ2			
30 0 -40 0 -50 0 -50 0															
Res		/ 1.0	0 M		Hz	#VI	BW 1	.0 MHz		FUNC	TION	-	_	ms (pan 0 F 1001 pt
12345678	A2 F			(Δ)	36	38.0 µs (00.0 µs	Δ)	0.69 -2.81 di	dB 3m	TONC				FUNCTION	AN TALUE
9 10 11															5

Single Channel-DH3



Single Channel-DH5 packet

odB/div Ref	f 10.00 dBm						Mkr1 2.890 m 1.02 dl
00							↓ 1∆2
	X						
0,0							
).Q					1.11		
),0,							
1.0							
	side of some bad						AL INT AD IN THE
	a set of particular set						at one the Dorbert
¹⁰ un annal.	e to the history						And the Industry
a kenter a	La						
0,0							
							Span 0 H
		223	IDWA 4 A BALL-			E. C.	AAA men land whe
		#\	/BW 1.0 MHz	z		Sweep 5	.000 ms (1001 pts
R MODE TRC SCL	Hz		Ϋ́	FUNC		Sweep 5.	000 ms (1001 pts
ES BW 1.0 M	Hz	2.890 ms	γ (Δ) 1.02	FUNC 2 dB			.000 ms (1001 pt
R MODE TRC SCL A2 1 t F 1 t	Hz		Ϋ́	FUNC 2 dB			.000 ms (1001 pts
es BW 1.0 M R MODE TRC SCL Δ2 1 t F 1 t	Hz	2.890 ms	γ (Δ) 1.02	FUNC 2 dB			.000 ms (1001 pts
ES BW 1.0 M	Hz	2.890 ms	γ (Δ) 1.02	FUNC 2 dB			.000 ms (1001 pts
A MODE TRC SCL	Hz	2.890 ms	γ (Δ) 1.02	FUNC 2 dB			.000 ms (1001 pts
ES BW 1.0 M R MODE TRC SCL A2 1 t F 1 t B A A B B B	Hz	2.890 ms	γ (Δ) 1.02	FUNC 2 dB			.000 ms (1001 pts
Center 2.4020 Res BW 1.0 M IKR MODE TRC SCL 1 Δ2 1 t 2 F 1 t 3 4 5 6 6 7 8 9 9 9	Hz	2.890 ms	γ (Δ) 1.02	FUNC 2 dB			.000 ms (1001 p

8. PEAK OUTPUT POWER (CONDUCTION)

8.1 TEST SETUP

8.2 LIMITS

The maximum peak output power of the intentional radiator shall not exceed the following:

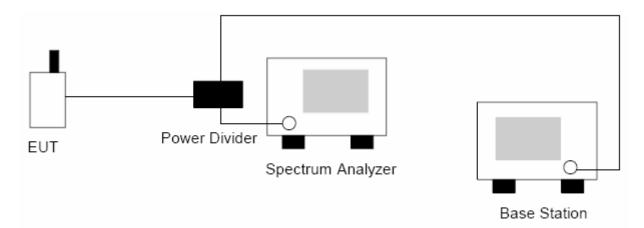
- 1. According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 3. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.3 TEST PROCEDURE

After a radio link has been established between EUT and Base station, using spectrum analyzer to measure the output power of the cell signal of the EUT, and record the max. The loss between RF output port of the EUT and the input port of the tester will be taken into consideration.

The measurement will be conducted at three channels:

Bluetooth: Low(0), middle(39) and High (78),


Set the spectrum analyzer as RBW = 3MHz, VBW = 3MHz, Span = 10MHz, Sweep = auto Detector = Peak, Trace mode = max hold

8.4 RESULTS & PERFORMANCE

GFSK					
Channel	Peak power (dBm)	Peak power (mW)	Limit (mW)	Result	
0 (2402MHz)	9.7	9.33	125	Pass	
39 (2441MHz)	9.5	8.91		Pass	
78 (2480MHz)	9.8	9.55		Pass	
		∏ /4-DQPSK			
Channel	Peak power (dBm)	Peak power (mW)	Limit (mW)	Result	
0 (2402MHz)	5.3	3.39	125	Pass	
39 (2441MHz)	5.1	3.24		Pass	
78 (2480MHz)	5.3	3.39		Pass	
		8-DPSK			
Channel	Peak power (dBm)	Peak power (mW)	Limit (mW)	Result	
0 (2402MHz)	2.5	1.78	125	Pass	
39 (2441MHz)	2.3	1.70		Pass	
78 (2480MHz)	2.4	1.74		Pass	

9. SPURIOUS EMISSIONS (CONDUCTION)

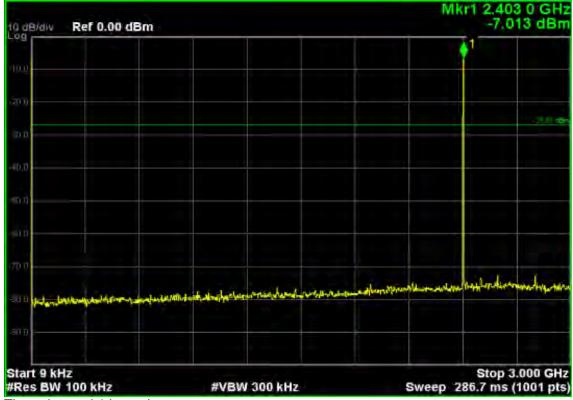
9.1 TEST SETUP

9.2 LIMITS

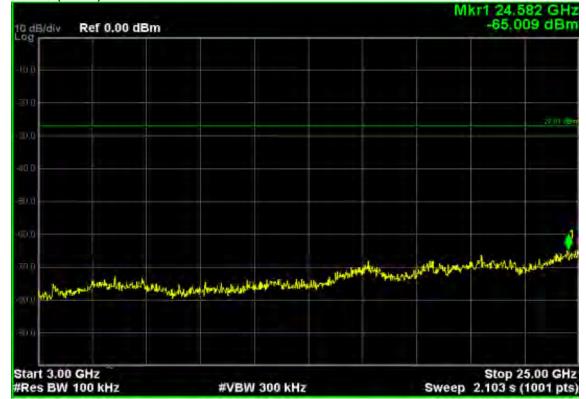
Limit	<(P-20dB)	
Note: P is the highest level of the desired power		

9.3 TEST PROCEDURE

The EUT was connected to Spectrum Analyzer and Base Station via power divider. Use the following spectrum analyzer settings:

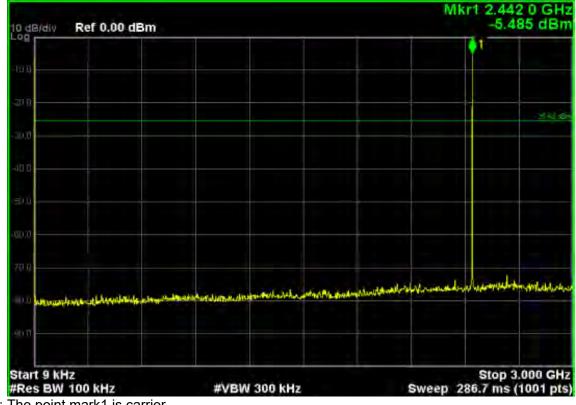

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz; VBW=300 kHz; Sweep = auto; Detector function = peak; Trace = max hold Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

Unil@b Page 32 of 85

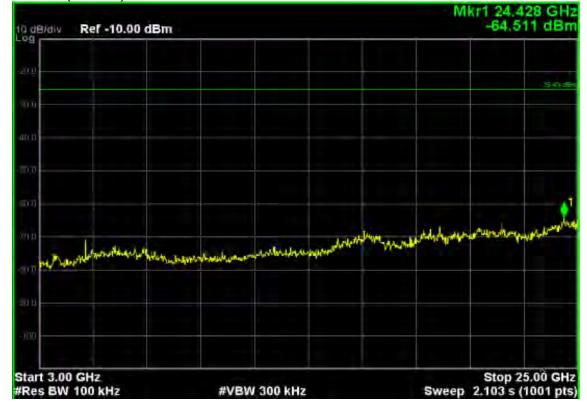

9.4 RESULTS & PERFORMANCE

Bluetooth traffic mode GFSK

Channel 0; (9 kHz~3GHz)

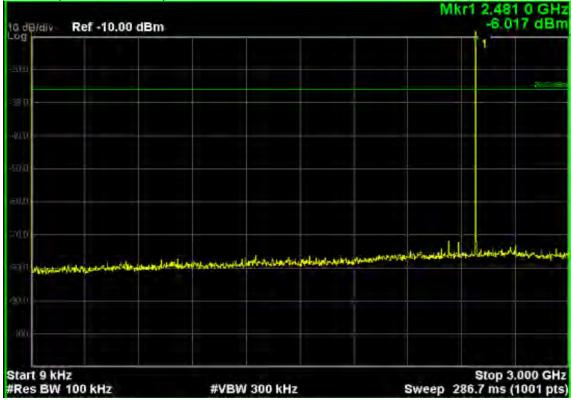


Note: The point mark1 is carrier.



Channel 0; (3~25) GHz

Channel 39; (9 kHz~3.0GHz)

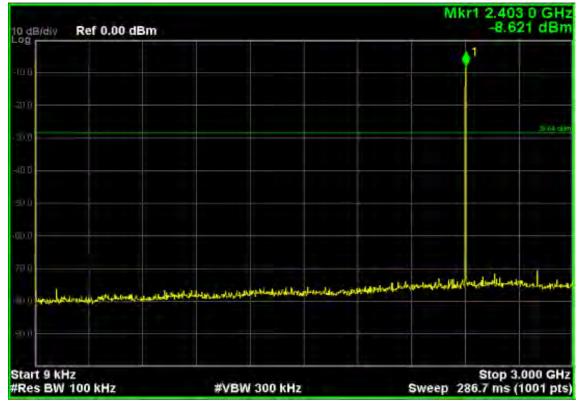


Note: The point mark1 is carrier.

Chan<u>nel 39; (3.0~25) G</u>Hz

Channel 78; (9kHz~3.0GHz)

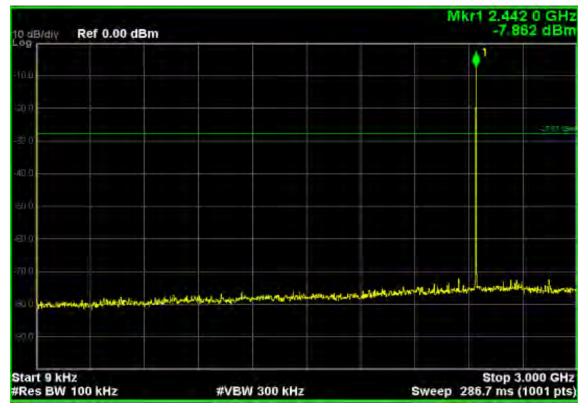
Note: The point mark1 is carrier.


Channel 78; (3.0~25) GHz

Unil@b Page 35 of 85

Bluetooth; traffic mode; Π /4-DQPSK

Channel 0 (9 kHz~3.0GHz)



Note: The point mark1 is carrier.

Channel 0 (3GHz~25GHz)

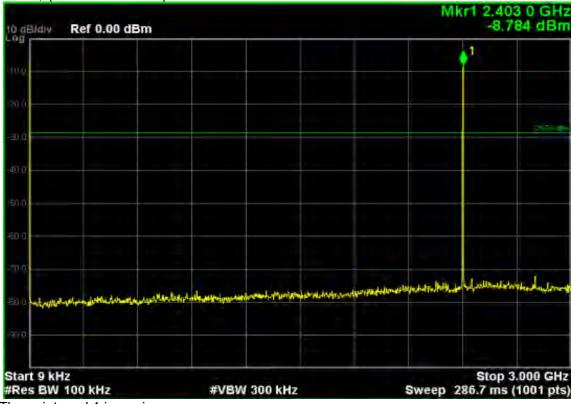
Channel 39 (9 kHz~3.0GHz)

Note: The point mark1 is carrier.

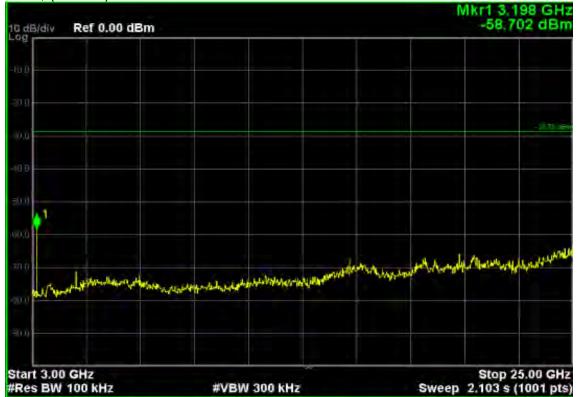
Channel 39 (3.0GHz ~25GHz)

Channel 78 (9 kHz~3.0GHz)

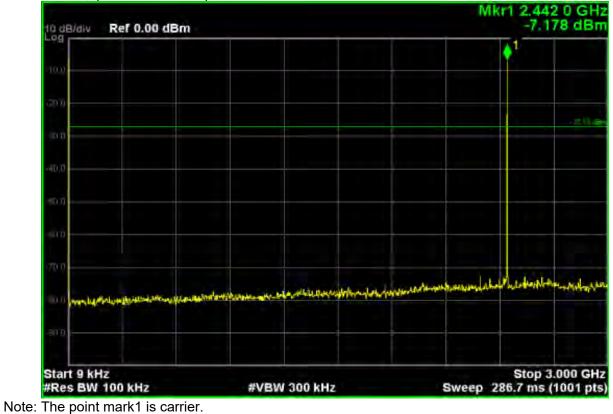
Note: The point mark1 is carrier.


Channel 78 (3.0GHz ~25GHz)

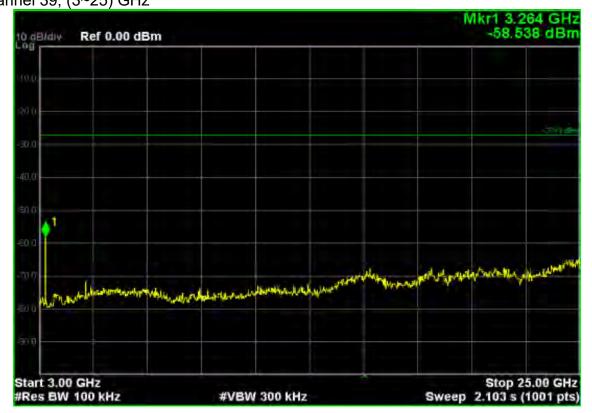
Unil@b Page 38 of 85

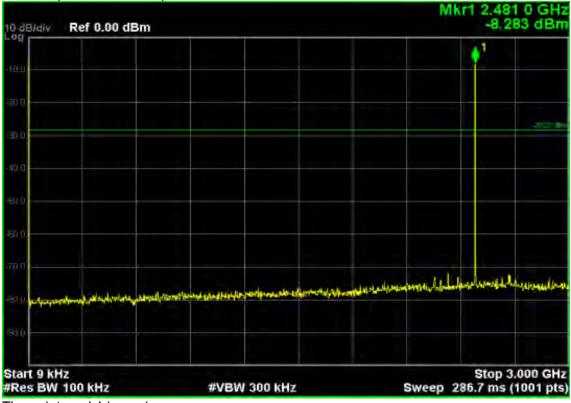

Bluetooth traffic mode 8-DPSK

Channel 0; (9 kHz~3.0 GHz)

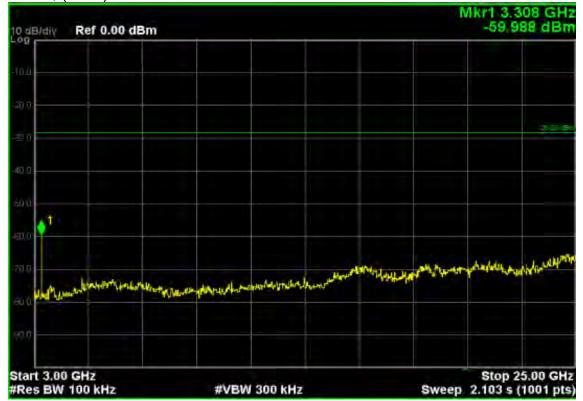


Note: The point mark1 is carrier.

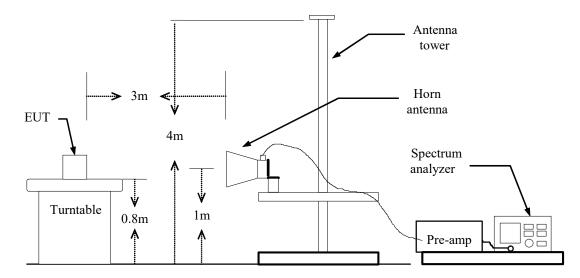

Chan<u>nel 0; (3.0~25) GHz</u>


Channel 39; (9kHz~3.0 GHz)

Channel 39; (3~25) GHz



Channel 78; (9kHz~3.0GHz)


Note: The point mark1 is carrier.

Channel 78; (3~25) GHz

10. BAND EDGE MEASUREMENT

10.1 TEST SETUP

10.2 LIMITS

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

10.3 TEST PROCEDURE

The EUT is placed on a turntable, which is 0.8m above the ground plane.

The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

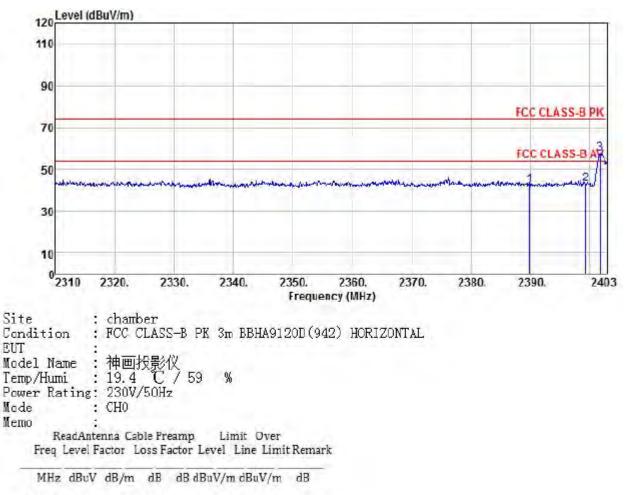
EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

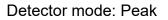
PEAK: RBW=VBW=1MHz / Sweep=AUTO

AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

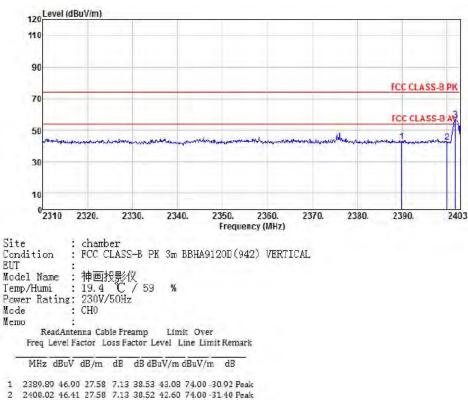
Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


10.4 RESULTS & PERFORMANCE

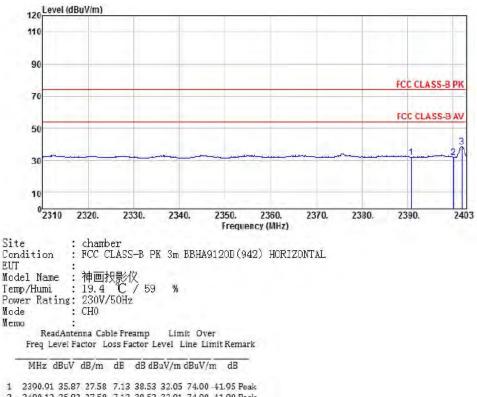
Radiated Band Edge:


BT GFSK (Low Channel)

Detector mode: Peak

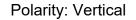

Polarity: Horizontal

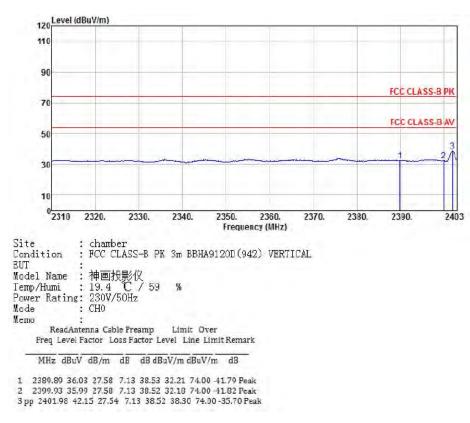
1 2389.89 46.40 27.58 7.13 38.53 42.58 74.00 -31.42 Peak 2 2399.37 46.87 27.58 7.13 38.52 43.06 74.00 -30.94 Peak 3 pp 2401.79 61.29 27.58 7.13 38.52 57.48 74.00 -16.52 Peak


Polarity: Vertical

3 pp 2401.88 60.40 27.54 7.13 38.52 56.55 74.00 -17.45 Peak

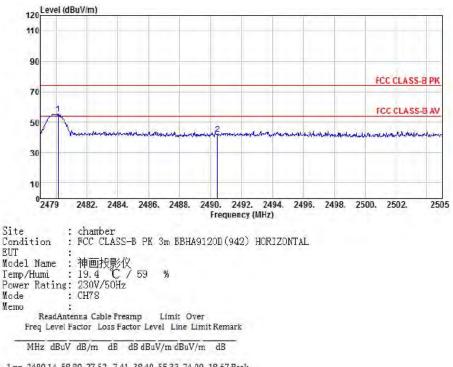
Detector mode: Average


Polarity: Horizontal



2 2400.12 35.82 27.58 7.13 38.52 32.01 74.00 41.99 Peak 3 pp 2401.98 42.45 27.54 7.13 38.52 38.60 74.00 -35.40 Peak

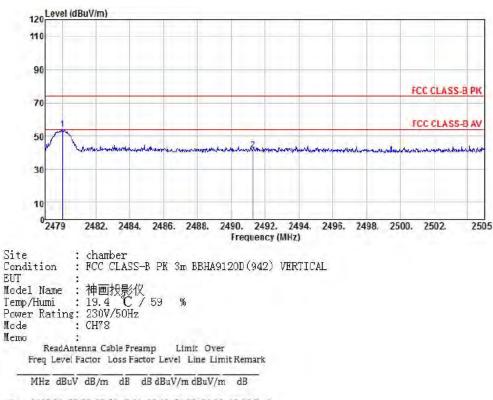
Detector mode: Average



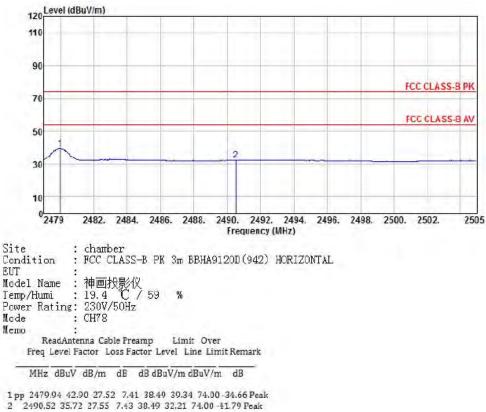
BT GFSK (High Channel)

Detector mode: Peak

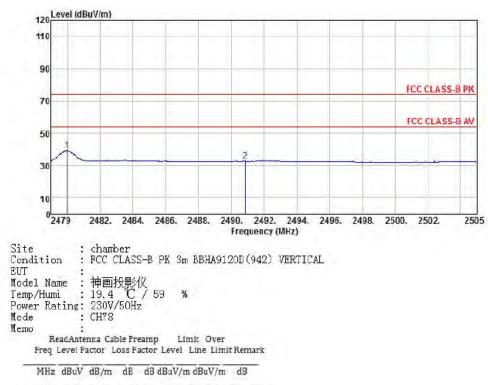
Polarity: Horizontal


1 pp 2480.14 58.89 27.52 7.41 38.49 55.33 74.00 -18.67 Peak 2 2490.44 45.39 27.55 7.42 29.40 44 55.33 74.00 -18.67 Peak

Detector mode: Peak


Polarity: Vertical

1 pp 2480.01 57.58 27.52 7.41 38.49 54.02 74.00 -19.98 Peak 2 2491.27 45.23 27.55 7.43 38.49 41.72 74.00 -32.28 Peak

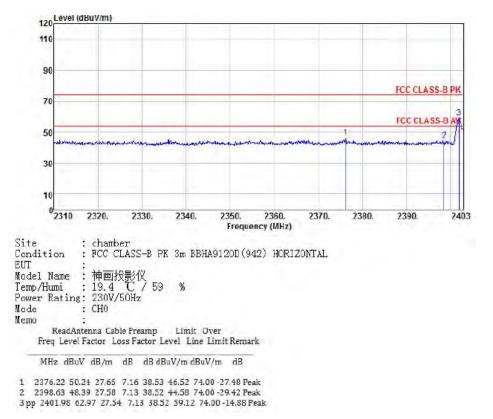

Detector mode: Average

Polarity: Horizontal

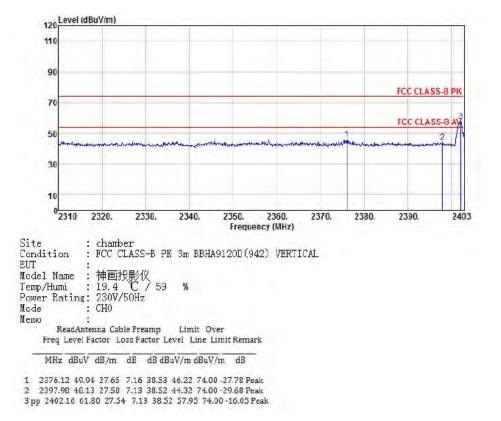
Detector mode: Average

Polarity: Vertical

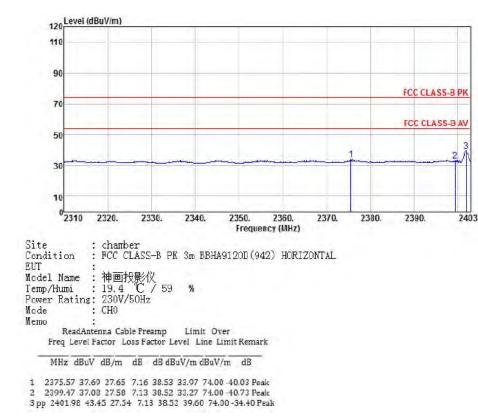
1 pp 2479.94 42.96 27.52 7.41 38.49 39.40 74.00 -34.60 Peak 2 2490.86 36.06 27.55 7.43 38.49 32.55 74.00 -41.45 Peak



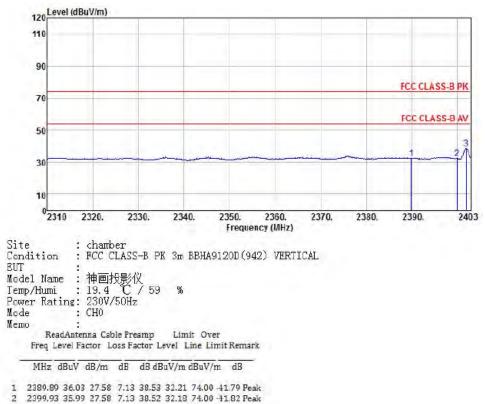
BT II/4-DQPSK (Low Channel)


Detector mode: Peak

Polarity: Horizontal


Detector mode: Peak

Polarity: Vertical

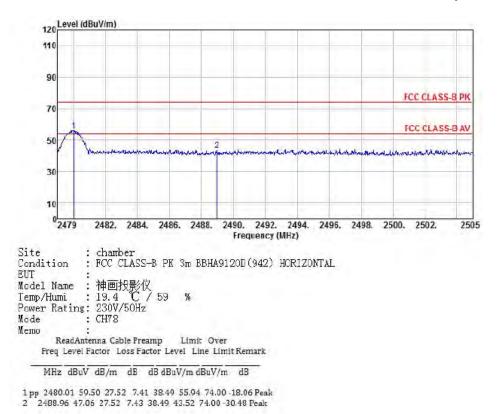

Detector mode: Average

Polarity: Horizontal

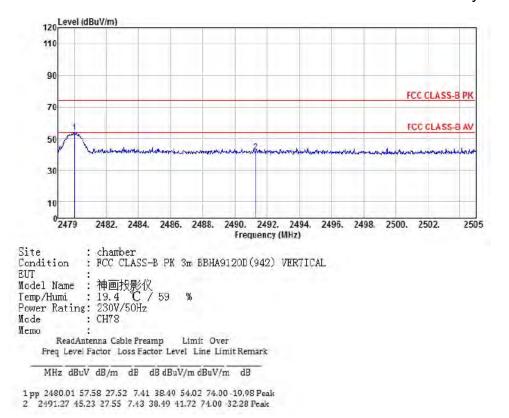
Detector mode: Average

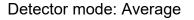
Polarity: Vertical

3 pp 2401.98 42.15 27.54 7.13 38.52 38.30 74.00 - 35.70 Peak

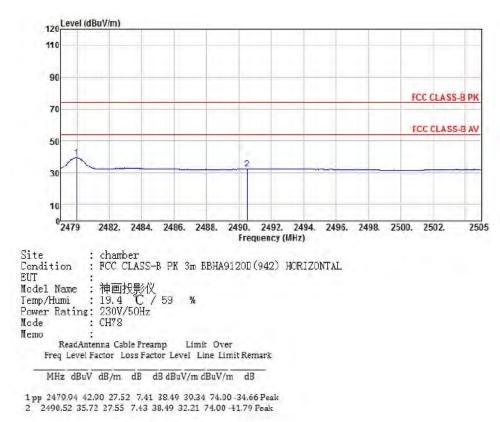


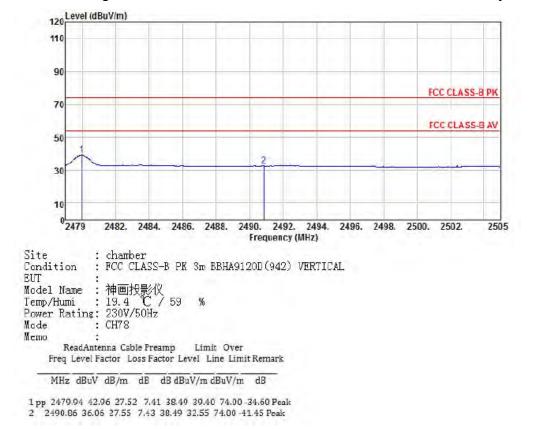
BT II/4-DQPSK (High Channel)


Detector mode: Peak


Polarity: Horizontal

Detector mode: Peak

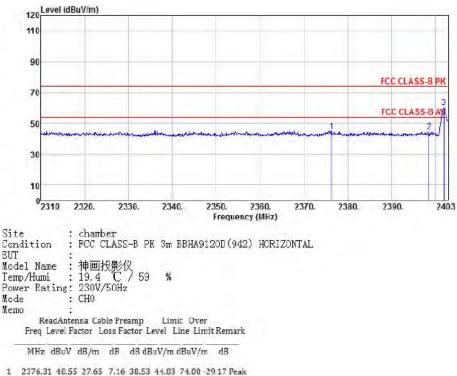

Polarity: Vertical



Polarity: Horizontal

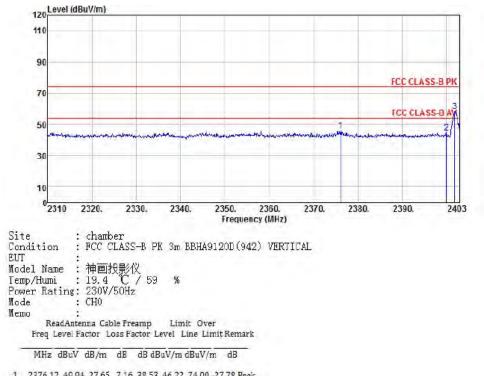
Detector mode: Average

Polarity: Vertical



BT 8-DPSK (Low Channel)

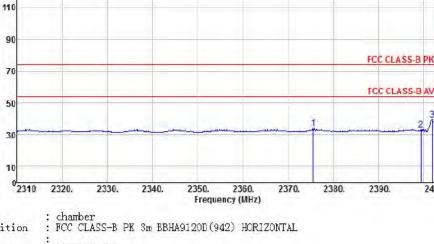
Detector mode: Peak


Polarity: Horizontal

1 2376.31 48.55 27.65 7.16 38.53 44.83 74.00 -29.17 Peak 2 2398.63 48.39 27.58 7.13 38.52 44.58 74.00 -29.42 Peak 3 pp 2401.98 63.97 27.54 7.13 38.52 60.12 74.00 -13.88 Peak

Detector mode: Peak

Polarity: Vertical

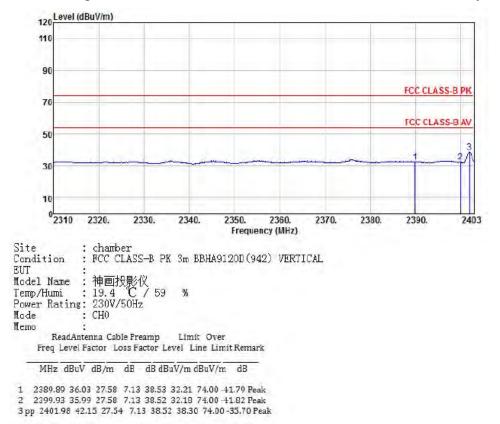

1 2376.12 49.94 27.65 7.16 38.53 46.22 74.00 -27.78 Peak 2 2400.02 48.41 27.58 7.13 38.52 44.60 74.00 -29.40 Peak 3 pp 2401.88 62.40 27.54 7.13 38.52 58.55 74.00 -15.45 Peak

10

120 Level (dBuV/m)

Detector mode: Average

Polarity: Horizontal

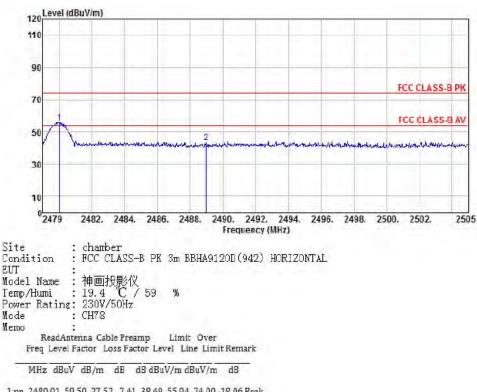


1 2375.57 37.69 27.65 7.16 38.53 33.97 74.00 40.03 Peak 2 2399.47 37.08 27.58 7.13 38.52 33.27 74.00 40.73 Peak 3 pp 2401.98 43.45 27.54 7.13 38.52 39.60 74.00 -34.40 Peak

Detector mode: Average

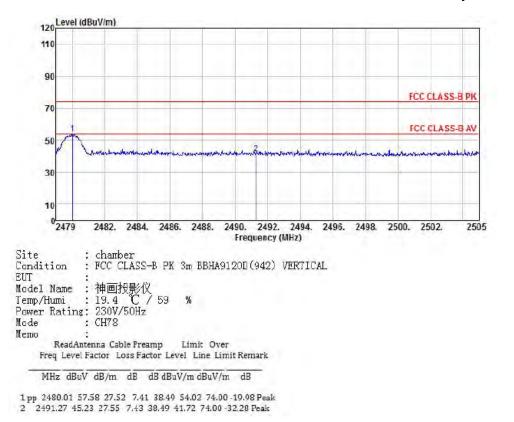
Polarity: Vertical

2403

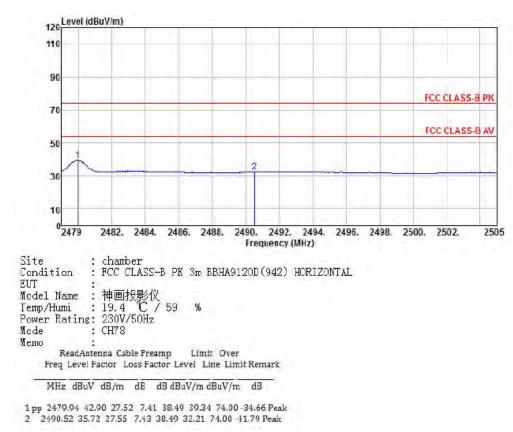


BT 8-DPSK (High Channel)

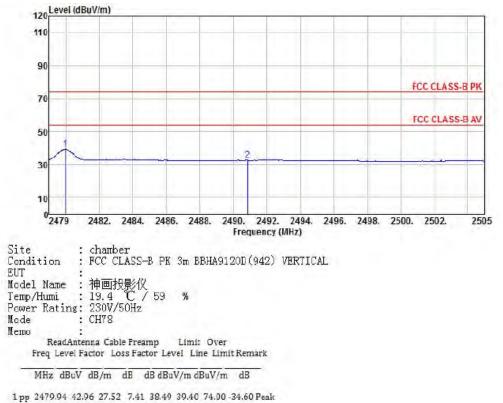
Detector mode: Peak


Polarity: Horizontal

1 pp 2480.01 59.50 27.52 7.41 38.49 55.94 74.00 -18.06 Peak 2 2488.96 47.06 27.52 7.43 38.49 43.52 74.00 -30.48 Peak

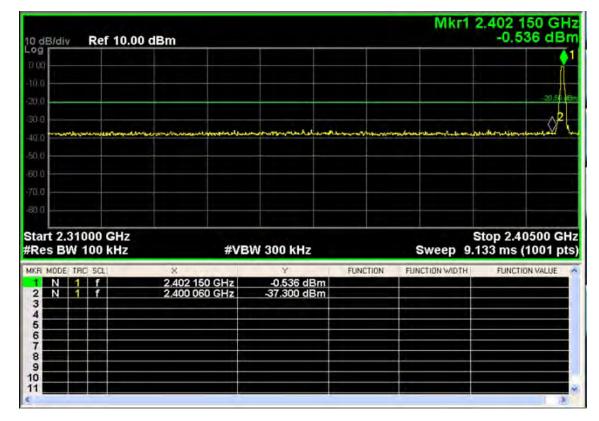

Detector mode: Peak

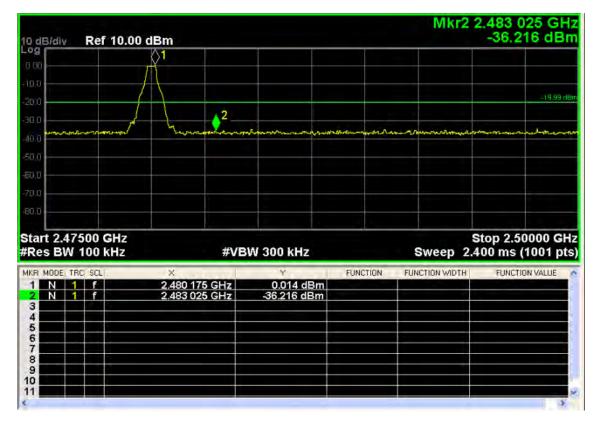
Polarity: Vertical

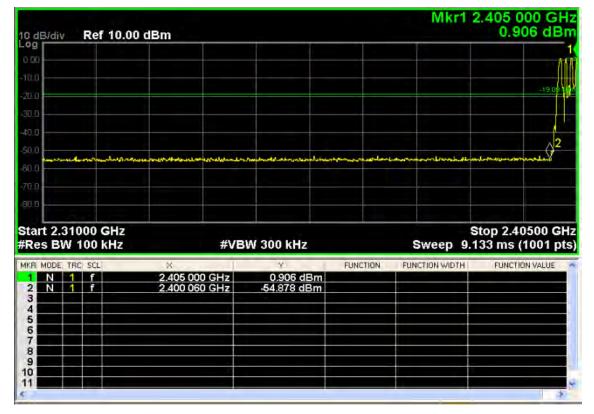

Detector mode: Average

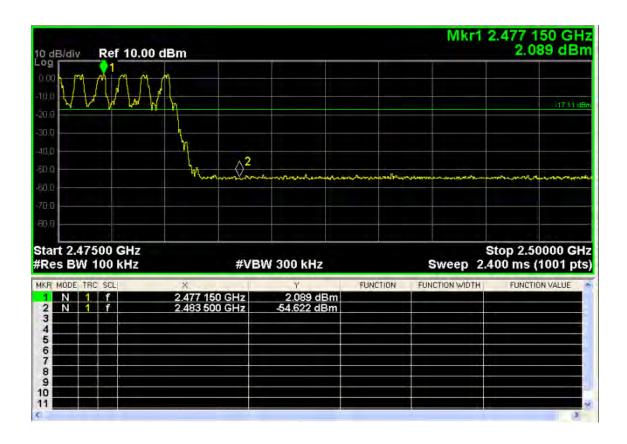
Polarity: Horizontal

Detector mode: Average

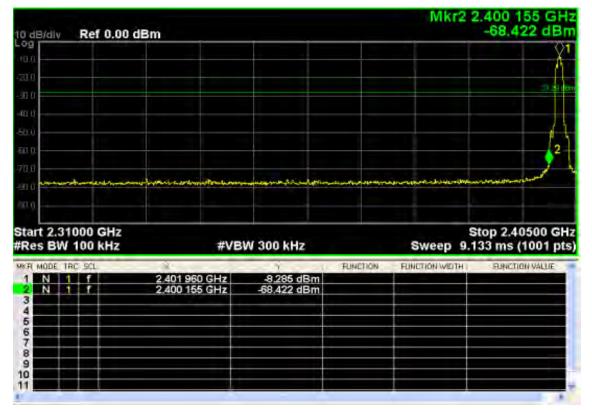

Polarity: Vertical

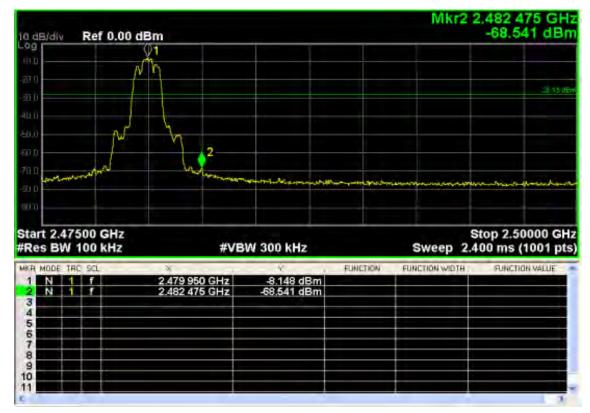

2 2490.06 36.06 27.55 7.43 38.49 32.55 74.00 41.45 Peak

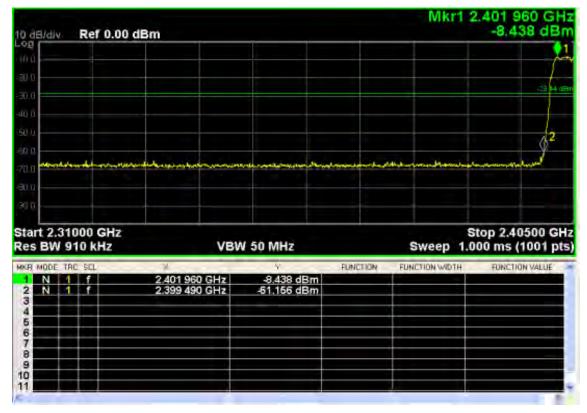

Conducted Band Edge: GFSK CH0

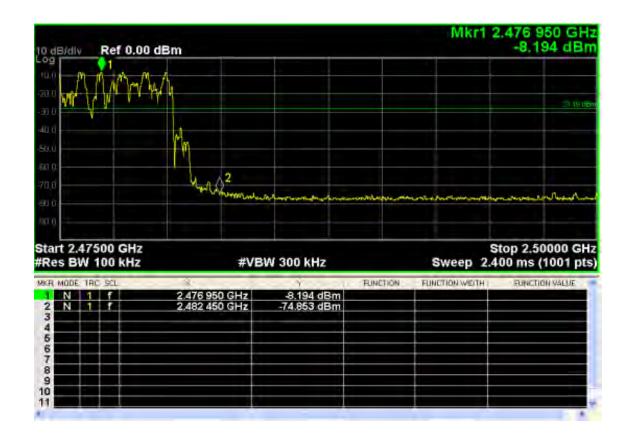


GFSK CH78

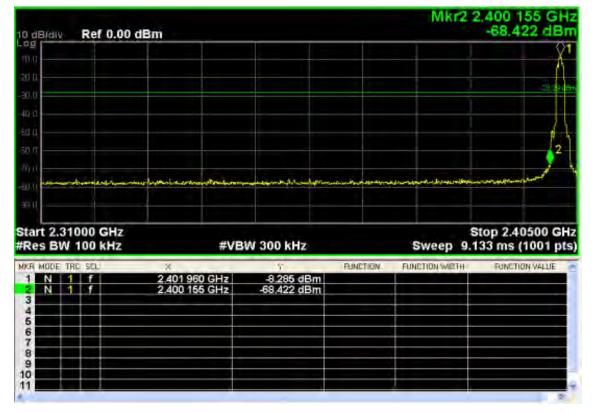

GFSK (Hopping Mode)



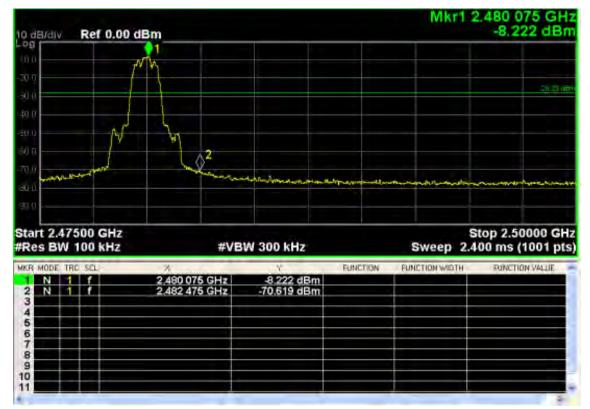

∏**/4-DQPSK CH0**

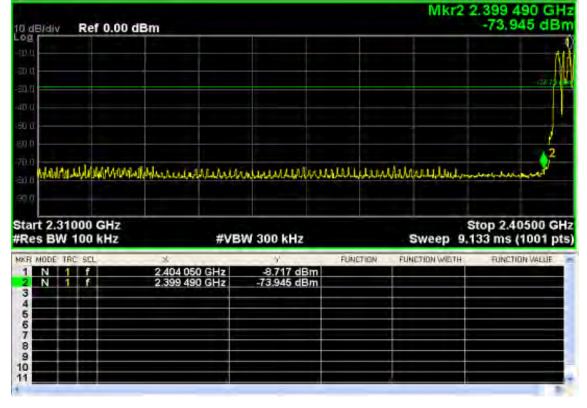


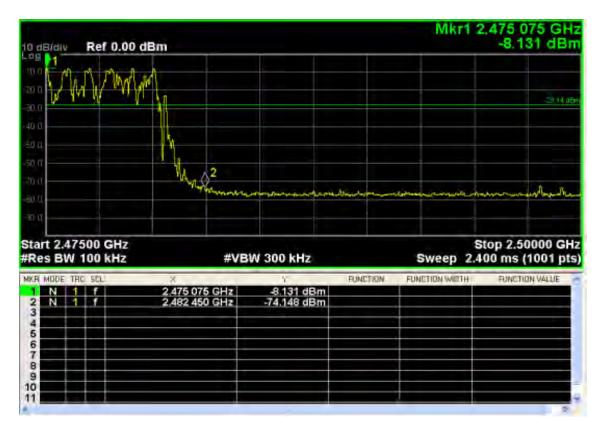
∏/4-DQPSK CH78



∏/4-DQPSK(Hopping Mode)

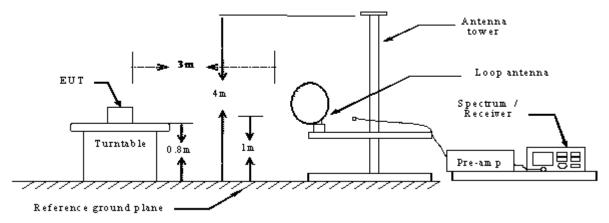


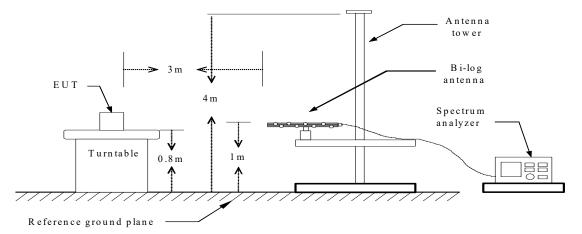

8DPSK CH0



8DPSK CH78

8DPSK (Hopping Mode)




11. SPURIOUS EMISSIONS (RADIATION)

11.1 TEST SETUP

Radiated Spurious Measurement: below 30MHz

Radiated Spurious Measurement: below 1GHz

Radiated Spurious Measurement: above 1GHz

11.2 LIMITS

Frequency (MHz)	Limits (uV/m)	Limits(dBuV/m) At 3m	Measured Distance (m)
0.009-0.490	2400/F(KHz)	128.5-93.80	300
0.490-1.705	24000/F(KHz)	73.80-63.00	30
1.705-30.0	30	69.5	30
30~88	100	40	3
88~216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Notes: the calculate formula for below 30MHz

L2 = 20lg (L1) + 40lg (d1/d2)

L2: is the specified limit in dB microvolts per metre at distance d2.

L1: is the specified limit in microvolts per metre at distance d1. For example:

L1 = 2400/9 (μ V/m), d1 = 300 (m), d2 = 3 (m), so L2 as follows:

 $20lg (2400/9) + 40lg(300/3) = 128.5(dB\mu V/m)$

11.3 TEST PROCEDURE

Radiated Emission (9 kHz - 30 MHz):

Spurious emissions from the EUT are measured in the frequency range of 9 kHz to 30 MHz using a tuned receiver and a shielded loop antenna. The antenna was positioned 3 meters horizontally from the EUT. The RBW of the spectrum analyzer is set to 200Hz(measured frequency range was 9KHz~150KHz) or 9KHz(measured frequency range was 150KHz~30MHz). Measurements have been made in all three orthogonal axes and the shielded loop antenna was rotated to locate the maximum of the emissions. The emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz(these two bands employing a average detector)

Radiated Emission (30 MHz – 1000 MHz):

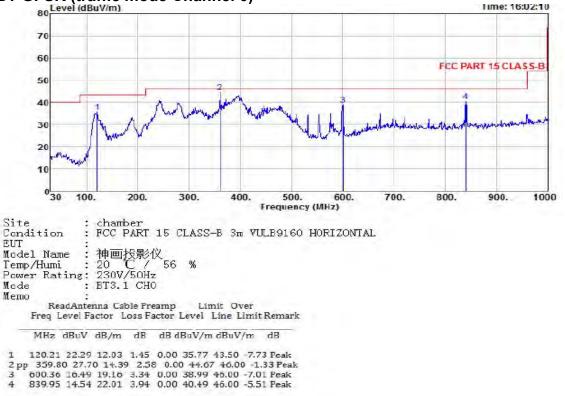
According to description of ANSI C63.4: 2014 sec.13.4, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT. The EUT configuration (in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements. The measurement is carried out using a spectrum analyzer or receiver. The Quasi-peak detector is used and RBW is set to 120kHz. The antenna height and turn table rotation is adjusted until the maximum power value is founded on spectrum analyzer or receiver.

Unilab(Shanghai) Co.,Ltd. Report No. : UL71220170302FCC -2

Radiated Emission (Above 1 GHz):

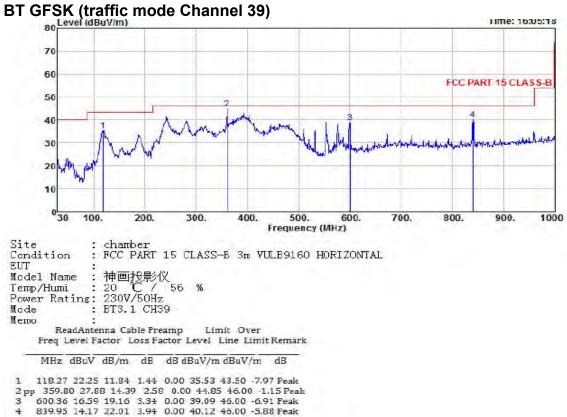
According to description of ANSI C63.4: 2014 sec.13.4, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT. The EUT configuration (in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements. The measurement is carried out using a spectrum analyzer or receiver. The spectrum analyzer scans from 1GHz to 25GHz (higher than the 10th harmonic of the carrier). The peak detector is used for Peak limit and RBW is set to 1MHz ,VBW \geq 3RBW. The peak detector is used for Average limit and RBW is set to 1MHz ,VBW=1kHz is not smaller than 1/T, T = to the shortest pulse width. The antenna height and turn table rotation is adjusted until the maximum power value is founded on spectrum analyzer or receiver.

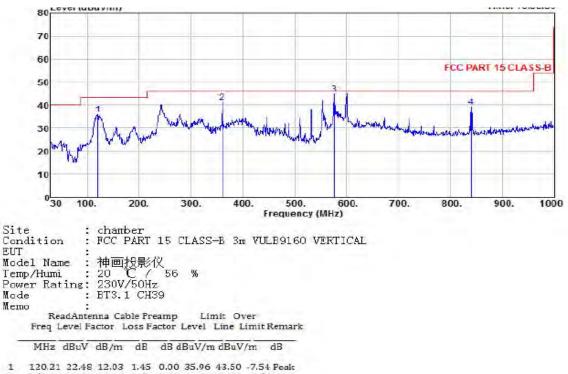
11.4 RESULTS & PERFORMANCE

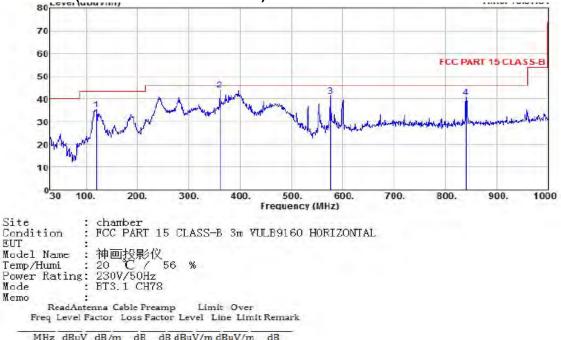

From 9kHz to 30MHz:

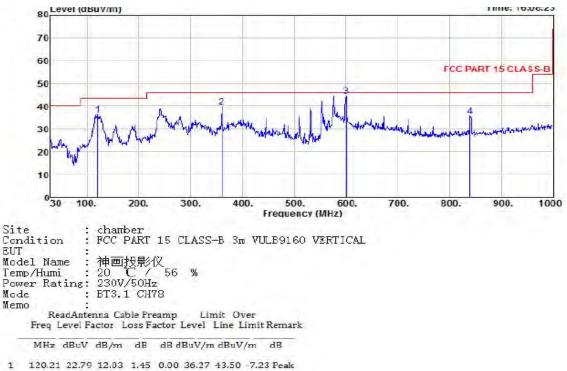
The test data was 20dB lower than the permissible limit was not recorded in the report.

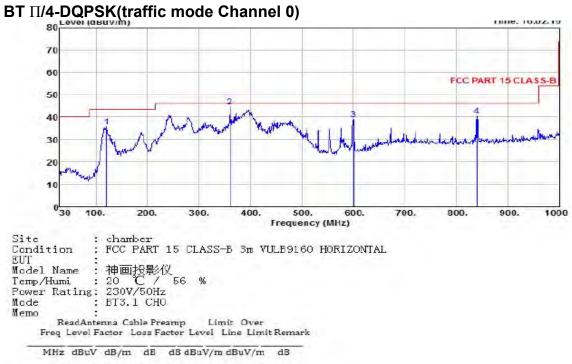
From 30MHz to 1GHz:


Only show the worst test data when EUT was operated on different mode.

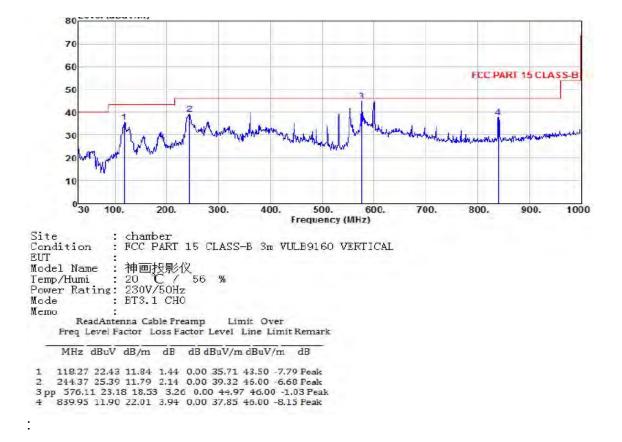

BT GFSK (traffic mode Channel 0)



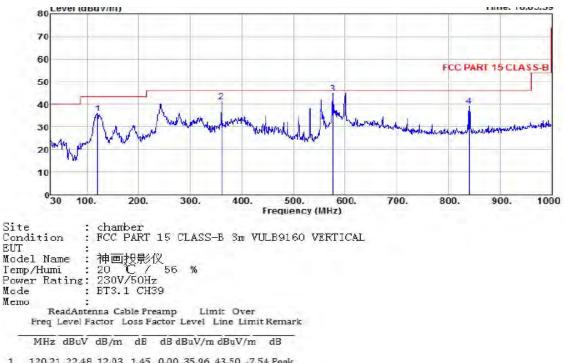

1 120.21 22.48 12.03 1.45 0.00 35.96 43.50 -7.54 Peak 2 359.80 24.46 14.39 2.58 0.00 41.43 46.00 -4.57 Peak 3 pp 576.11 23.13 18.53 3.26 0.00 44.92 46.00 -1.08 Peak 4 839.95 13.32 22.01 3.94 0.00 39.27 46.00 -6.73 Peak


BT GFSK (traffic mode Channel 78)

MHz dBuV dB/m dE dB dBuV/m dBuV/m dB

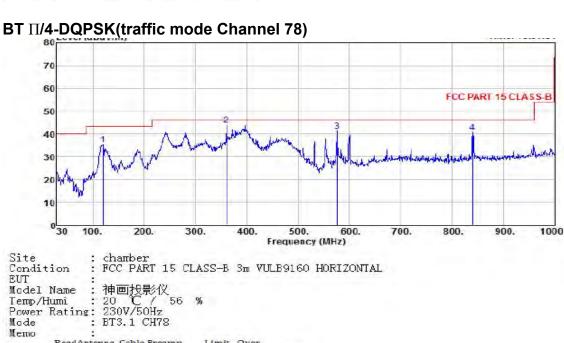

1 119.24 21.87 12.03 1.44 0.00 35.34 43.50 -8.16 Peak 2 pp 359.80 27.04 14.39 2.58 0.00 44.01 46.00 -1.99 Peak 3 576.11 19.40 18.53 3.26 0.00 41.19 46.00 -4.81 Peak 4 839.95 14.68 22.01 3.94 0.00 40.63 46.00 -5.37 Peak

1 120.21 22.79 12.03 1.45 0.00 36.27 43.50 -7.23 Peak 2 359.80 22.80 14.39 2.58 0.00 39.77 46.00 -6.23 Peak 3 pp 600.36 22.19 19.16 3.34 0.00 44.69 46.00 -1.31 Peak 4 838.98 9.69 22.00 3.94 0.00 35.63 46.00 -10.37 Peak



1 120.21 22.29 12.03 1.45 0.00 35.77 43.50 -7.73 Peak 2 pp 359.80 27.70 14.39 2.58 0.00 44.67 46.00 -1.33 Peak 3 600.36 16.49 19.16 3.34 0.00 38.99 46.00 -7.01 Peak 4 839.95 14.54 22.01 3.94 0.00 40.49 46.00 -5.51 Peak

BT II/4-DQPSK(traffic mode Channel 39)



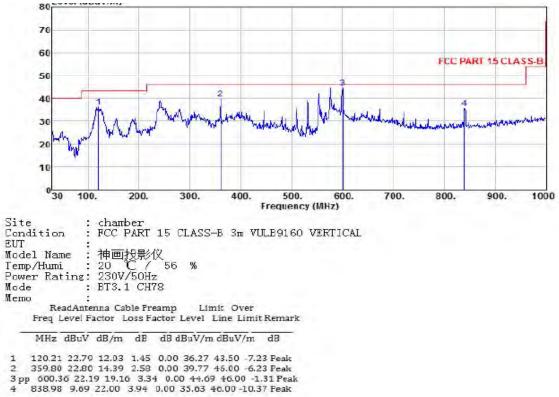
 1
 120.21
 22.48
 12.03
 1.45
 0.00
 35.96
 43.50
 -7.54
 Peak

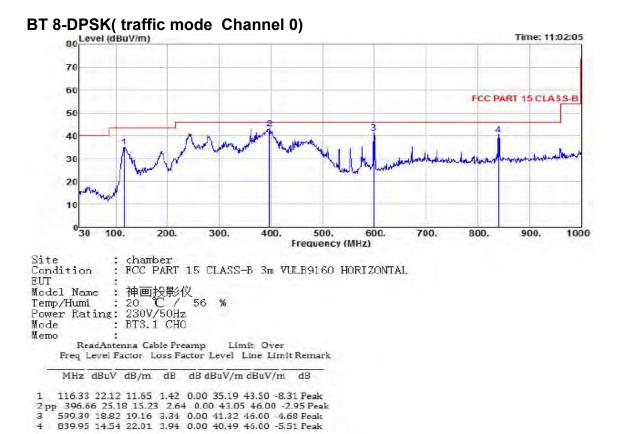
 2
 359.80
 24.46
 14.39
 2.58
 0.00
 41.43
 46.00
 -4.57
 Peak

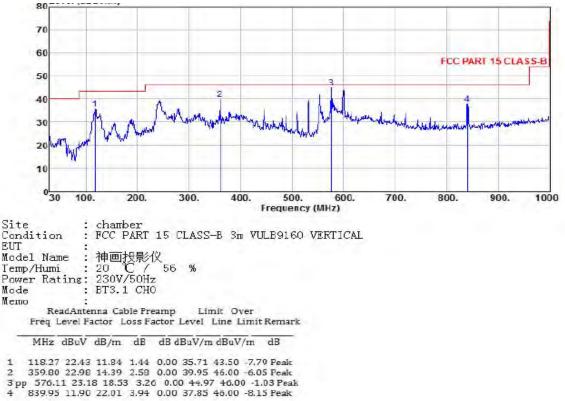
 3 pp
 576.11
 23.13
 18.53
 3.26
 0.00
 44.92
 46.00
 -1.08
 Peak

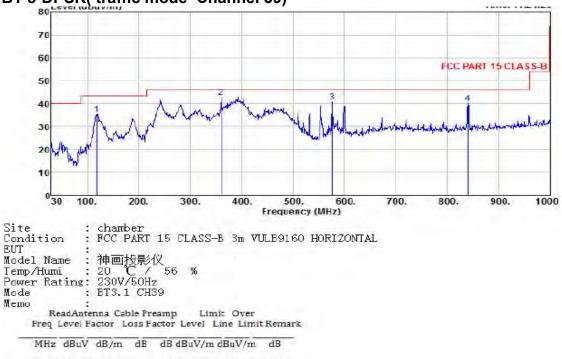
 4
 839.95
 13.32
 22.01
 3.94
 0.00
 39.27
 46.00
 -6.73
 Peak

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark

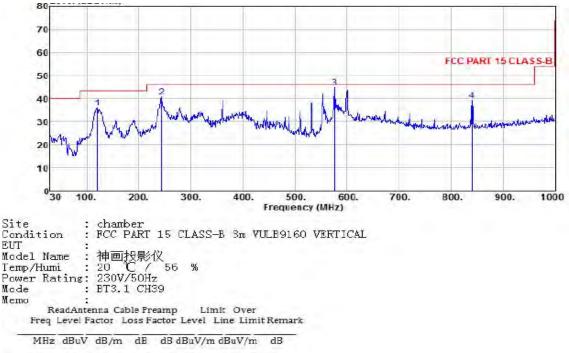

MHz dBuV dB/m dB dB dBuV/m dBuV/m dB

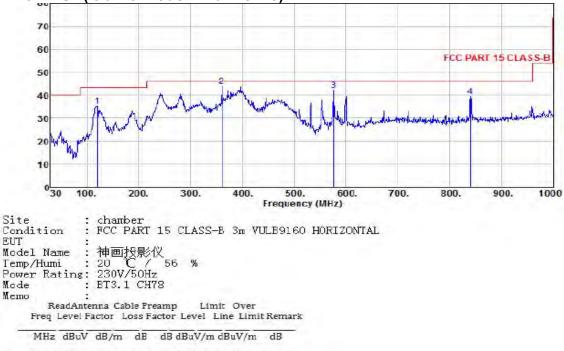

 1
 119.24
 21.87
 12.03
 1.44
 0.00
 35.34
 43.50
 -8.16
 Peak


 2 pp
 359.80
 27.04
 14.39
 2.58
 0.00
 44.01
 46.00
 -1.99
 Peak


 3
 576.11
 19.40
 18.53
 3.26
 0.00
 41.19
 46.00
 -4.81
 Peak

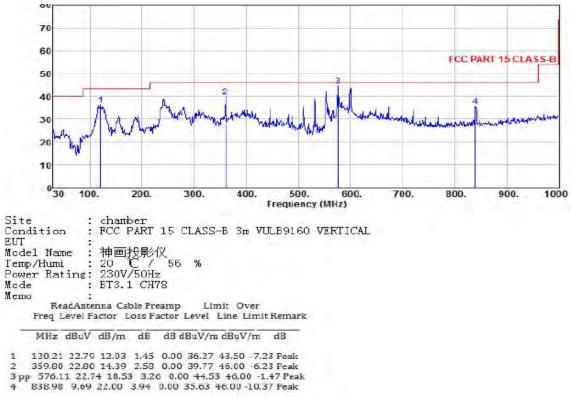
 4
 839.95
 14.68
 22.01
 3.94
 0.00
 40.63
 46.00
 -5.37
 Peak




BT 8-DPSK(traffic mode Channel 39)

1 118.27 22.25 11.84 1.44 0.00 35.53 43.50 -7.97 Feak
 Instructure
 Instructure

1 120.21 22.48 12.03 1.45 0.00 35.96 43.50 -7.54 Peak 2 244.37 26.80 11.79 2.14 0.00 40.73 46.00 -5.27 Peak 3 pp 576.11 23.13 18.53 3.26 0.00 44.92 46.00 -1.08 Peak 4 839.95 13.32 22.01 3.94 0.00 39.27 46.00 -6.73 Peak



 1
 119.24
 21.87
 12.03
 1.44
 0.00
 35.34
 43.50
 -8.16
 Peak

 2
 pp
 359.80
 27.04
 14.39
 2.58
 0.00
 44.01
 46.00
 -1.99
 Peak

 3
 576.11
 20.40
 18.53
 3.26
 0.00
 42.19
 46.00
 -3.81
 Peak

 4
 839.95
 13.68
 22.01
 3.94
 0.00
 39.63
 46.00
 -6.37
 Peak

From 1GHz to 25GHz:

Only show the worst test data when EUT was operated on different mode. EUT operation mode : BT GFSK(Ch0/Ch39/Ch78); BT II/4-DQPSK(Ch0/Ch39/Ch78); BT 8-DPSK(Ch0/Ch39/Ch78)

Frequency	Reading	Correct	Antenna	Total	Limit	Margin	Detector
(MHz)	(dBuV)	Factor(dB)	Polarity	(dBuV/m)	(dBuV/m)	(dB)	Туре
2480	97.11	-2.88	Horizontal	94.23	/	/	Peak
4960	38.03	5.23	Н	43.26	74	30.74	Peak
7440	37.14	13.15	Н	50.29	74	23.71	Peak
2480	90.25	-2.88	Vertical	87.37	/	/	Peak
4960	36.87	5.23	V	42.10	74	31.90	Peak
7440	37.00	12.85	V	49.85	74	24.15	Peak

BT GFSK traffic mode Ch78

Note: 1, Total=Reading+Correct factor

2, 2480 MHz was fundamental signal which can be ignored.

3, Average measurement was not performed if peak level were lower than the average limit.

4, Other harmonics are lower than background noise.

Frequency	Reading	Correct	Antenna	Total	Limit	Margin	Detector
(MHz)	(dBuV)	Factor(dB)	Polarity	(dBuV/m)	(dBuV/m)	(dB)	Туре
2441	96.46	-3.29	Horizontal	93.17	/	/	Peak
4882	37.54	5.02	Н	42.56	74	31.44	Peak
7322	38.02	11.86	Н	49.88	74	24.12	Peak
2441	90.14	-3.29	Vertical	86.85	/	/	Peak
4882	36.65	5.02	V	41.67	74	32.33	Peak
7322	36.67	12.36	V	49.03	74	24.97	Peak

BT II/4-DQPSK traffic mode Ch39

Note: 1, Total=Reading+Correct factor

2, 2441MHz was fundamental signal which can be ignored.

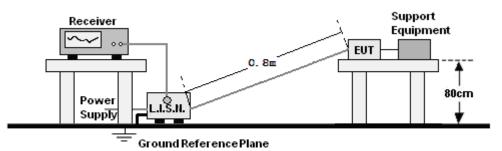
3, Average measurement was not performed if peak level were lower than the average limit.

4, Other harmonics are lower than background noise.

Frequency	Reading	Correct	Antenna	Total	Limit	Margin	Detector
(MHz)	(dBuV)	Factor(dB)	Polarity	(dBuV/m)	(dBuV/m)	(dB)	Туре
2441	97.32	-3.29	Horizontal	94.03	/	/	Peak
4882	37.52	5.02	Н	42.54	74	31.46	Peak
7322	39.61	11.86	Н	51.47	74	22.53	Peak
2441	90.40	-3.29	Vertical	87.11	/	/	Peak
4882	36.27	5.02	V	41.29	74	32.71	Peak
7322	37.94	12.36	V	50.30	74	23.70	Peak

BT 8-DPSK traffic mode Ch39

Note: 1, Total=Reading+Correct factor


2, 2441MHz was fundamental signal which can be ignored.

3, Average measurement was not performed if peak level were lower than the average limit.

4, Other harmonics are lower than background noise.

12. AC POWER LINE CONDUCTED EMISSIONS

12.1 TEST SETUP

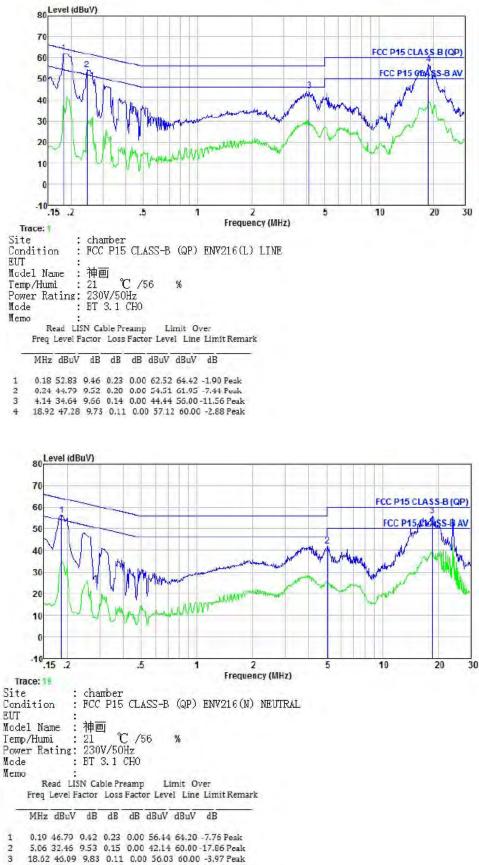
12.2 LIMITS

Frequency range	Limits dB(µV)				
(MHz)	Quasi-peak	Average			
0,15 to 0,50	66 to 56	56 to 46			
0,50 to 5	56	46			
5 to 30	60	50			

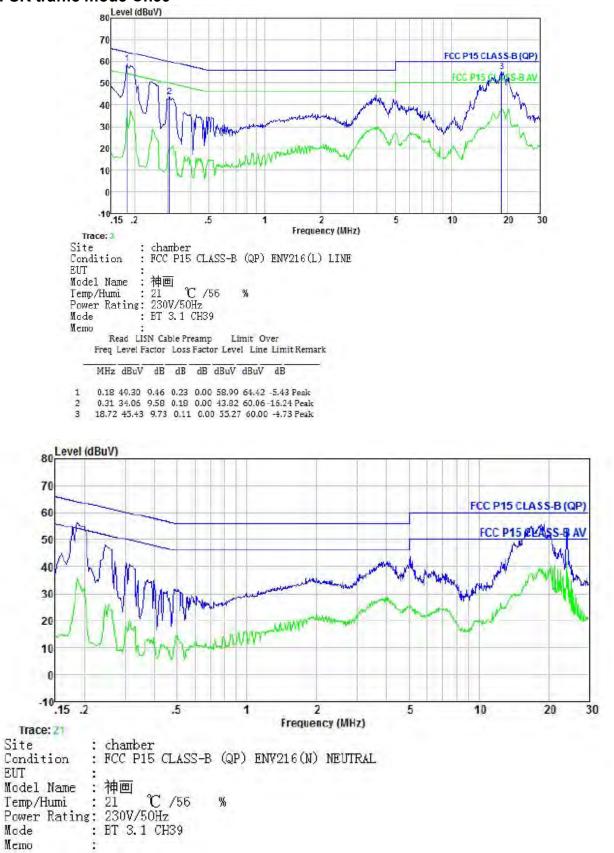
NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

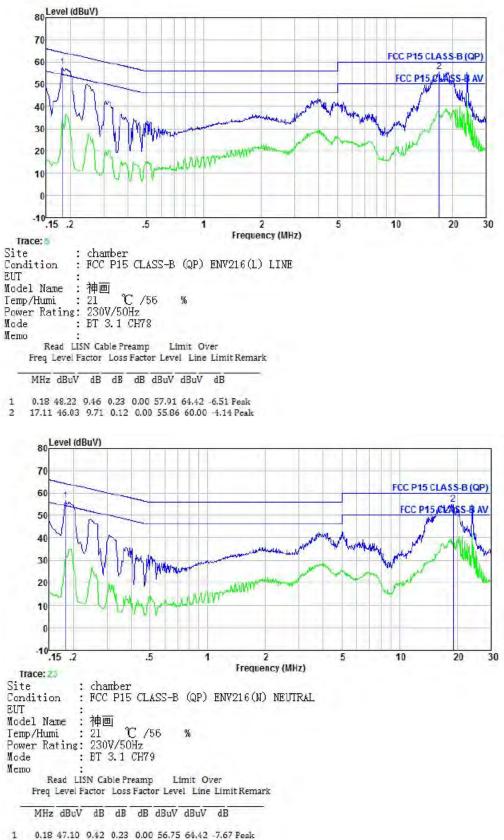
12.3 TEST PROCEDURE


According to description of ANSI C63.4: 2014 sec.13.3, the AC power line preliminary conducted emissions measurements were carried out. The preliminary conducted measurements were performed using the spectrum analyzer to observe the emission characteristics of the EUT. The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for final AC power line conducted emissions measurements. The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The EUT is connected to LISN and LISN is connected to the reference ground. All other supplemental devices are connected with EUT through other LISN. The distance between EUT and LISN is 80cm. A radio link is established between EUT and the tester. The output power of the EUT is controlled by the tester and driven to maximum value. An initial pre-scan was performed on the live L line and neutral line with peak detector (9kHz RBW). Both average detector and qausi-peak detector are performed at the frequencies with maximized peak emission.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.


12.4 RESULTS & PERFORMANCE

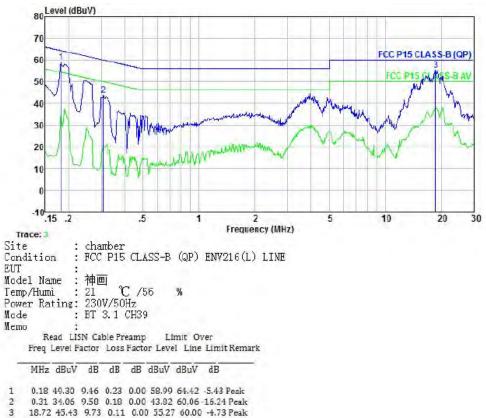
EUT was operated on different mode.EUT work mode: BT GFSK(CH0/39/78); BT Π /4-DQPSK(CH0/39/78); BT 8-DPSK(CH0/39/78)

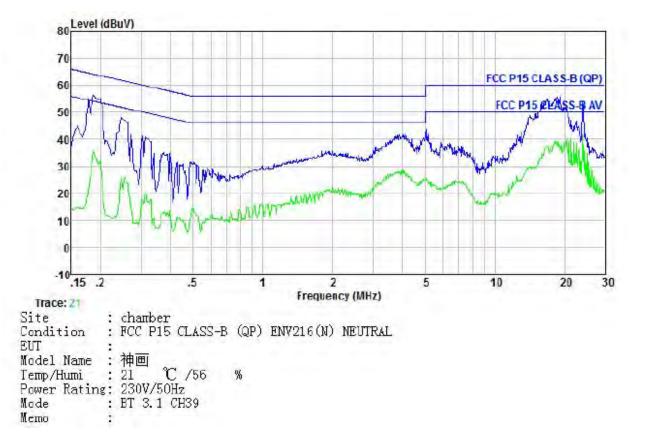

GFSK traffic mode Ch0

GFSK traffic mode Ch39

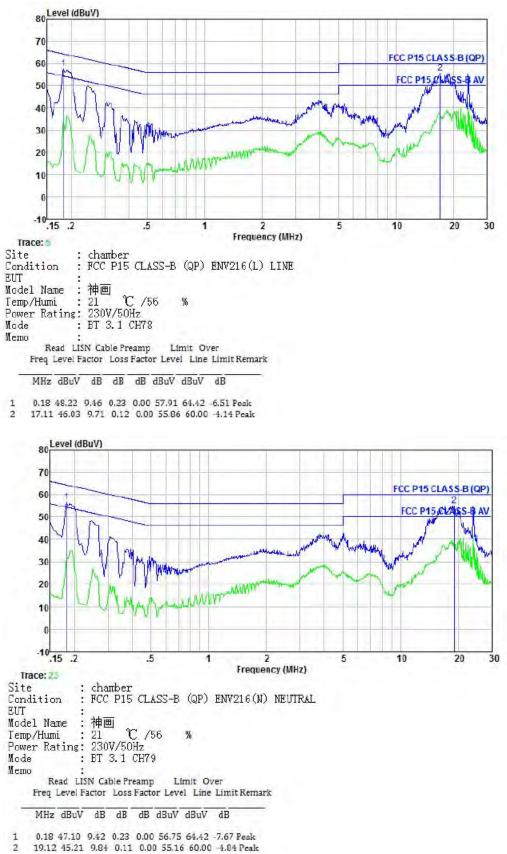


GFSK traffic mode Ch78

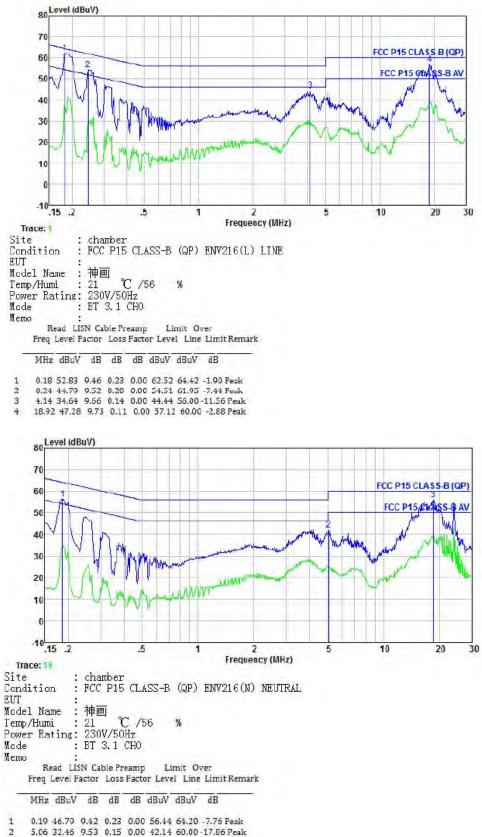



2 19.12 45.21 9.84 0.11 0.00 55.16 60.00 -4.84 Peak

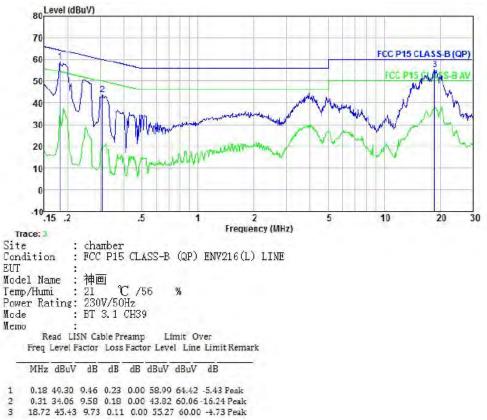
Π /4-DQPSK mode Ch0

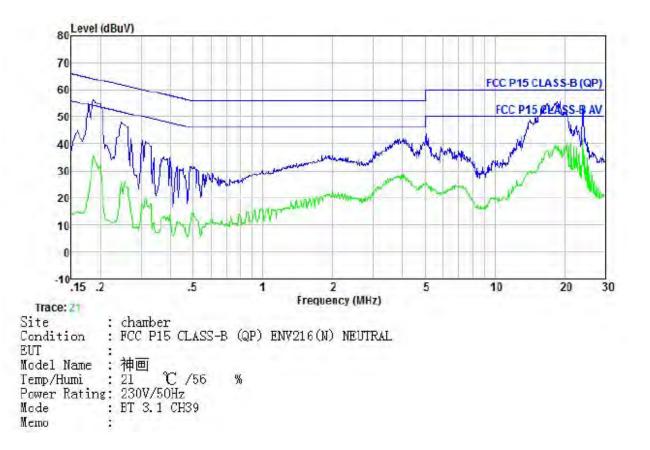


Π /4-DQPSK mode Ch39

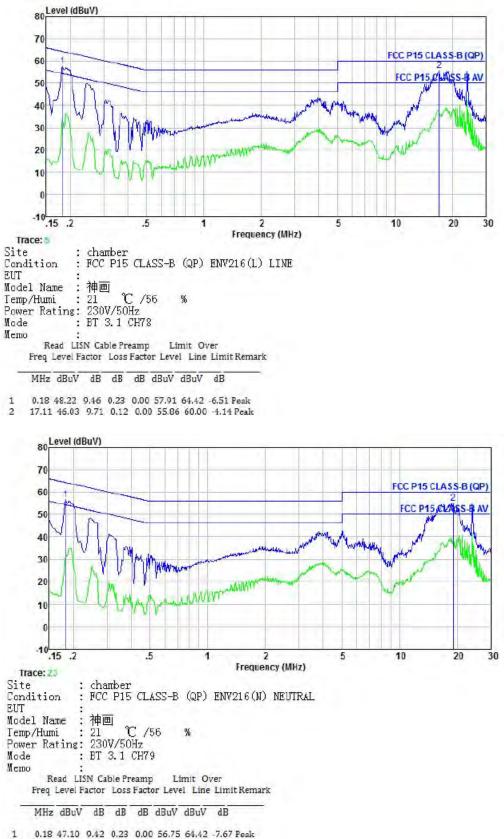


Π /4-DQPSK mode Ch78


8-DPSK traffic mode Ch0



2


3 18.62 46.09 9.83 0.11 0.00 56.03 60.00 -3.97 Peak

8-DPSK mode Ch39

8-DPSK mode Ch78

2 19.12 45.21 9.84 0.11 0.00 55.16 60.00 -4.84 Peak

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Please refer to the file named "Part 15C Setup Photos".

APPENDIX 2 PHOTOGRAPHS OF EUT

Please refer to the files named "External Photos" and "Internal Photos" .

----End of the report----