
6.6. Noise Limits

6.6.1. Test Specification

Page 49 of 95

	CT通测检测
Report No.: TCT170321E0	TESTING CENTRE TECHNOLOGY
BW of 4.1 MHz. t the spectrum analyzer RBW for 1 MHz, VBW \ge 3 × RBW, with a power averaging (rms) detector with at least 100 trace verages. t the center frequency of the spectrum analyzer to the center of the CMRS band under test, with the span \ge 2 × the CMRS and. This shall include all spectrum blocks in the particular MRS band under test (see Appendix A). r uplink noise measurements, set the spectrum analyzer center equency for the uplink band under test, and tune the signal enerator to the center of the paired downlink band.	
leasure the maximum transmitter noise power level while arying the downlink signal generator output level from -90 dBm o -20 dBm, as measured at the input port (i.e., downlink signal evel at the booster donor port node of Figure 4), in 1 dB steps uside the RSSI-dependent region, and in 10 dB steps outside the RSSI-dependent region. Report the six values closest to the mit, with at least two points within the RSSI-dependent region of the limit. See Appendix D for noise limits graphs. Expeat 7.7.1h) through 7.7.1m) for all operational uplink bands. able uplink noise timing able uplink noise timing is to be measured as follows, using the	
est setup shown in Figure 4. et the spectrum analyzer to the uplink frequency to be neasured. et the span to 0 Hz, with a sweep time of 10 seconds. et the power level of signal generator to the lowest level of the (SSI-dependent noise [see 7.7.1m)]. elect MAX HOLD and increase the power level of signal enerator by 10 dB for mobile boosters, and 20 dB for fixed	
oosters. onfirm that the uplink noise decreases to the specified level ithin 1 second for mobile devices, and within 3 seconds for xed devices. peat 7.7.2a) to 7.7.2e) for all operational uplink bands. clude plots and summary table in test report.	
S	Test Result:

6.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	N5182	MY47070282	Aug. 15, 2016	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 15, 2016	Aug. 11, 2017
Attenuation	AF115A-09-34	JFW	907763	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

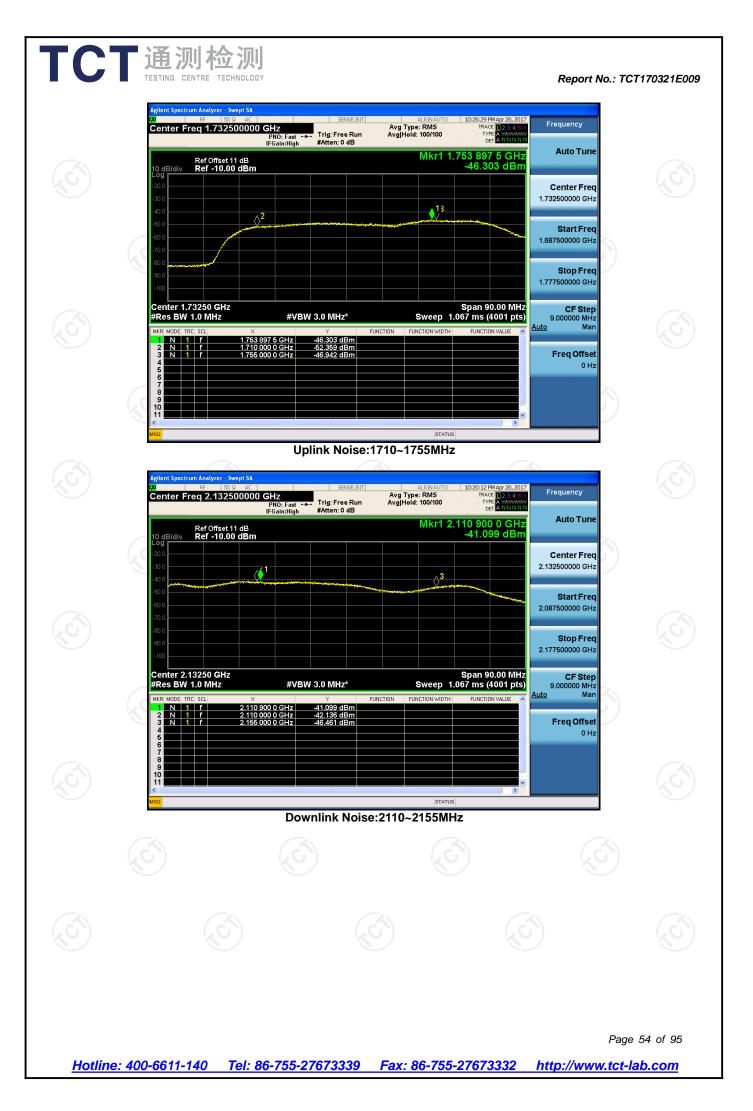
Page 50 of 95

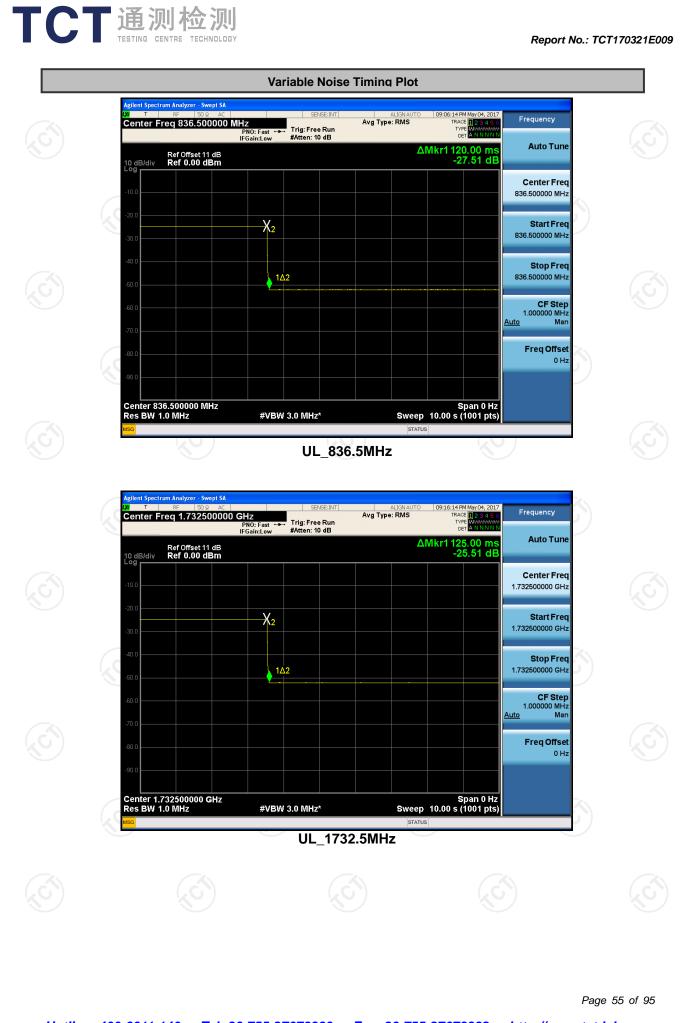
6.6.3. Test Data

Max Noise Power						
Frequency (MHz)Measured dBm/MHzLimit dBm/MHz						
Uplink: 824~849	-47.01	-44.05	PASS			
Downlink:869~894	-48.10	-44.05	PASS			
Uplink:1710~1755	-46.30	-37.73	PASS			
Downlink:2110~2155	-41.10	-37.73	PASS			

		824~84	9MHz				
	Limit						
RSSI (dBm)	Measured dBm/MHz	RSSI dependent	Fix Booster Limit (dBm)	TX off	Margin (dB)		
-73.0	-44.9		-44.05		-0.85		
-61.0	-44.6		-44.05		-0.55		
-48.0	-55.8	-55.0			-0.8		
-47.0	-56.4	-56.0			-0.4		
-45.0	-58.7	-58.0			-0.7		
-43.0	-60.5	-60.0		-70	-0.5		
	(G)			(G)			

1	71	I∩~1	755	MH_{7}


	Limit						
RSSI (dBm)	Measured dBm/MHz	RSSI dependent	Fix Booster Limit (dBm)	TX off	Margin (dB)		
-84.0	-38.3		-37.7		-0.6		
-83.0	-38.5		-37.7		-0.8		
-45.0	-58.6	-58.0			-0.6		
-41.0	-62.8	-62.0			-0.8		
-40.0	-64.1	-63.0			-1.1		
-39.0	-64.5	-64.0			-0.5		
-38.0	-66.3	-65.0			-1.3		
-30.0	-73.1			-70	-3.1		

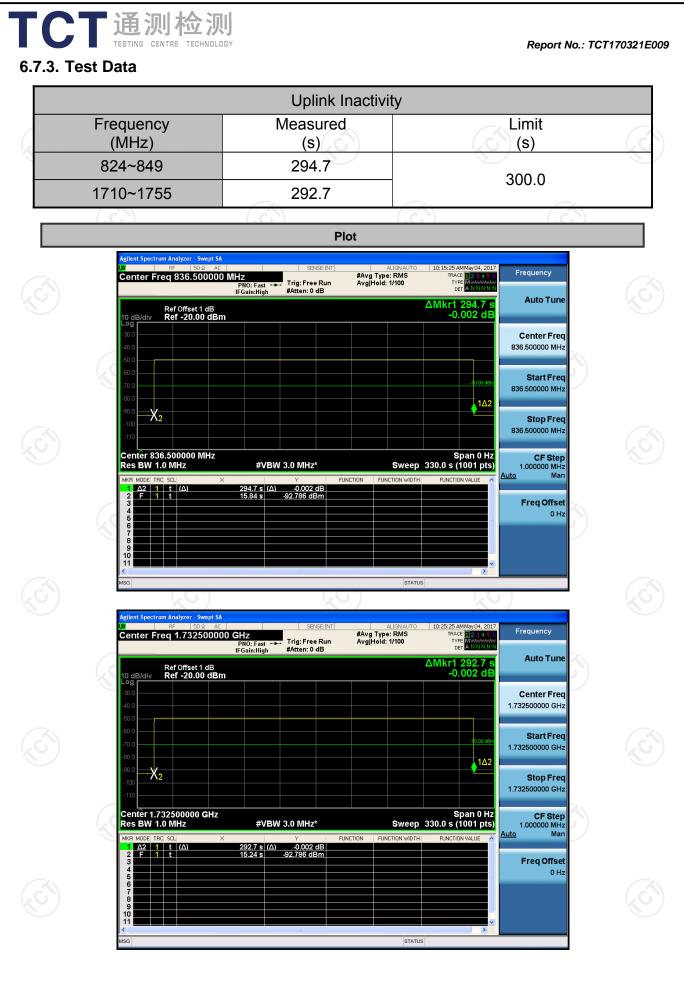

Page 51 of 95

			(Report No.: TC1	- 170321E009
Variable U	Jplink Noise	Freq M	uency Hz	Measured Sec	Lin	ec		
			24~849 10~1755	0.12 0.125		3 3 (C)	-	
<u>Hotlin</u>	<u>e: 400-6611-</u>	140 Tel: 8	<u>6-755-27673</u>	1339 Fax: 80	6-755-27673	1 <u>332 htt</u>	Page p://www.tct-la	52 of 95 b.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.7. Uplink Inactivity

6.7.1. Test Specification


Test Requirement:	FCC Part20 Section 20.21(e)(8)(i)(I)					
Test Method:	KDB835210 D03 Signal Booster Measurement V04					
Limit:	20.21(e), When a consumer booster is not serving an active device connection after 5 minutes the uplink noise power shall not exceed -70 dBm/MHz.					
Test Setup:	Spectrum Analyzer EUT with Terminated Input Port Figure 3 – Noise limit test setup (also used for 7.8)					
Test Procedure:	 a) Connect the EUT to the test equipment as shown in Set-Up with the uplink output connected to the spectrum analyzer. b) Select the RMS power averaging detector. c) Set the spectrum analyzer RBW for 1 MHz with the VBW ≥ 3 × RBW. d) Set the center frequency of the spectrum analyzer to the center of the uplink operational band. e) Set the span for 0 Hz with a single sweep time for a minimum of 330 seconds. f) Start to capture a new trace using MAX HOLD. g) After approximately 15 seconds turn on the EUT power. h) Once the full spectrum analyzer trace is complete place a MARKER on the leading edge of the pulse and use the DELTA MARKER METHOD to measure the time until the uplink was squelched. i) Ensure the noise level for the squelched signal is below the uplink inactivity noise power limit, as specified by the rules. j) Capture the plot for inclusion in the test report. k) Measure noise using procedures in a) to e). l) Repeat steps c) to k) for all operational uplink bands. 					
Test Result:	PASS					

6.7.2. Test Instruments

RF Test Room						
Equipment Manufacturer Model Calibration Date Calibration Due						
Spectrum Analyzer	Agilent	N9020A	Aug. 15, 2016	Aug. 11, 2017		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI).

Page 57 of 95

6.8. Variable Booster Gain

6.8.1. Test Specification

Test Requirement:	FCC Part20 Section 120.21(e)(8)(i)(C)(1) FCC Part20 Section 120.21(e)(8)(i)(H)					
Test Method:	KDB835210 D03 Signal booster measurements v04					
Limit:	-34 dB - RSSI + MSCL.					
Test Setup:	Donor Port Server Port Uplink Signal Generator #2 Downlink Signal Generator #1 Notch Filter (if required) Figure 5 – Variable gain instrumentation test setup					
Test Procedure:	 Variable gain: a) Connect the EUT to the test equipment as shown in Figure 5 with the uplink output (donor) port connected to signal generator #1. Affirm that the coupled path of the RF coupler is connected to the spectrum analyzer. b) Configure downlink signal generator #1 for AWGN operation with a 99% OBW of 4.1 MHz, tuned to the center of the operational band. c) Set the power level and frequency of signal generator #2 to a value that is 5 dB below the AGC level determined from 7.2. The signal type is AWGN with a 99% OBW of 4.1 MHz. d) Set RBW = 100 kHz. e) Set VBW ≥ 300 kHz. f) Select the CHANNEL POWER measurement mode. g) Select the power averaging (rms) detector. h) Affirm that the number of measurement points per sweep ≥ (2 × span)/RBW. i) Sweep time = auto couple or as necessary (but no less than auto couple value). j) Trace average at least 10 traces in power averaging (i.e., rms) mode. k) Measure the maximum channel power and compute maximum gain when varying the signal generator #1 output to a level from -90 dBm to -20 dBm, as measured at the input port (i.e., downlink signal level at the booster donor port node of Figure 5) in 1 dB steps inside the RSSI-dependent region, and 10 dB steps outside the RSSI-dependent region. Report the six values closest to the limit, including at least two points from within the RSSI-dependent region of operation. See gain limit in charts in Appendix D for uplink gain requirements. Additionally, document that the EUT provides equivalent uplink and downlink gain, and when operating in shutoff mode that the uplink and downlink gair is within the transmit power off mode gain limits. l) Repeat 7.9.1b) to 7.9.1k) for all operational uplink bands. 					

CT	通测检测		Report No.: TCT170321E0
		 measured. b) Set the span to 0 Hz c) Set the power level of the RSSI-dependent d) Select MAX HOLD ar generator #1 by 10 c fixed indoor boosters described in 7.9.1c). e) Confirm that the uplin within 1 second for n fixed devices.13 	Figure 5. alyzer to the uplink frequency to be with a sweep time of 10 seconds. of signal generator #1 to the lowest level of t gain [see 7.9.1k)]. nd increase the power level of signal dB for mobile boosters, and by 20 dB for s. Signal generator #2 remains same, as
Test Result:		PASS	

6.8.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	E4421B	GB39340839	Aug. 15, 2016	Aug. 11, 2017
Signal Generator	Agilent	N5182	MY47070282	Aug. 15, 2016	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 15, 2016	Aug. 11, 2017
Attenuation	AF115A-09-34	JFW	907763	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.3. Test Data

824MHz~849MHz							
				Limit			Margin (dB)
RSSI	Input	Measured	Measured	RSSI	Fix		
(dBm)	Input (dBm)	Output Power	Gain	Dependent	Booster	TX off	
		(dBm)	(dB)	(dB)	Limit		
-70.0	-45.0	14.6	59.6		65.0		-5.4
-61.0	-45.0	14.6	59.6		65.0		-5.4
-50.0	-45.0	5.7	50.7	56.5			-5.8
-48.0	-45.0	3.8	48.8	54.5			-5.7
-46.0	-45.0	2.4	47.4	52.5			-5.1
-45.0	-45.0	1.2	46.2	51.5			-5.3

1710MHz~1755MHz							
				Limit			Margin (dB)
RSSI (dBm)	Input (dBm)	Measured Output Power (dBm)	Measured Gain (dB)	RSSI Dependent (dB)	Fix Booster Limit	TX off	
-70.0	-45.00	17.10	62.1		73.7		-11.6
-69.0	-45.00	17.30	62.3		72.7		-10.4
-68.0	-45.00	9.20	54.2	71.7			-17.5
-60.0	-45.00	8.05	53.05	63.7			-10.65
-55.0	-45.00	3.21	48.21	58.7			10.49
-50.0	-45.00	2.47	47.47	53.7			-6.23

Variable Uplink Gain Timing

Frequency	Measured	Limit
MHz	Sec	Sec
UL 824~849	0.12	3
UL 1710~1755	0.12	3

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

CT通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT170321E009 Variable Uplink Gain Timing Plot nt Spectrum Analyzer - Swept SA May 04, 2017 Avg Type: RMS RACE 123456 TYPE WANNA Auto Tune ΔMkr1 120.0 ms -44.20 dB Ref Offset 11 dB Ref -10.00 dBm 10 **Center Freq** 836.500000 MHz Start Freq -X2 836.500000 MHz Stop Freq 836.500000 MHz CF Step 100.000 kHz Man <mark>_1∆2</mark> <u>Auto</u> Freq Offset 0 Hz Span 0 Hz Sweep 10.00 s (1001 pts) Center 836.500000 MHz Res BW 100 kHz #VBW 300 kHz* nt Spectrum Analyzer - Swept SA 4ay 04, 2017 Frequency Center Freq 1.732500000 GHz Avg Type: RMS PNO: Fast ++-IFGain:High RACE TYPE DET Trig: Free Run #Atten: 0 dB Auto Tune ΔMkr1 120.0 ms -43.65 dB Ref Offset 1 dB Ref -19.00 dBm 10 dB/div **Center Freq** 1.732500000 GHz Start Freq 1.732500000 GHz X2 Stop Freq 1.732500000 GHz CF Step 1.000000 MHz Man

1<u>Δ</u>2

#VBW 300 kHz*

Center 1.732500000 GHz Res BW 100 kHz

Span 0 Hz Sweep 10.00 s (1001 pts)

STATUS

Auto

Freq Offset 0 Hz

Page 61 of 95

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.9. Occupied Bandwidth

6.9.1. Test Specification

Test Requirement:	FCC Part2 Section 2.1049						
Test Method:	KDB835210 D03	KDB835210 D03 Signal booster measurements v04					
Limit:	N/A						
Test setup:		1p for measuring c	• Spectrum Analyzer haracteristics of test signals ied bandwidth testing				
Test Procedure:	 a) Connect the test energy measure the charal signal generator. b) Set VBW ≥ 3 × F c) Set the center frequency of the operational the modulation type and the signals. d) Set the signal genergy obtained from the t e) Set the signal genergy obtained from the t e) Set the signal genergy obtained from the t e) Set the signal genergy obtained from the t e) Set the signal genergy obtained from the t e) Set the signal genergy obtained from the t e) Set the signal genergy obtained from the t e) Set the spectrum and allow the adjusting the spannergy of the spectrum and allow the adjusting the spannergy of the spectrum and gives the spectrum and gives of W-CDMA, i) Repeat 7.10c) to 7. bands. j) Connect the test expression of the spectrum of the server port connect k) Repeat 7.10c) to 7 l) Connect the test expression of the spectrum of the server port connect k) Repeat 7.10c) to 7 d) Connect the test expression of the server port connect k) Repeat 7.10c) to 7 d) Connect the test expression of the server port connect k) Repeat 7.10c) to 7 d) Connect the test expression of the server port connect k) Repeat 7.10c) to 7 	quipment as show cteristics of the test RBW. uency of the spect band. The span will d OBW as necess erator for power let ests of 7.2. erator modulation the trace on the sig as necessary. nalyzer RBW for 1 um analyzer trace .10g) for CDMA ar as necessary. AW as an option. 10h) for all uplink a juipment as showr connected to the sted to the signal ge .10i) with this EUT pupment as showr erver) port connect lonor port connect	n in Figure 6 to firstly st signals produced by the rrum analyzer to the center I be adjusted for each ary for accurately viewing vel to match the values type for GSM with a PRBS nal generator to stabilize % to 5% of the EBW. for inclusion in the test nd W-CDMA modulation, GN or LTE may be used in and downlink operational n in Figure 1, with the uplink spectrum analyzer, and the enerator. uplink path test setup. n in Figure 1, with the				
Test results:	PASS						

6.9.2. Test Instruments

Report No.: TCT170321E009

Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	N5182	MY47070282	Aug. 15, 2016	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

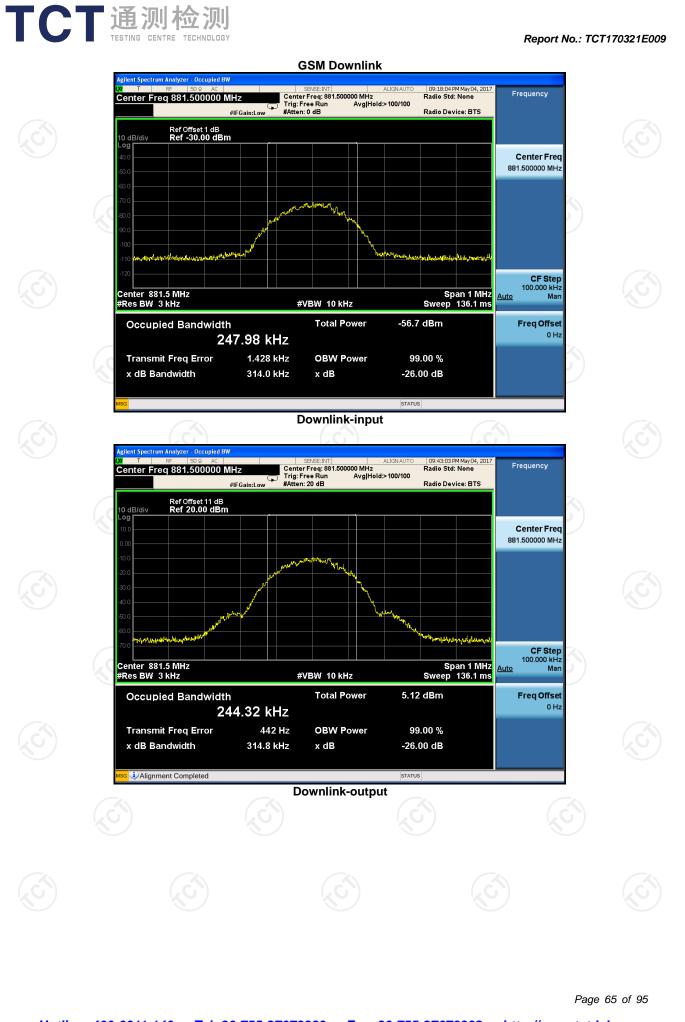
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.9.3. Test Data

Signal Type	Frequency [MHz]	Input OBW [MHz]	Output OBW [MHz]
GSM	836.5	0.243	0.244
CDMA	836.5	1.242	1.240
AWGN	836.5	4.208	4.268
GSM	881.5	0.248	0.244
CDMA	881.5	1.251	1.240
AWGN	881.5	4.334	4.289
	GSM CDMA AWGN GSM CDMA	Signal Type [MHz] GSM 836.5 CDMA 836.5 AWGN 836.5 GSM 836.5 CDMA 836.5 CDMA 836.5 GSM 836.5 CDMA 836.5 GSM 881.5 CDMA 881.5	Signal Type [MHz] [MHz] GSM 836.5 0.243 CDMA 836.5 1.242 AWGN 836.5 4.208 GSM 881.5 0.248 CDMA 881.5 1.251

Link	Signal Type	Frequency [MHz]	Input OBW [MHz]	Output OBW [MHz]
	GSM	1732.5	0.245	0.243
Uplink	CDMA	1732.5	1.246	1.250
	AWGN	1732.5	4.206	4.247
	GSM 🎺	2132.5	0.246	0.245
Downlink	CDMA	2132.5	1.253	1.243
	AWGN	2132.5	4.310	4.242
<u>(ر</u>	(20)			

Page 63 of 95


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT170321E009

850MHz

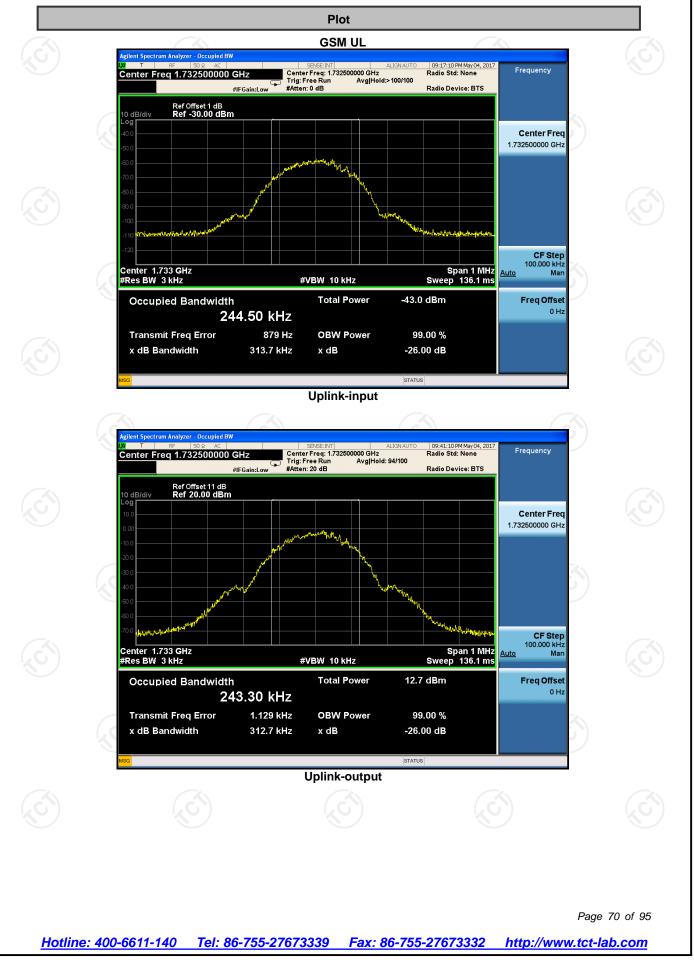
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

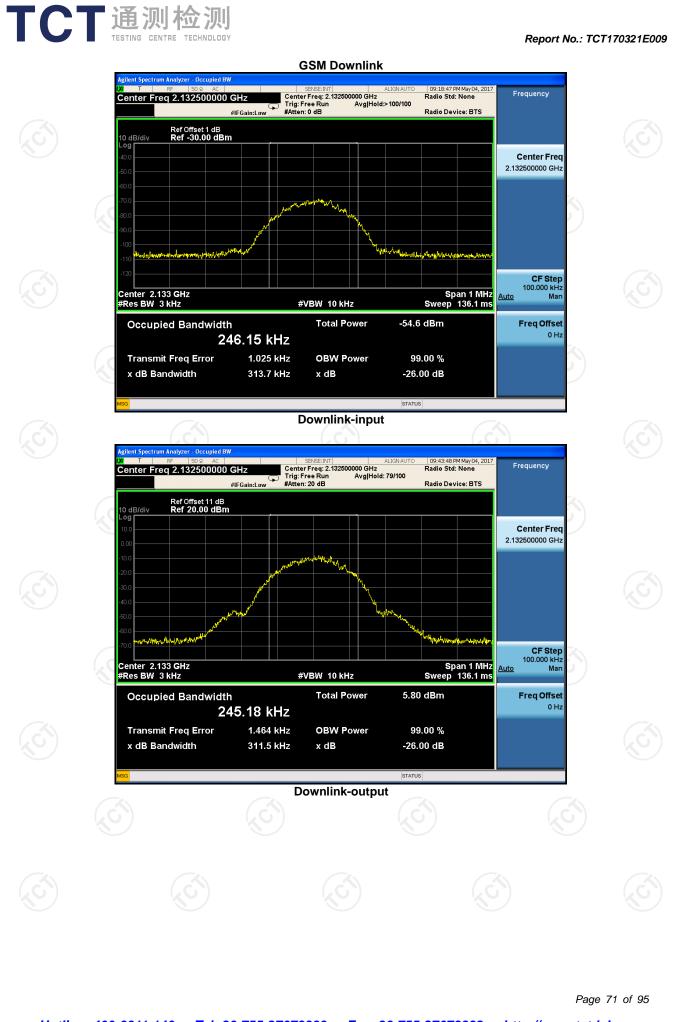
Plot **CDMA UL** SENSE:INT ALIGN AUTO Center Freq: 836.500000 MHz Trig: Free Run Avg|Hold>100/100 #Atten: 0 dB 09:22:46 PM May 04, 2017 Radio Std: None Frequency Center Freq 836.500000 MHz Radio Device: BTS #IFGain:Low Ref Offset 1 dB Ref -30.00 dBm 10 dB/div **Center Freq** 836.500000 MHz CF Step 300.000 kHz Span 3 MHz Sweep 4.133 ms Center 836.5 MHz #Res BW 30 kHz <u>Auto</u> Man #VBW 91 kHz -40.5 dBm Occupied Bandwidth Total Power Freq Offset 0 Hz 1.2418 MHz Transmit Freq Error 857 Hz **OBW Power** 99.00 % x dB Bandwidth 1.372 MHz x dB -26.00 dB STATUS Uplink-input 09:36:24 PM May 04, 2017 Radio Std: None Image: Service INT ALTON AUTO Hz Center Freq: 881.500000 MHz Trig: Free Run Avg|Hold>100/100 #IFGain:Low #Atten: 20 dB Frequency Center Freq 881.500000 MHz Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 10 dB/di **Center Freq** 881.500000 MHz n An CF Step 300.000 kHz Man Span 3 MHz Sweep 4.133 ms Center 881.5 MHz #Res BW 30 kHz <u>Auto</u> #VBW 91 kHz Occupied Bandwidth Total Power 7.39 dBm Freq Offset 0 Hz 1.2397 MHz Transmit Freq Error -1.017 kHz **OBW Power** 99.00 % 1.368 MHz x dB Bandwidth x dB -26.00 dB STATUS **Uplink-output**

Page 66 of 95

Report No.: TCT170321E009

Report No.: TCT170321E009 **CDMA** Downlink Servise:INT ALIGNAUTO Center Freq: 881.500000 MHz Trig: Free Run Avg|Hold:>100/100 #Atten: 0 dB 09:23:35 PM May 04, 201 Radio Std: None Frequency Center Freq 881.500000 MHz #IFGain:Low Radio Device: BTS Ref Offset 1 dB Ref -30.00 dBm 10 dB/div Log **r Center Freq** 881.500000 MHz CF Step 300.000 kHz Man Center 881.5 MHz #Res BW 30 kHz Span 3 MHz Sweep 4.133 ms <u>Auto</u> #VBW 91 kHz Total Power -54.5 dBm Freq Offset **Occupied Bandwidth** 0 Hz 1.2515 MHz 1.392 kHz **OBW** Power 99.00 % **Transmit Freq Error** x dB Bandwidth 1.382 MHz x dB -26.00 dB STATUS **Downlink-input** trum Analyzer - Occupied BW 09:36:24 PM May 04, 2017 Radio Std: None SENSE:INT ALIGN AUTC ALIGN AUTC Center Freq: 881.500000 MHz Trig: Free Run Avg|Hold>100/100 #/IFGain:Low #Atten: 20 dB Frequency Center Freq 881.500000 MHz Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 10 dB/div **Center Freq** 881.500000 MHz m An CF Step 300.000 kHz Man Center 881.5 MHz #Res BW 30 kHz Span 3 MHz Sweep 4.133 ms Auto #VBW 91 kHz 7.39 dBm **Total Power** Freq Offset Occupied Bandwidth 0 Hz 1.2397 MHz Transmit Freq Error -1.017 kHz **OBW Power** 99.00 % x dB Bandwidth 1.368 MHz x dB -26.00 dB STATUS Downlink-output Page 67 of 95


Plot AWGN UL SENSE:INT ALIGN AUTO Center Freq: 836.500000 MHz Trig: Free Run Avg|Hold>100/100 #Atten: 0 dB 09:26:47 PM May 04, 2017 Radio Std: None Frequency Center Freq 836.500000 MHz Radio Device: BTS #IFGain:Low Ref Offset 1 dB Ref -30.00 dBm 10 dB/div **Center Freq** 836.500000 MHz CF Step 1.000000 MHz Man Center 836.5 MHz #Res BW 100 kHz Span 10 MHz Sweep 1.2 ms Auto #VBW 50 MHz Occupied Bandwidth Total Power -40.5 dBm Freq Offset 0 Hz 4.2075 MHz Transmit Freq Error -4.748 kHz **OBW Power** 99.00 % x dB Bandwidth 4.716 MHz x dB -26.00 dB STATUS Uplink-input 09:31:06 PM May 04, 2017 Radio Std: None Image: Control Freq: 836.500000 MHz Alten AUTO Trig: Freq: 836.500000 MHz Trig: Freq: 836.500000 MHz #IFGain:Low #Atten: 20 dB Frequency Center Freq 836.500000 MHz Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 10 dB/di **Center Freq** 836.500000 MHz Λ. CF Step 1.000000 MHz Man Span 10 MHz Sweep 1.2 ms Center 836.5 MHz #Res BW 100 kHz <u>Auto</u> #VBW 50 MHz Total Power 14.7 dBm Freq Offset **Occupied Bandwidth** 0 Hz 4.2678 MHz Transmit Freq Error -45.279 kHz **OBW Power** 99.00 % 5.893 MHz x dB Bandwidth x dB -26.00 dB STATUS **Uplink-output**


Report No.: TCT170321E009

Page 68 of 95

Report No.: TCT170321E009 **AWGN Downlink** SENSE:INT ALIGNAUTO Center Freq: 881.500000 MHz Trig: Free Run Avg|Hold:>100/100 #Atten: 0 dB 09:27:46 PM May 04, 201 Radio Std: None Frequency Center Freq 881.500000 MHz #IFGain:Low Radio Device: BTS Ref Offset 1 dB Ref -30.00 dBm 10 dB/div Log **r Center Freq** 881.500000 MHz CF Step 1.000000 MHz Man Center 881.5 MHz #Res BW 100 kHz Span 10 MHz Sweep 1.2 ms <u>Auto</u> #VBW 50 MHz Total Power -53.9 dBm Freq Offset **Occupied Bandwidth** 0 Hz 4.3339 MHz 7.582 kHz **OBW Power** 99.00 % **Transmit Freq Error** x dB Bandwidth 10.00 MHz -26.00 dB x dB STATUS **Downlink-input** trum Analyzer - Occupied BW 09:33:04 PM May 04, 2017 Radio Std: None SENSE:INT ALIGNAUTC Center Freq: 881.500000 MHz Trig: Free Run Avg|Hold>100/100 #Atten: 20 dB Frequency Center Freq 881.500000 MHz Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 10 dB/div **Center Freq** 881.500000 MHz mannan mound CF Step 1.000000 MHz Man Span 10 MHz Sweep 1.2 ms Center 881.5 MHz #Res BW 100 kHz <u>Auto</u> #VBW 50 MHz 7.85 dBm **Total Power** Freq Offset **Occupied Bandwidth** 0 Hz 4.2892 MHz Transmit Freq Error -1.525 kHz **OBW Power** 99.00 % x dB Bandwidth 4.698 MHz x dB -26.00 dB STATUS Downlink-output Page 69 of 95

1700MHz

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Plot **CDMA UL** SENSE:INT ALIGN AUTO Center Freq: 1.732500000 GHz Trig: Free Run Avg|Hold>100/100 #Atten: 0 dB 09:24:16 PM May 04, 2017 Radio Std: None Center Freq 1.732500000 GHz Frequency Radio Device: BTS #IFGain:Low Ref Offset 1 dB Ref -30.00 dBm **Center Freq** 1.732500000 GHz CF Step 300.000 kHz Span 3 MHz Sweep 4.133 ms Center 1.733 GHz #Res BW 30 kHz <u>Auto</u> Man #VBW 91 kHz -41.0 dBm Occupied Bandwidth Total Power Freq Offset 0 Hz 1.2457 MHz Transmit Freq Error 1.021 kHz **OBW Power** 99.00 % x dB Bandwidth 1.370 MHz x dB -26.00 dB STATUS

Uplink-input

Uplink-output

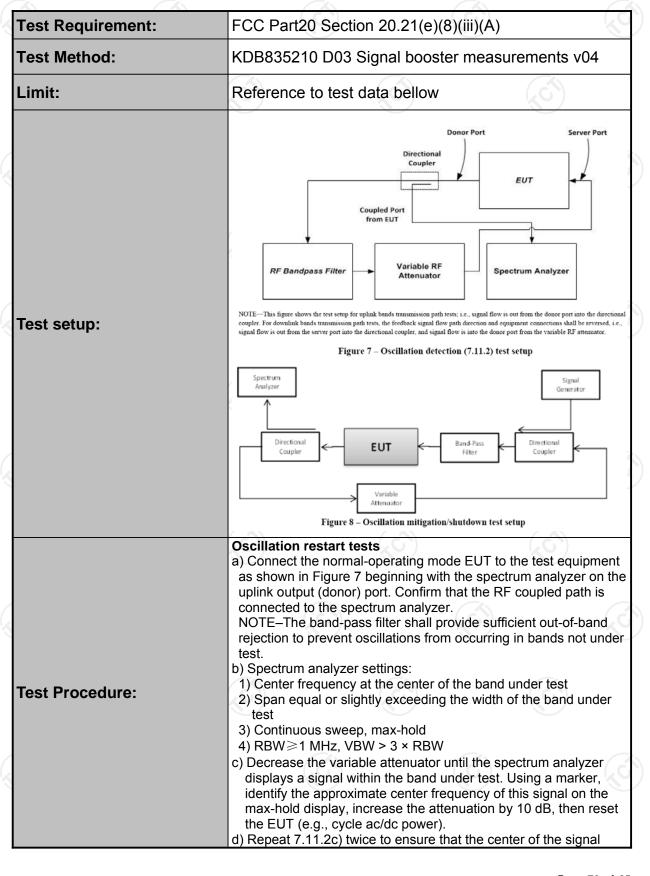
Page 72 of 95

Report No.: TCT170321E009

10 dB/div

Report No.: TCT170321E009 **CDMA** Downlink Center Freq: 2.132500000 GHz Trig: Free Run Avg|Hold>100/100 #Atten: 0 dB 09:24:52 PM May 04, 2013 Radio Std: None Frequency Center Freq 2.132500000 GHz #IFGain:Low Radio Device: BTS Ref Offset 1 dB Ref -30.00 dBm 10 dB/div Log **r Center Freq** 2.132500000 GHz Agar CF Step 300.000 kHz Man Center 2.133 GHz #Res BW 30 kHz Span 3 MHz Sweep 4.133 ms <u>Auto</u> #VBW 91 kHz Total Power -52.3 dBm Freq Offset **Occupied Bandwidth** 0 Hz 1.2529 MHz **OBW** Power 99.00 % **Transmit Freq Error** 278 Hz x dB Bandwidth 1.388 MHz x dB -26.00 dB STATUS **Downlink-input** trum Analyzer - Occupied BW 09:35:52 PM May 04, 2017 Radio Std: None SENSE:INT ALIGNAUTC Center Freq:: 2.132500000 GHz Trig: Freq Run XFIF: Freq:: 2.0 dB Avg|Hold>100/100 Frequency Center Freq 2.132500000 GHz Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 10 dB/div **Center Freq** 2.132500000 GHz with -M. Confl man Muny CF Step 300.000 kHz Man Span 3 MHz Sweep 4.133 ms Center 2.133 GHz #Res BW 30 kHz Auto #VBW 91 kHz 8.42 dBm **Total Power** Freq Offset Occupied Bandwidth 0 Hz 1.2433 MHz Transmit Freq Error -227 Hz **OBW Power** 99.00 % x dB Bandwidth 1.375 MHz x dB -26.00 dB STATUS Downlink-output Page 73 of 95

Plot AWGN UL SENSE:INT ALIGN AUTO Center Freq: 1.732500000 GHz Trig: Free Run Avg|Hold:>100/100 #Atten: 0 dB 09:28:27 PM May 04, 2017 Radio Std: None Frequency Center Freq 1.732500000 GHz Radio Device: BTS #IFGain:Low Ref Offset 1 dB Ref -30.00 dBm 10 dB/div **Center Freq** 1.732500000 GHz CF Step 1.000000 MHz Man Span 10 MHz Sweep 1.2 ms Center 1.733 GHz #Res BW 100 kHz Auto #VBW 50 MHz Occupied Bandwidth Total Power -40.0 dBm Freq Offset 0 Hz 4.2063 MHz Transmit Freq Error 801 Hz **OBW Power** 99.00 % x dB Bandwidth 4.700 MHz x dB -26.00 dB STATUS Uplink-input 09:31:44 PM May 04, 2017 Radio Std: None Center Free Run Avg|Hold:>100/100 #Atten: 20 dB Frequency Center Freq 1.732500000 GHz #IFGain:Low Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 0 dB/di **Center Freq** 1.732500000 GHz Mary NWW WWWWWW handle CF Step 1.000000 MHz Man Span 10 MHz Sweep 1.2 ms Center 1.733 GHz #Res BW 100 kHz <u>Auto</u> #VBW 50 MHz **Occupied Bandwidth** Total Power 15.0 dBm Freq Offset 0 Hz 4.2469 MHz Transmit Freq Error 4.496 kHz **OBW Power** 99.00 % 4.889 MHz x dB Bandwidth x dB -26.00 dB STATUS **Uplink-output**


Report No.: TCT170321E009

Report No.: TCT170321E009 **AWGN Downlink** SENSE:INT] ALIGNAUTO Center Freq: 2.132500000 GHz ↓ Trig: Free Run Avg|Hold>100/100 #Atten: 0 dB 09:29:15 PM May 04, 201 Radio Std: None Frequency Center Freq 2.132500000 GHz #IFGain:Low Radio Device: BTS Ref Offset 1 dB Ref -30.00 dBm 10 dB/div Log **r Center Freq** 2.132500000 GHz CF Step 1.000000 MHz Man Span 10 MHz Sweep 1.2 ms Center 2.133 GHz #Res BW 100 kHz <u>Auto</u> #VBW 50 MHz Total Power -51.6 dBm Freq Offset **Occupied Bandwidth** 0 Hz 4.3104 MHz 9.089 kHz **OBW Power** 99.00 % **Transmit Freq Error** x dB Bandwidth 10.00 MHz -26.00 dB x dB STATUS **Downlink-input** trum Analyzer - Occupied BW 09:33:44 PM May 04, 2017 Radio Std: None SENSE:INT ALIGNAUTC Center Freq:: 2.132500000 GHz Trig: Freq Run XFIF: Freq:: 2.0 dB Avg|Hold>100/100 Frequency Center Freq 2.132500000 GHz Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 10 dB/div **Center Freq** 2.132500000 GHz www.m mar and the series hamme - have CF Step 1.000000 MHz Man Span 10 MHz Sweep 1.2 ms Center 2.133 GHz #Res BW 100 kHz Auto #VBW 50 MHz 9.03 dBm **Total Power** Freq Offset Occupied Bandwidth 0 Hz 4.2418 MHz Transmit Freq Error 4.992 kHz **OBW Power** 99.00 % x dB Bandwidth 4.934 MHz x dB -26.00 dB STATUS Downlink-output Page 75 of 95

6.10. Oscillation Detection and Mitigation

6.10.1. Test Specification

Page 76 of 95

TCT 通	刂检测
TESTING	NTRE TECHNOLOGY Report No.: TCT170321E0
	 created by the booster remains within 250 kHz of the spectrum analyzer display center frequency. If the frequency of the signal is unstable, confirm that the spectrum analyzer display is centered between the frequency extremes observed. If the signal is wider than 1 MHz, ensure that the spectrum analyzer display is centered on the signal by increasing the RBW. Reset the EUT (e.g., cycle ac/dc power) after each oscillation event, if necessary. Set the spectrum analyzer sweep trigger level to just below the peak amplitude of the displayed EUT oscillation signal. e) Set the spectrum analyzer to zero-span, with a sweep time of 5 seconds, and single-sweep with max-hold. The spectrum analyzer sweep trigger level in this and the subsequent steps shall be the level identified in 7.11.2d).
	 f) Decrease the variable attenuator until the spectrum analyzer sweep is triggered, increase the attenuation by 10 dB, then reset the EUT (e.g., cycle ac/dc power). g) Reset the zero-span trigger of the spectrum analyzer, then repeat 7.11.2f) twice to ensure that the spectrum analyzer is reliably triggered, resetting the EUT (e.g., cycle ac/dc power)
	 after each oscillation event if necessary. h) Reset the zero-span sweep trigger of the spectrum analyzer, and reset the EUT (e.g., cycle ac/dc power). i) Force the EUT into oscillation by reducing the attenuation. j) Use the marker function of the spectrum analyzer to measure the time from the onset of oscillation until the EUT turns off, by setting Marker 1 on the leading edge of the oscillation signal and Marker 2 on the trailing edge. The spectrum analyzer sweep time may be adjusted to improve the time resolution of these cursors. k) Capture the spectrum analyzer zero-span trace for inclusion in the test report. Report the power level associated with the
	 oscillation separately if it can't be displayed on the trace. I) Repeat 7.11.2b) to 7.11.2k) for all operational uplink and downlink bands. m) Set the spectrum analyzer zero-span sweep time for longer than 60 seconds, then measure the restart time for each operational uplink and downlink band. n) Replace the normal-operating mode EUT with the EUT that supports an anti-oscillation test mode. o) Set the spectrum analyzer zero-span time for a minimum of 120 seconds, and a single sweep. p) Manually trigger the spectrum analyzer zero-span sweep, and
	 manually force the booster into oscillation as described in 7.11.2i). q) When the sweep is complete, place cursors between the first two oscillation detections, and save the plot for inclusion in the test report. The time between restarts must match the manufacturer's timing for the test mode, and there shall be no more than 5 restarts. r) Repeat 7.11.2m) to 7.11.2q) for all operational uplink and downlink bands. Test procedure for measuring oscillation mitigation or
	 a) Connect the normal-operating mode EUT to the test equipment as shown in Figure 8. b) Set the spectrum analyzer center frequency to the center of band under test, and use the following settings: 1) RBW=30 kHz, VBW ≥ 3 × RBW, 2) power averaging (rms) detector, 3) trace averages ≥ 100, 4) span ≥ 120% of operational band under test,

TCT 通测检测	
TESTING CENTRE TECHNOLOGY	Report No.: TCT170321E009
	 5) number of sweep points ≥ 2 × Span/RBW. c) Configure the signal generator for AWGN operation with a 99% OBW of 4.1 MHz, tuned to the frequency of 2.5 MHz above the lower edge or below the upper edge of the operating band under test. Adjust the RF output level of the signal generator such that the measured power level of the AWGN signal at the output port of the booster is 30 dB less than the maximum power of the booster for the band under test. Affirm that the input signal is not obstructing the measurement of the strongest oscillation peak in the band, and is not included within the span in the measurement. 1) Boosters with operating spectrum passbands of 10 MHz or less
	 may use a CW signal source at the band edge rather than AWGN. 2) For device passbands greater than 10 MHz, standard CMRS signal sources (i.e., CDMA, W-CDMA, LTE) may be used instead of AWGN at the band edge. d) Set the variable attenuator to a high attenuation setting such that the booster will operate at maximum gain when powered on. Reset the the EUT (e.g., cycle ac/dc power). Allow the EUT to complete its boot-up process, to reach full operational gain, and
	 to stabilize its operation. e) Set the variable attenuator such that the insertion loss for the center of the band under test (isolation) between the booster donor port and server port is 5 dB greater than the maximum gain, as recorded in the maximum gain test procedure (see 7.3), for the band under test. f) Verify the EUT shuts down, i.e., to mitigate the oscillations. If the booster does not shut down, measure and verify the peak oscillation level as follows. 1) Allow the spectrum analyzer trace to stabilize.
	 2) Place the marker at the highest oscillation level occurring within the span, and record its output level and frequency. 3) Set the spectrum analyzer center frequency to the frequency with the highest oscillation signal level, and reduce the span such that the upper and lower adjacent oscillation peaks are within the span. 4) Use the Minimum Search Marker function to find the lowest output level that is within the span, and within the operational band under test, and record its output level and frequency. 5) Affirm that the peak oscillation level measured in 7.11.3f2), does not exceed by 12.0 dB the minimal output level measured in
	 7.11.3f)4). Record the measurement results of 7.11.3f2) and 7.11.3f4) in tabular format for inclusion in the test report. 6) The procedure of 7.11.3f1) to 7.11.3.f5) allows the spectrum analyzer trace to stabilize, and verification of shutdown or oscillation level measurement must occur within 300 seconds.14 g) Decrease the variable attenuator in 1 dB steps, and repeat step 7.11.3f) for each 1 dB step. Continue testing to the level when the insertion loss for the center of band under test (isolation) between the booster donor port and server port is 5 dB lower than the maximum gain (see 7.3). h) Repeat 7.11.3a) to 7.11.3g) for all operational uplink and downlink bands.
Test results:	PASS O

Page 78 of 95

CT通测检测 TESTING CENTRE TECHNOLOGY 6.10.2. Test Instruments

Report No.: TCT170321E009

Equipment	Manufactu rer	Model	S/N	Calibration Date	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY491 00060	Aug. 15, 2016	Aug. 11, 2017
Attenuation	AF115A-09 -34	JFW	907763	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS0800	162300 09	Aug. 15, 2016	Aug. 11, 2017
AN03468	Band Pass Filter	4CS10- 781.5/E12.2- O/O	N/A	Aug. 15, 2016	Aug. 11, 2017
AN03469	Band Pass Filter	4CS10- 751.5/E12-O/O	N/A	Aug. 15, 2016	Aug. 11, 2017
AN02475	1 dB step Attenuator	8494B	N/A	Aug. 15, 2016	Aug. 11, 2017
AN03429	10dB step Attenuator	8496B	N/A	Aug. 15, 2016	Aug. 11, 2017
ANC00082	RF Coupler	722-10-1.500V	N/A	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

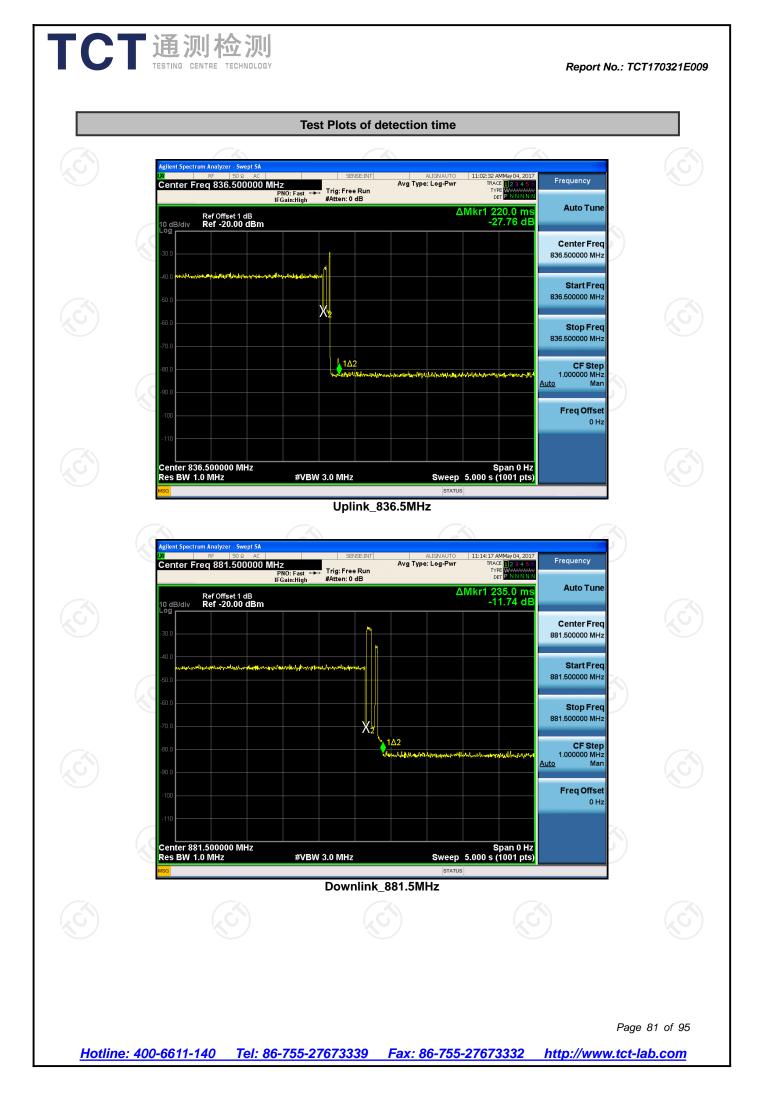
6.10.3. Test Data

Test results of detection time

	Link	Detection Time (s)	Limit (s)	Result
5	Uplink_836.5MHz	0.220	0.300	
	Downlink_881.5MHz	0.235	1.000	PASS
	Uplink_1732.5MHz	0.095	0.300	PA00
	Downlink_2132.5MHz	0.165	1.000	

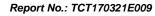
Test results of restarting time

				(,G)
	Link	Restarting Time (s)	Limit (s)	Result
	Uplink_836.5MHz	110	≥60.0	
	Downlink_881.5MHz	110	≥60.0	PASS
	Uplink_1732.5MHz	110	≥60.0	PA00
1	Downlink_2132.5MHz	113	≥60.0	
5				


Page 79 of 95

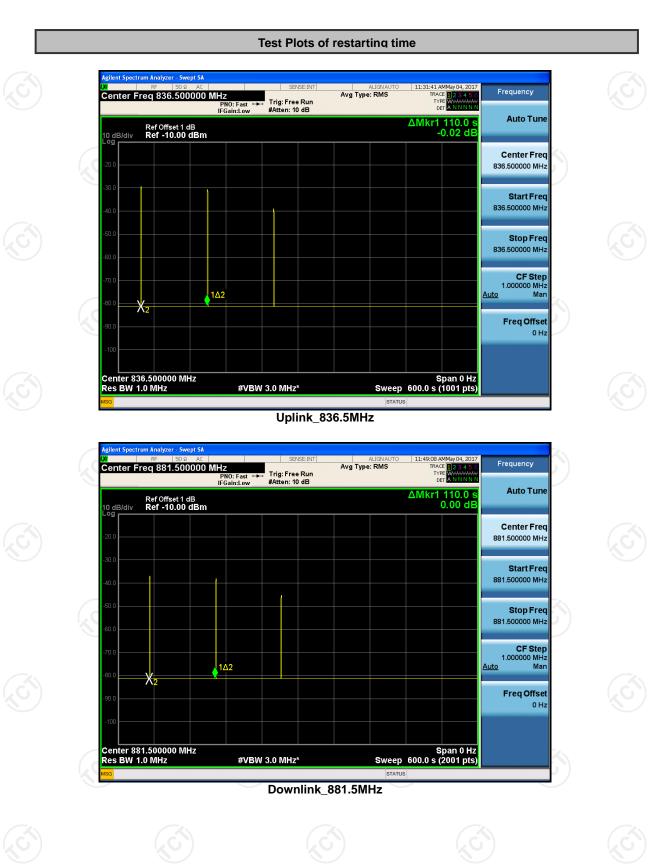
	Link	Restarting Counts	Limit	Result
	Uplink_836.5MHz	3	≤5	
K	Downlink_881.5MHz	3	≤5	PASS
	Uplink_1732.5MHz	3	≤5	FA33
	Downlink_2132.5MHz	3	≤5	
	$(\mathcal{A}G^{*})$	(\mathcal{G})		

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Avg Type: Log-Pwr TYPE DET Auto Tune ΔMkr1 95.00 ms -18.67 dB Ref Offset 1 dB Ref 1.00 dBm 10 dB/div **Center Freq** 1.732500000 GHz Start Freq 1.732500000 GHz Stop Freq 1.732500000 GHz ×2 **CF Step** 1.000000 MHz Man <u>Auto</u> 1Δ2 Freq Offset 0 Hz Center 1.732500000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 5.000 s (1001 pts) #VBW 3.0 MHz

Uplink_1732.5MHz


- Swept SA 24 RF 50 Ω AC Center Freq 2.132500000 GHz Ph0: Fast → IFGain:Low SENSE:INT Frequency Avg Type: Log-Pwr RACE TYPE DE1 Trig: Free Run #Atten: 10 dB ΔMkr1 165.0 ms -15.78 dB Auto Tune Ref Offset 1 dB Ref 1.00 dBm 10 dB/div Log Center Freq 2.132500000 GHz Start Freq 2.132500000 GHz Stop Freq 2.132500000 GHz X CF Step 1.000000 MHz Man 1<u>∆</u>2 Auto Freq Offset 0 Hz Center 2.132500000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 5.000 s (1001 pts) #VBW 3.0 MHz

Downlink_2132.5MHz

Page 82 of 95

SENSE:INT TO 11:28:10 A TRAC Frequency Center Freq 1.732500000 GHz Avg Type: RMS 123456 WAAAAAAA CFZ PNO: Fast ↔→→ Trig: Free Run IFGain:High #Atten: 0 dB TYPE ΔMkr1 110.0 s 0.08 dB Auto Tune Ref Offset 1 dB Ref -19.00 dBm 10 dB/div Log **Center Freq** 1.732500000 GHz Start Freq 1.732500000 GHz Stop Freq 1.732500000 GHz CF Step 1.000000 MHz Man <u>Auto</u> 1Δ2 <mark>-</mark>∦₂ Freq Offset 0 Hz Center 1.732500000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 600.0 s (1001 pts) #VBW 3.0 MHz*

Uplink_1732.5MHz

0 11:17:17 AM TRACE Avg Type: RMS Center Freq 2.132500000 GHz Trig: Free Run #Atten: 0 dB TYPE DET PNO: Fast • IFGain:High Auto Tune ΔMkr1 113.0 s -0.93 dB Ref Offset 1 dB Ref -19.00 dBm 10 dB/div Loa **Center Freq** 2.132500000 GHz Start Freq 2.132500000 GHz Stop Freq 2.132500000 GHz CF Step 1.000000 MHz Man <u>Auto</u> 1Δ2 X₂ Freq Offset 0 Hz Center 2.132500000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 600.0 s (1001 pts) #VBW 3.0 MHz*

Downlink_2132.5MHz

Page 84 of 95

gilent Sp

ctrum Analyzer - Swept SA

Report No.: TCT170321E009

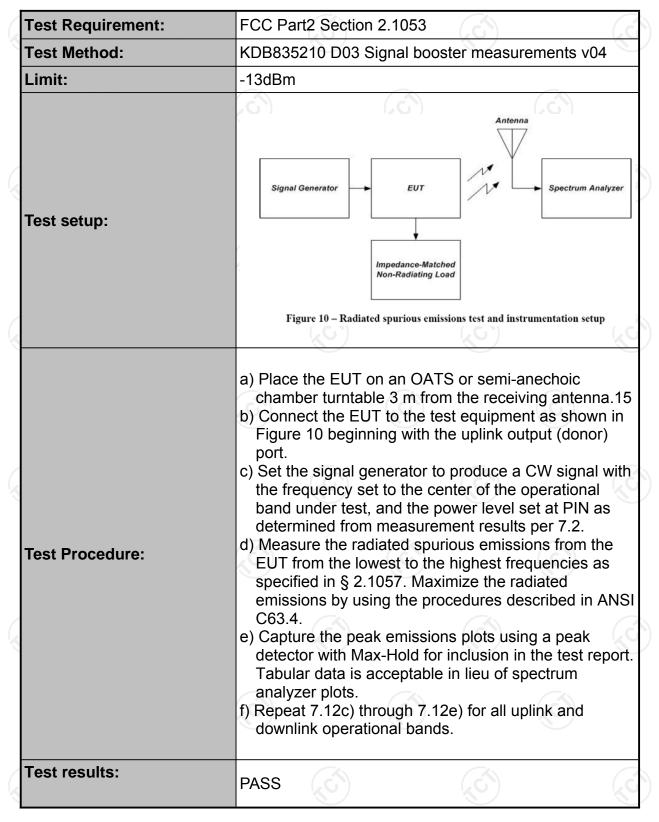
Test results of Mitigation or Shutdown

			Oscillat	ion Mitig	ation - U	plink			
Band				824-	-849MHz			sec < 300 Pass < 300 Pass	
Test Signal Type				w	CDMA				
Variable Attenuator	Oscilla	ations	Lowest C Power	•	Margin	Limit	Time to Mitigate	Time	
Setting	Freq.	Level	Freq.	Level	warym		Oscillation		
dB	MHz	dBm	MHz	dBm	dB	d	sec	sec	
+5	833.48	-57.5	831.73	-70.2	12.7	<12	84	< 300	Pass
+4	833.48	-68.4	831.73	-71.4	3.0	<12	NA	< 300	Pass
+3	833.48	-69.2	831.73	-72.4	3.2	<12	NA	< 300	Pass
+2	833.48	-70.8	831.73	-73.9	3.1	<12	NA	< 300	Pass
+1	833.48	-70.1	831.73	-74.3	4.2	<12	NA	< 300	Pass
+0	833.48	-71.3	831.73	-74.5	3.2	<12	NA	< 300	Pass
-1	833.48	-70.8	831.73	-73.7	2.9	<12	NA	< 300	Pass
-2	833.48	-71.6	831.73	-73.4	1.8	<12	NA	< 300	Pass
-3	833.48	-72.2	831.73	-73.7	1.5	<12	NA	< 300	Pass
-4	833.48	-71.4	831.73	-73.5	2.1	<12	NA	< 300	Pass
-5	833.48	-70.5	831.73	-74.1	3.6	<12	NA	< 300	Pass

			Oscillatio	n Mitiga	tion - Do	wnlink			
Band				869 [,]	~894MHz	:			
Test Signal Ty	pe			W	CDMA				
Variable Attenuator		ations	Lowest C Power	-	Margin Limit Mitigate Tim	Mitigation	n		
Setting	Freq.	Level	Freq.	Level				Limit	Result
dB	MHz	dBm	MHz	dBm	dB	d	sec	sec	
+5	880.39	-56.4	882.73	-69.2	12.8	<12	65	< 300	Pass
+4	880.39	-69.7	882.73	-71.4	1.7	<12	NA	< 300	Pass
+3	880.39	-70.1	882.73	-72.8	2.7	<12	NA	< 300	Pass
+2	880.39	-69.6	882.73	-73.5	3.9	<12	NA	< 300	Pass
+1	880.39	-71.5	882.73	-73.2	1.7	<12	NA	< 300	Pass
+0	880.39	-70.2	882.73	-72.9	2.7	<12	NA	< 300	Pass
-1	880.39	-69.9	882.73	-74.6	4.7	<12	NA	< 300	Pass
-2	880.39	-72.5	882.73	-74.3	1.8	<12	NA	< 300	Pass
-3	880.39	-71.7	882.73	-73.1	1.4	<12	NA	< 300	Pass
-4	880.39	-72.4	882.73	-73.5	1.1	<12	NA	< 300	Pass
-5	880.39	-70.7	882.73	-73.9	3.2	<12	NA	< 300	Pass
GN)	(,C			(\mathcal{G})			(C)	· · · · ·	6

Page 85 of 95

	Oscillation Mitigation - Uplink											
Band				1710 [,]	~1755MH	z						
Test Signal	WCDMA											
Variable Attenuator	Oscilla	ations		-		Mitigation Time						
Setting		Level	-		Oscillation	Limit	Result					
dB	MHz	dBm	MHz	dBm	dB	d	sec	sec				
+5	1730.8	-54.8	1728.4	-69.2	14.4	<12	115	< 300	Pass			
+4	1730.8	-57.2	1728.4	-70.5	13.3	<12	142	< 300	Pass			
+3	1730.8	-69.7	1728.4	-71.8	2.1	<12	NA	< 300	Pass			
+2	1730.8	-71.2	1728.4	-73.5	2.3	<12	NA	< 300	Pass			
+1	1730.8	-70.5	1728.4	-73.2	2.7	<12	NA	< 300	Pass			
+0	1730.8	-69.2	1728.4	-73.1	3.9	<12	NA	< 300	Pass			
-1	1730.8	-69.6	1728.4	-74.2	4.6	<12	NA	< 300	Pass			
-2	1730.8	-71.8	1728.4	-73.4	1.6	<12	NA	< 300	Pass			
-3	1730.8	-70.7	1728.4	-73.9	3.2	<12	NA	< 300	Pass			
-4	1730.8	-70.1	1728.4	-74.5	4.4	<12	NA	< 300	Pass			
-5	1730.8	-69.8	1728.4	-73.6	3.8	<12	NA	< 300	Pass			
	Test Signal Variable Attenuator Setting dB +5 +4 +3 +2 +1 +0 -1 -1 -2 -3 -3 -4	Test Signal Oscilla Variable Attenuator Setting Oscilla dB MHz +5 1730.8 +4 1730.8 +3 1730.8 +2 1730.8 +1 1730.8 +1 1730.8 -1 1730.8 -2 1730.8 -3 1730.8 -3 1730.8 -4 1730.8	Test Signal Oscillations Variable Attenuator Setting Oscillations Herei Instant dB MHz dBm +5 1730.8 -54.8 +4 1730.8 -57.2 +3 1730.8 -69.7 +2 1730.8 -71.2 +1 1730.8 -69.2 -1 1730.8 -69.2 -1 1730.8 -69.2 -3 1730.8 -71.8 -3 1730.8 -70.7 -4 1730.8 -70.7	Band Jest Signal Variable Attenuator Setting Oscillations Lowest of Power Mathematics Oscillations Lowest of Power Mereine Level Freq. MHz dBm MHz MHz dBm MHz H4 1730.8 -57.2 1728.4 +3 1730.8 -69.7 1728.4 +1 1730.8 -70.5 1728.4 +1 1730.8 -69.2 1728.4 +0 1730.8 -69.2 1728.4 -1 1730.8 -69.2 1728.4 -2 1730.8 -70.5 1728.4 -3 1730.8 -70.5 1728.4 -3 1730.8 -70.5 1728.4 -3 1730.8 -70.7 1728.4 -3 1730.8 -70.7 1728.4 -3 1730.8 -70.7 1728.4 -3 1730.8 -70.7 1728.4	Band 1710 Test Signal 1710 Variable Attenuator Setting Coscillations Lowest Output Power Level Mather Coscillations Lowest Output Power Level Level MB MHz dBm MHz dBm dB MHz dBm MHz dBm +5 1730.8 -54.8 1728.4 -69.2 +4 1730.8 -57.2 1728.4 -70.5 +3 1730.8 -69.7 1728.4 -73.5 +1 1730.8 -71.2 1728.4 -73.2 +0 1730.8 -69.2 1728.4 -73.2 +0 1730.8 -69.2 1728.4 -73.2 +0 1730.8 -69.2 1728.4 -73.1 -1 1730.8 -69.6 1728.4 -73.4 -3 1730.8 -70.7 1728.4 -73.4 -3 1730.8 -70.7 1728.4 -73.4 <	Band 1710-1755MH Test Signal WIDELINES 1710-1755MH Variable Attenuator Setting Oscillations Lowest Output Power Level Margin MB MHz Level Freq. Level Margin Margin dB MHz dBm MHz dBm dBm dB dB dB dB Margin +5 1730.8 -54.8 1728.4 -69.2 14.4 +4 1730.8 -57.2 1728.4 -69.2 13.3 +3 1730.8 -69.7 1728.4 -71.8 2.1 +2 1730.8 -70.5 1728.4 -73.5 2.3 +1 1730.8 -69.2 1728.4 -73.1 3.9 -1 1730.8 -69.2 1728.4 -73.2 2.7 +0 1730.8 -69.6 1728.4 -73.4 1.6 -2 1730.8 -70.7 1728.4 -73.9 <	Band 1710-1755MHz Test Signal Variable Attenuator Setting Coscillations Lowest Output Power Level Margin Arrow Power Level MB MHz dBm MHz dBm dB d d MHZ MHz dBm MHz dBm dB d	Band 1710-1755MHz Test Signal WCDMA Variable Attenuator Setting Oscillations Lowest Output Power Level Margin Margin Limit Time to Mitigate Oscillation dB MHz dBm MHz dBm dB d sec +5 1730.8 -54.8 1728.4 -69.2 14.4 <12 115 +4 1730.8 -57.2 1728.4 -70.5 13.3 <12 142 +3 1730.8 -69.7 1728.4 -71.8 2.1 <12 NA +2 1730.8 -70.5 1728.4 -73.5 2.3 <12 NA +1 1730.8 -70.5 1728.4 -73.5 2.3 <12 NA +1 1730.8 -69.6 1728.4 -73.5 2.3 <12 NA -1 1730.8 -69.6 1728.4 -73.2 2.7 <12 NA -2	Band 1710-1755MHz Test Signal VCDMA Variable Attenuator Setting Oscillations Lowest Utput Power Level Margin Limit Time to Mitigate Oscillation Mitigation Time Limit dB MHz dBm MHz dBm dB d sec sec +5 1730.8 -54.8 1728.4 -69.2 14.4 <12 1115 < 300 +4 1730.8 -57.2 1728.4 -70.5 13.3 <12 142 < 300 +3 1730.8 -69.7 1728.4 -73.5 2.3 <12 NA < 300 +1 1730.8 -71.2 1728.4 -73.5 2.3 <12 NA < 300 +2 1730.8 -71.5 1728.4 -73.5 2.3 <12 NA < 300 +1 1730.8 -70.5 1728.4 -73.2 2.7 <12 NA < 300 +2 1730.8 -69.6 1728.			


Oscillation Mitigation - Downlink										
Band		2110~2155MHz								
Test Signal Type		WCDMA								
Variable Attenuator	Oscilla	ations	Lowest 0 Power	-	Margin	Limit	Time to Mitigate	Mitigation Time LimitResultsec< 300Pass< 300Pass< 300< 300Pass< 300		
Setting	Freq.	Level	Freq.	Level	Margin		Oscillation		Result	
dB	MHz	dBm	MHz	dBm	dB	d	sec	sec		
+5	2131.6	-55.3	2130.5	-69.2	13.9	<12	87	< 300	Pass	
+4	2131.6	-68.7	2130.5	-73.4	4.7	<12	NA	< 300	Pass	
+3	2131.6	-70.1	2130.5	-72.8	2.7	<12	NA	< 300	Pass	
+2	2131.6	-69.6	2130.5	-73.5	3.9	<12	NA	< 300	Pass	
+1	2131.6	-71.5	2130.5	-73.2	1.7	<12	NA	< 300	Pass	
+0	2131.6	-70.2	2130.5	-72.3	2.1	<12	NA	< 300	Pass	
-1	2131.6	-70.9	2130.5	-73.6	2.7	<12	NA	< 300	Pass	
-2	2131.6	-72.8	2130.5	-74.9	2.1	<12	NA	< 300	Pass	
-3	2131.6	-71.7	2130.5	-73.8	2.1	<12	NA	< 300	Pass	
-4	2131.6	-70.4	2130.5	-74.1	3.7	<12	NA	< 300	Pass	
-5	2131.6	-69.8	2130.5	-74.4	4.6	<12	NA	< 300	Pass	

7. Radiation Spurious Emission

Report No.: TCT170321E009

7.1.1. Test Specification

Page 87 of 95

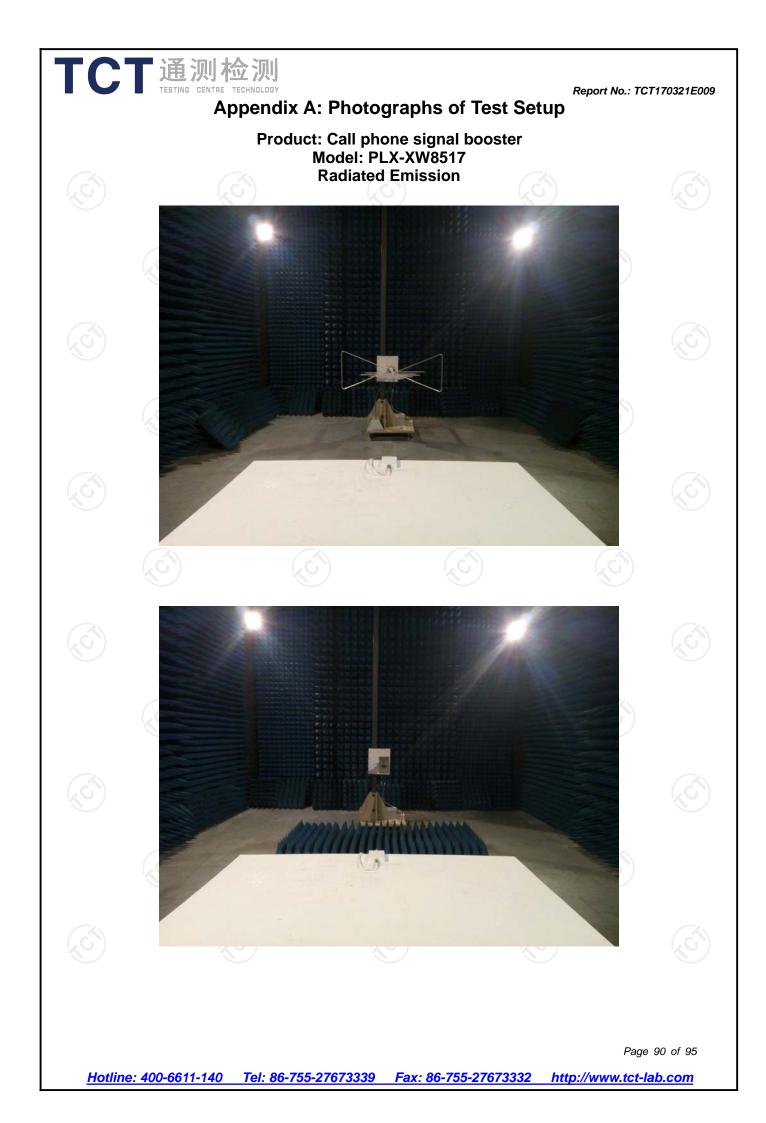
7.1.2. Test Instruments

CT通测检测 TESTING CENTRE TECHNOLOGY

	F	Radiated Emissic	on	
Name	Model No.	Manufacturer	Date of Cal.	Due Date
Test Receiver	ESVD	R&S	Aug. 12, 2016	Aug. 11, 2017
Spectrum Analyzer	FSEM	R&S	Aug. 12, 2016	Aug. 11, 2017
Pre-amplifier	8447D	H.P.	Aug. 12, 2016	Aug. 11, 2017
BiConiLog Antenna	VULB9163	Schwarzbeck Mess- Elecktronik	Aug. 14, 2016	Aug. 13, 2017
Coaxial Cable	N/A	ТСТ	Aug. 13, 2016	Aug. 12, 2017
Coaxial Cable	N/A	тст	Aug. 13, 2016	Aug. 12, 2017
Coaxial Cable	N/A	тст	Aug. 13, 2016	Aug. 12, 2017
Coaxial Cable	N/A	тст	Aug. 13, 2016	Aug. 12, 2017
Loop antenna	ZN30900A	ZHINAN	Aug. 14, 2016	Aug. 13, 2017
Signal Generator	N5182A	Agilent	Aug. 13, 2016	Aug. 12, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

7.1.1. Test data


Frequency [MHz]	Antenna polarity [H/V]	Level [dBm]	Limit [dBm]	Margin [dB]
745	U	olink_824~849MH	lz	
54.13	S v	-42.60		29.60
1721.51	V	-54.26	-13.00	41.26
56.86	H	-45.27		32.27
1715.18	Н	-56.24		43.24
X	Dov	vnlink_869~894N	IHz	G
55.38	v	-50.24		37.24
2134.15	V	-58.83		45.83
57.26	H	-51.24	-13.00	38.24
2132.74	н	-57.52		44.52

Note: Test Frequency range is up to 10GHz, and the test data below 30MHz is too lower than the limit, so not show in this report.

Frequency [MHz]	Antenna polarity [H/V]	Level [dBm]	Limit [dBm]	Margin [dB]
	Up	link_1710~1755Ml	Hz	
54.13	v	-42.81		29.81
834.18	V	-45.24		32.24
3462.4	v	-57.54	9	44.54
56.86	Н	-43.62	-13.00	30.62
834.18	С н	-48.31		48.31
3462.4	Н	-52.46		39.46
	Dow	nlink_2110~2155	ИНz	(\mathbf{c})
56.37	v	-48.28		35.28
884.94	V	-58.72		45.72
4254.5	♥ v	-60.14		47.14
57.73	н	-50.64	-13.00	37.64
882.46	нс	-57.42	(()	44.42
4252.7	н	-60.92		47.92

Note: Test Frequency range is up to 25GHz, and the test data below 30MHz is too lower than the limit, so not show in this report.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

