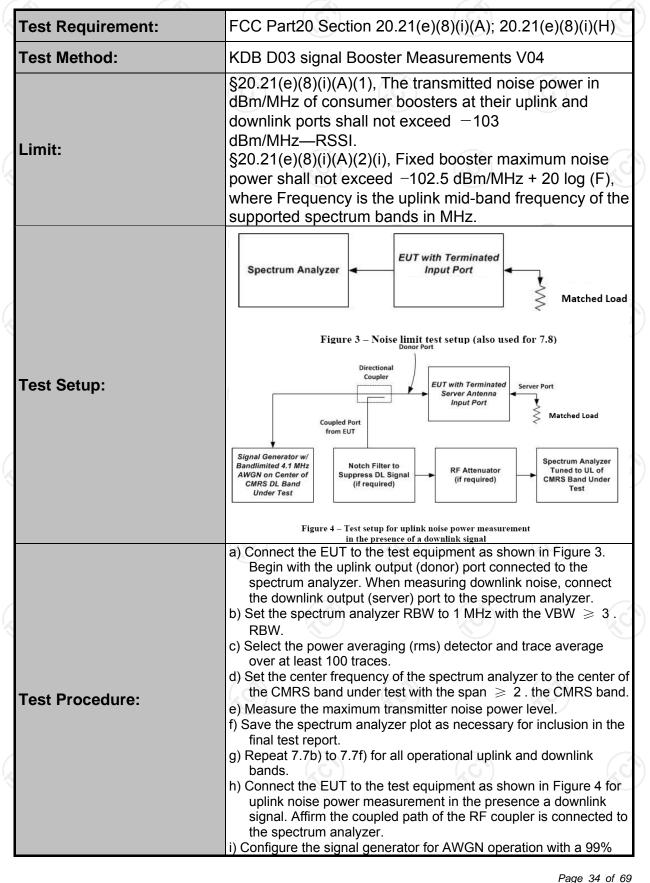

Spurious Frequency					
Level of Emission spurious Level emission (dBm) RBW (kHz) (d	ge of Lev rious spur ssion emis	eration equency MHz) Freque range spurio emissi (MHz	nk Freq	L	
697.90 -51.25 100		707	link 7	Llr	
0 716.10 -41.89 1000	-10 000 716	716.1-10		ΟĻ	
727.18 -47.62 100	727.9 727	737	nlink 7	Dov	
		746.1-10			
bo low, so not show in this report.	Hz is too low, so	level bellow 10MHz	he spurious lev	lote:	


Plot Uplink trum Analyzer - Swept SA ALIGNAUTO Avg Type: Log-Pwr Avg|Hold:>100/100 TYPE M War 27, 201 TYPE M WWWWW DET P NN 5 SENSE:INT 03:46:50 PM TRACE Frequency Start Freq 10.000000 MHz PNO: Fast Trig: Free Run IFGain:Low #Atten: 26 dB Auto Tune Mkr1 697.90 MHz -51.246 dBm Ref Offset 1 dB Ref 17.00 dBm 10 dB/div **Center Freq** 353.950000 MHz Start Freq 10.000000 MHz Stop Freq 697.900000 MHz CF Step 68.790000 MHz Auto Mar Freq Offset 0 Hz Stop 697.9 MHz Sweep 65.87 ms (4001 pts) Start 10.0 MHz #Res BW 100 kHz #VBW 300 kHz gilent Spectrum Analyzer - Swept SA Aug Type: Log-Pwr Avg|Hold>100/100 :19 PM Mar 27, 201 Frequency TYPE MWW DET P NN Start Freg 716.100000 MHz Z PNO: Fast Trig: Free Run IFGain:Low #Atten: 26 dB Mkr1 716.1 MHz -41.890 dBm Auto Tune Ref Offset 1 dB Ref 17.00 dBm 10 dB/div **Center Freq** 5.358050000 GHz Start Freq 716.100000 MHz Stop Freq 10.00000000 GHz CF Step 928.390000 MHz to Man Auto Freq Offset 0 Hz Stop 10.000 GHz Sweep 15.73 ms (4001 pts) Start 716 MHz #Res BW 1.0 MHz #VBW 3.0 MHz

Report No.: TCT170309E019

6.6. Noise Limits

6.6.1. Test Specification

TCT 通测检	: 测
TESTING CENTRE TEC	HNOLOGY Report No.: TCT170309E019
	 OBW of 4.1 MHz. j) Set the spectrum analyzer RBW for 1 MHz, VBW ≥ 3. RBW, with a power averaging (rms) detector with at least 100 trace averages. k) Set the center frequency of the spectrum analyzer to the center of the CMRS band under test, with the span ≥ 2 the CMRS band. This shall include all spectrum blocks in the particular CMRS band under test (see Appendix A). I) For uplink noise measurements, set the spectrum analyzer center frequency for the uplink band under test, and tune the signal
	 generator to the center of the paired downlink band. m) Measure the maximum transmitter noise power level while varying the downlink signal generator output level from -90 dBm to -20 dBm, as measured at the input port (i.e., downlink signal level at the booster donor port node of Figure 4), in 1 dB steps inside the RSSI-dependent region, and in 10 dB steps outside the RSSI-dependent region. Report the six values closest to the limit, with at least two points within the RSSI-dependent region of the limit. See Appendix D for noise limits graphs. n) Repeat 7.7.1h) through 7.7.1m) for all operational uplink bands.
	Variable uplink noise timing is to be measured as follows, using the test setup shown in Figure 4.a) Set the spectrum analyzer to the uplink frequency to be measured.
	 b) Set the span to 0 Hz, with a sweep time of 10 seconds. c) Set the power level of signal generator to the lowest level of the RSSI-dependent noise [see 7.7.1m)]. d) Select MAX HOLD and increase the power level of signal generator by 10 dB for mobile boosters, and 20 dB for fixed boosters.
	 e) Confirm that the uplink noise decreases to the specified level within 1 second for mobile devices, and within 3 seconds for fixed devices.12 f) Repeat 7.7.2a) to 7.7.2e) for all operational uplink bands. g) Include plots and summary table in test report.
Test Result:	PASS

6.6.2. Test Instruments

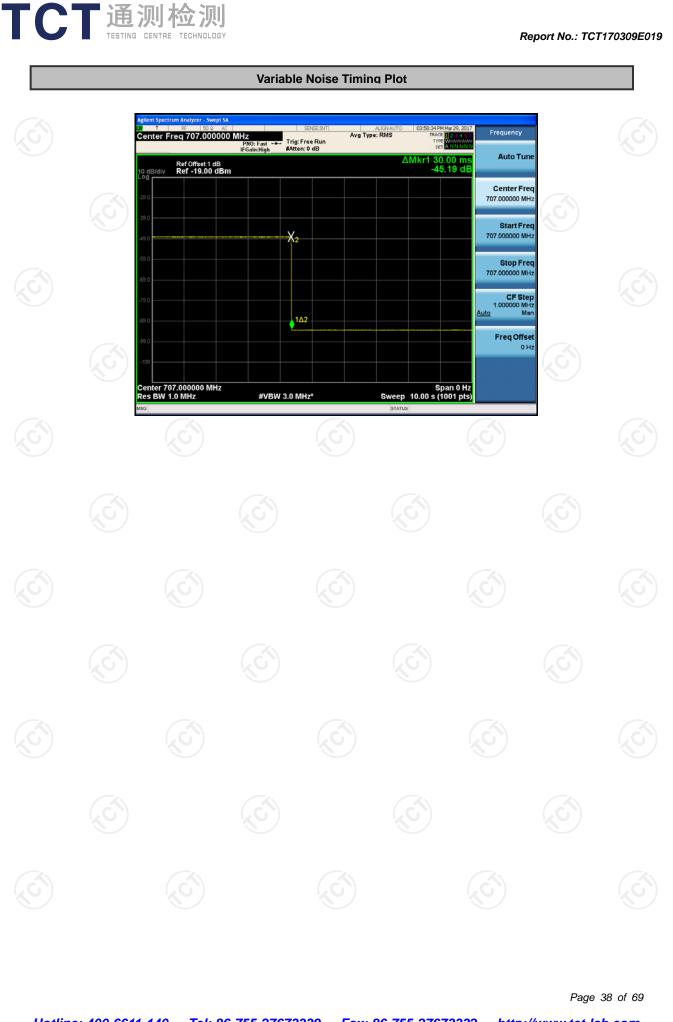
Equipment	Manufactur er	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	E4421B	GB39340839	Aug. 15, 2016	Aug. 11, 2017
Signal Generator	Agilent	N5182	MY4707028 2	Aug. 15, 2016	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY4910006 0	Aug. 15, 2016	Aug. 11, 2017
Attenuation	AF115A-09- 34	JFW	907763	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 35 of 69

6.6.3. Test Data

	Max Noise Power			
Frequency (MHz)	Measured dBm/MHz	Limit dBm/MHz	Margin (dB)	
Uplink 698-716	-48.25	-45.5	PASS	
Downlink 728-746	-50.11	-45.5	PASS	


		698-716MHz						
				Limit				
	RSSI (dBm)	Measured dBm/MHz	RSSI dependent	Fix Booster Limit (dBm)	TX off	Margin (dB)		
	-65.0	-47.2		-45.5		-1.7		
	-64.0	-46.5		-45.5		-1.0		
	-48.0	-56.1	-55.0			-1.1		
ĺ	-45.0	-59.3	-58.0			-1.3		
	-42.0	-61.5	-61.0			-0.5		
	-40.0	-63.9	-63.0			-0.9		
	-38.0	-66.1	-65.0			-1.1		
2	-30.0	-74.3			-70	-4.3		

Variable Uplink Noise Timing

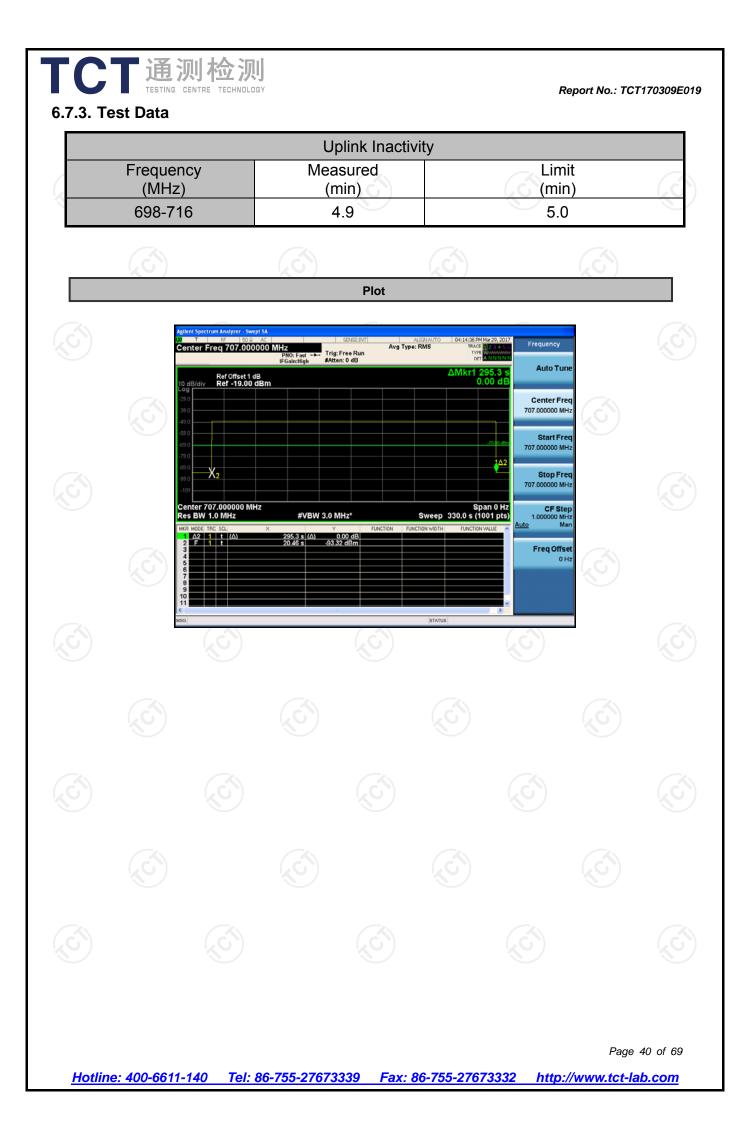
	Frequency MHz	Measured Sec	Limit Sec		
	UL 698-716	0.03	3		
				Page	36 of 69

Report No.: TCT170309E019 Plot ilent Spectrum Analyzer - Swept SA Trace/Detector Marker 3 716.000000000 MHz Avg Type: RMS Avg|Hold: 100/100 NHZ PNO: Fast ↔→ IFGain:High #Atten: 0 dB Select Trace Mkr3 716.000 MH -56.498 dBr Ref Offset 1 dB Ref -19.00 dBm **Clear Write 0**¹ **∂**² _**∮**³ Trace Average Max Hold Span 36.00 MHz Sweep 1.067 ms (4001 pts) Center 707.00 MHz #Res BW 1.0 MHz #VBW 3.0 MHz* **Min Hold** 702.032 698.000 716.000 -48.254 dBn -54.203 dBn -56.498 dBn View Blank N 1 f N 1 f Trace On More 1 of 3 STATUS **Uplink Noise** trum Analyzer - Swept SA DET Frequency Center Freq 737.000000 MHz Avg Type: RMS Avg|Hold: 100/100 I∎ Z PNO: Fast ↔→→ Trig: Free Run IFGain:High #Atten: 0 dB Auto Tune Mkr1 740.546 MHz -50.107 dBm Ref Offset 1 dB Ref -19.00 dBm **Center Freq** 737.000000 MHz **∂**³ ⊘<mark>2</mark>______ Start Freq 719.000000 MHz Stop Freq 755.000000 MHz Center 737.00 MHz #Res BW 1.0 MHz Span 36.00 MHz Sweep 1.067 ms (4001 pts) CF Step 3.600000 MHz Man #VBW 3.0 MHz* Auto 740.546 MHz 728.000 MHz 746.000 MHz -50.107 dBm -56.511 dBm -55.155 dBm 1 f 1 f NN Freq Offset 0 Hz 10 STATUS **Downlink Noise**

Page 37 of 69

6.7. Uplink Inactivity

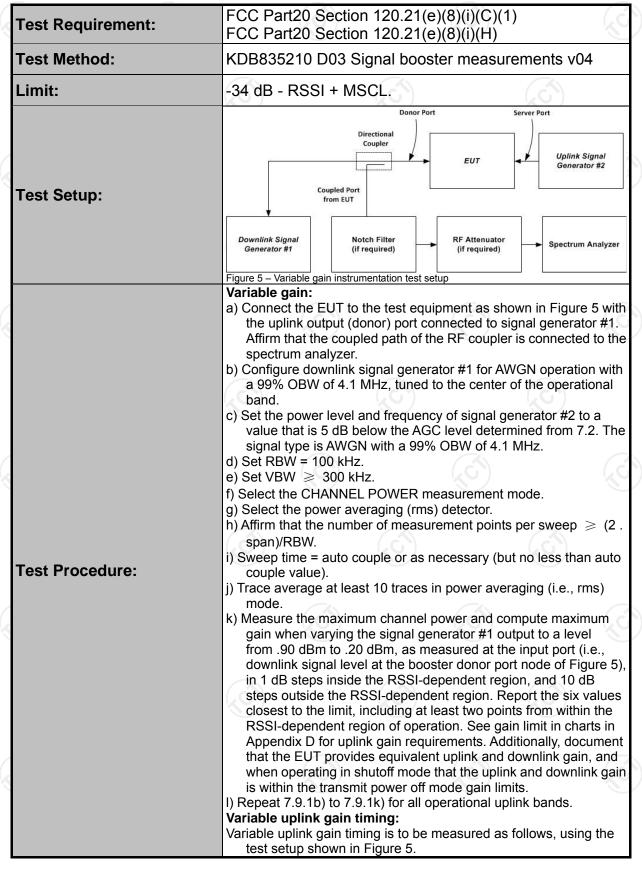
6.7.1. Test Specification


Test Requirement:	FCC Part20 Section 20.21(e)(8)(i)(I)
Test Method:	KDB835210 D03 Signal Booster Measurement V04
Limit:	20.21(e), When a consumer booster is not serving an active device connection after 5 minutes the uplink noise power shall not exceed .70 dBm/MHz.
Test Setup:	Spectrum Analyzer EUT with Terminated Input Port Figure 3 – Noise limit test setup (also used for 7.8)
Test Procedure:	 a) Connect the EUT to the test equipment as shown in Set-Up with the uplink output connected to the spectrum analyzer. b) Select the RMS power averaging detector. c) Set the spectrum analyzer RBW for 1 MHz with the VBW ≥ 3X RBW. d) Set the center frequency of the spectrum analyzer to the center of the uplink operational band. e) Set the span for 0 Hz with a single sweep time for a minimum of 330 seconds. f) Start to capture a new trace using MAX HOLD. g) After approximately 15 seconds turn on the EUT power. h) Once the full spectrum analyzer trace is complete place a MARKER on the leading edge of the pulse and use the DELTA MARKER METHOD to measure the time until the uplink was squelched. i) Ensure the noise level for the squelched signal is below the uplink inactivity noise power limit, as specified by the rules. j) Capture the plot for inclusion in the test report. k) Measure noise using procedures in a) to e). l) Repeat steps c) to k) for all operational uplink bands.
Test Result:	PASS

6.7.2. Test Instruments

RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to


international system unit (SI).

6.8. Variable Booster Gain

6.8.1. Test Specification

Page 41 of 69

CT 通测检测	
TESTING CENTRE TECHNOLOGY	 a) Set the spectrum analyzer to the uplink frequency to be measured. b) Set the span to 0 Hz with a sweep time of 10 seconds. c) Set the power level of signal generator #1 to the lowest level of the RSSI-dependent gain [see 7.9.1k)]. d) Select MAX HOLD and increase the power level of signal generator #1 by 10 dB for mobile boosters, and by 20 dB for fixed indoor boosters. Signal generator #2 remains same, as described in 7.9.1c). e) Confirm that the uplink gain decreases to the specified levels, within 1 second for mobile devices, and within 3 seconds for fixed devices.13
Test Result:	f) Repeat 7.9.2a) to 7.9.2e) for all operational uplink bands. PASS

6.8.2. Test Instruments

Equipment	Manufactur er	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	E4421B	GB39340839	Aug. 15, 2016	Aug. 11, 2017
Signal Generator	Agilent	N5182	MY4707028 2	Aug. 15, 2016	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY4910006 0	Aug. 15, 2016	Aug. 11, 2017
Attenuation	AF115A-09- 34	JFW	907763	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.3. Test Data

Mobile station coupling loss (MSCL): the minimum coupling loss (in dB) between the wireless device and the input (server) port of the consumer booster. MSCL must be calculated or measured for each band of operation and provided in compliance test reports. MSCL includes the path loss from the wireless device, and the booster's server antenna gain and cable loss. The wireless device is assumed to be an isotropic (0 dBi) antenna reference. Minimum standoff distances from inside wireless devices to the booster's server antenna must be reasonable and specified by the manufacturer in customer provided installation manuals.

L p = 20logf + 20logd - 27.5Where: L P = basic free space path loss, f = Center frequency (MHz), d = 2 meters. MSCL for 698-716MHz Lp=20log(707)+20log(2)-27.5=35.51RSSI=Downlink output power - Downlink gain

Page 42 of 69

				698MHz~7	716MHz			
						Limit		Margin (dB)
X	Deel	loout	Measured	Measured	RSSI	Fix		
	RSSI (dBm)	Input (dBm)	Output Power	Gain	Dependent	Booster	TX off	
			(dBm)	(dB)	(dB)	Limit		
	-71.0	-45.00	15.0	60.00		63.5		-3.5
	-64.0	-45.00	15.0	60.00		63.5		-3.5
(-48.0	-45.00	5.9	50.9	53.5			-2.6
N	-46.0	-45.00	3.0	48.0	51.5			-3.5
	-44.0	-45.00	1.8	46.8	49.5			-2.7
	-40.0	-45.00	0.2	45.2	45.5			-0.3

Variable Uplink Gain Timing

CT 通测检测 TESTING CENTRE TECHNOLOGY

Frequency	Measured	Limit
MHz	Sec	Sec
UL 698-716	0.03	

Page 43 of 69

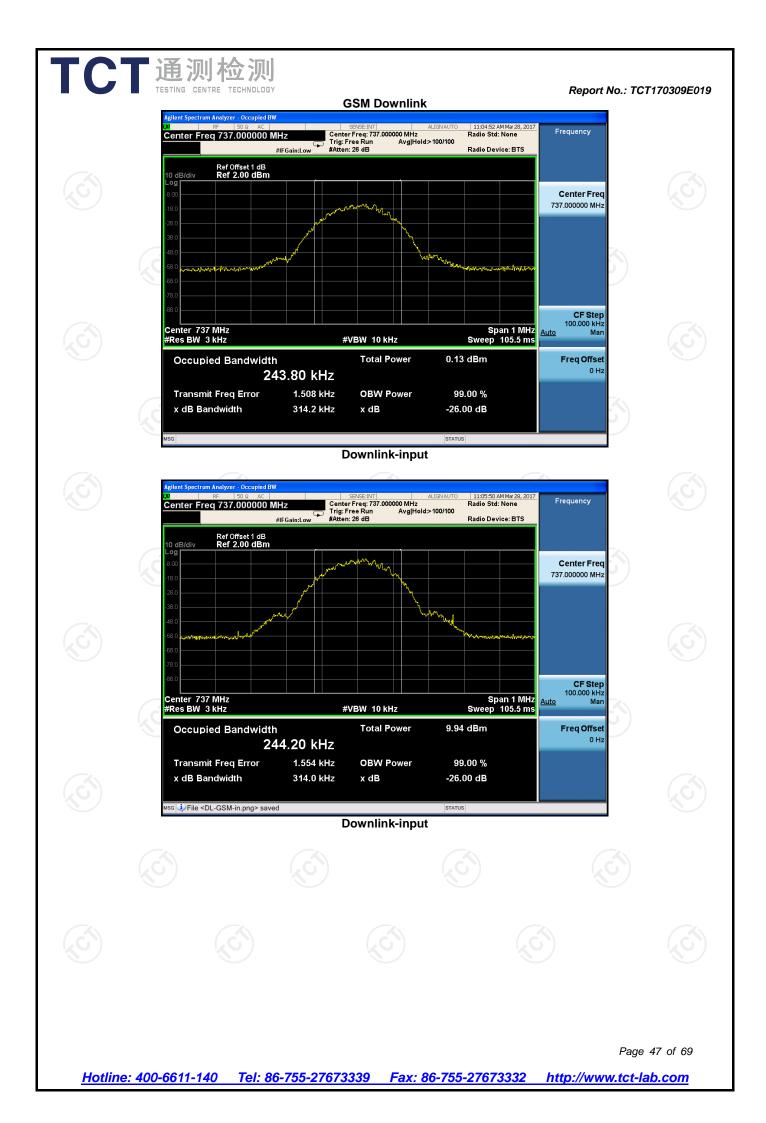
6.9. Occupied Bandwidth

6.9.1. Test Specification

Test Requirement:	FCC Part2 Section 2.1049						
Test Method:	KDB835210 D03 Signal booster measurements v04						
Limit:	N/A						
Test setup:	Signal Generator Spectrum Analyzer Figure 6 – Test setup for measuring characteristics of test signals used for subsequent EUT occupied bandwidth testing						
Test Procedure:	 a) Connect the test equipment as shown in Figure 6 to firstly measure the characteristics of the test signals produced by the signal generator. b) Set VBW ≥ 3 . RBW. c) Set the center frequency of the spectrum analyzer to the center of the operational band. The span will be adjusted for each modulation type and OBW as necessary for accurately viewing the signals. d) Set the signal generator for power level to match the values obtained from the tests of 7.2. e) Set the signal generator modulation type for GSM with a PRBS pattern and allow the trace on the signal generator to stabilize adjusting the span as necessary. f) Set the spectrum analyzer RBW for 1% to 5% of the EBW. g) Capture the spectrum analyzer trace for inclusion in the test report. h) Repeat 7.10c) to 7.10g) for CDMA and W-CDMA modulation, adjusting the span as necessary. AWGN or LTE may be used in place of W-CDMA, as an option. i) Repeat 7.10c) to 7.10h) for all uplink and downlink operational bands. j) Connect the test equipment as shown in Figure 1, with the uplink output (donor) port connected to the signal generator. k) Repeat 7.10c) to 7.10i) with this EUT uplink path test setup. l) Connect the test equipment as shown in Figure 1, with the uplink output (donor) port connected to the signal generator. 						
Test results:	m) Repeat 7.10c) to 7.10i) with this EUT downlink path test setup. PASS						

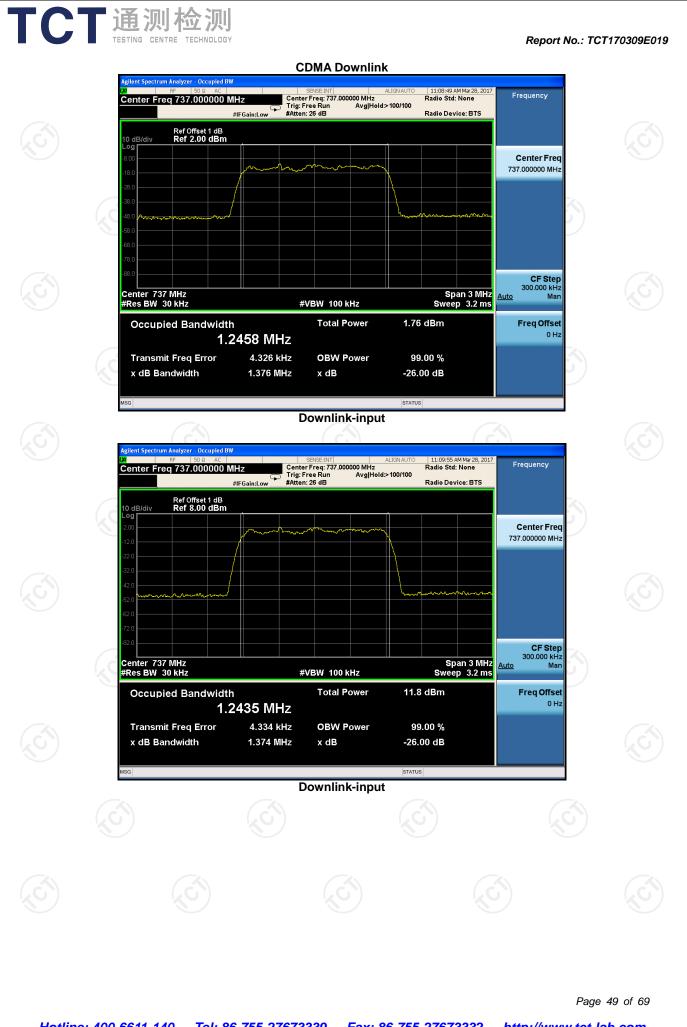
6.9.2. Test Instruments

Report No.: TCT170309E019


Equipment	Manufactur er	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	E4421B	GB39340839	Aug. 15, 2016	Aug. 11, 2017
Signal Generator	Agilent	N5182	MY4707028 2	Aug. 15, 2016	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY4910006 0	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

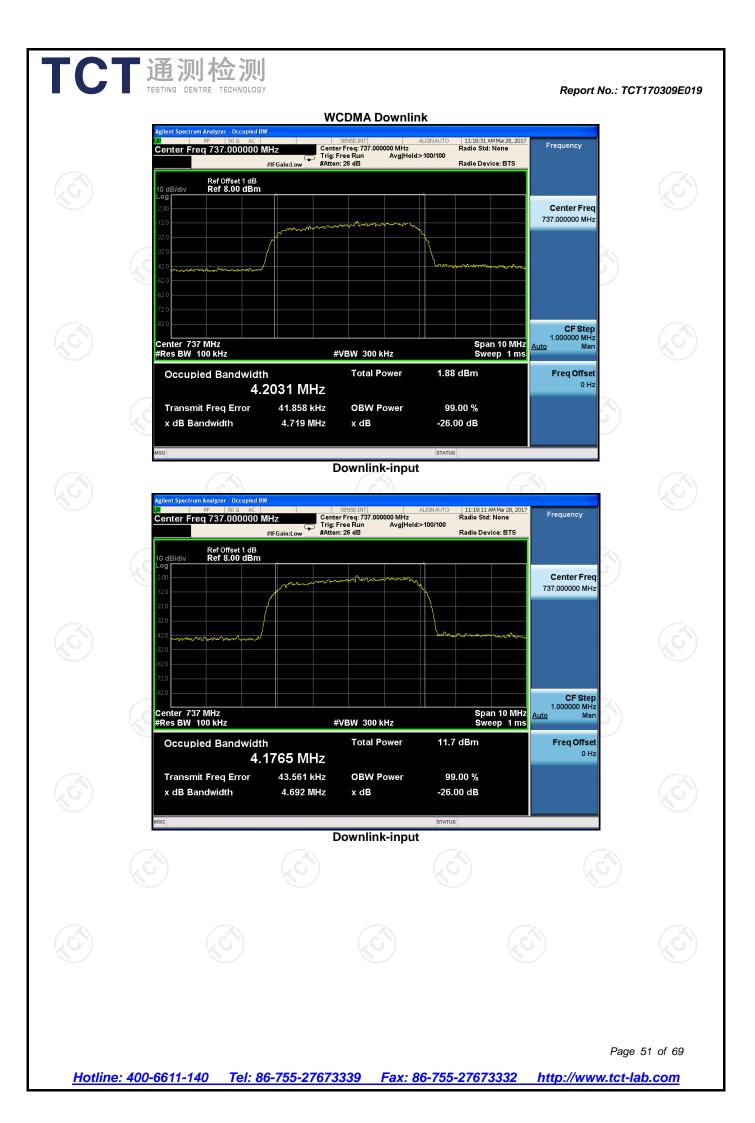
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.9.3. Test Data



CT通测检测 TESTING CENTRE TECHNOLOGY T (Report No.: TCT170309E019 Plot GSM UL lyzer - Occupied BW m An 10:59:37 AM Mar 28, 20 Radio Std: None IHz ALIGNAL Center Freq: 707.000000 MHz Trig: Free Run #IFGain:Low #Atten: 0 dB Frequency Center Freq 707.000000 MHz Radio Device: BTS Ref Offset 1 dB Ref 2.00 dBm 0 dB/di Center Frea 707.000000 MHz Av. CF Step 100.000 kHz Center 707 MHz #Res BW 3 kHz Span 1 MHz Sweep 105.5 ms Man <u>Auto</u> #VBW 10 kHz Occupied Bandwidth Total Power -5.31 dBm Freq Offset 0 Hz 245.04 kHz Transmit Freq Error 914 Hz **OBW Power** 99.00 % x dB Bandwidth 316.6 kHz x dB -26.00 dB STATUS Uplink-input upied BV IHZ ALIGNAL Center Freq: 707.000000 MHz Trig: Free Run Avg|Hold>10/10 #IFGain:Low #Atten: 26 dB 11:01:57 AM Mar 28, 2017 Radio Std: None Frequency eq 707.000000 MHz Center Fre Radio Device: BTS Ref Offset 1 dB Ref 2.00 dBm 10 dB/c .og **Center Freq** 707.000000 MHz Marchard and and CF Step 100.000 kHz Man Center 707 MHz #Res BW 3 kHz Span 1 MHz Sweep 105.5 ms <u>Auto</u> #VBW 10 kHz Freq Offset Total Power 11.0 dBm **Occupied Bandwidth** 0 Hz 243.64 kHz 1.093 kHz **OBW Power** 99.00 % **Transmit Freq Error** 313.2 kHz -26.00 dB x dB Bandwidth x dB STATUS Uplink-output Page 46 of 69

Plot **CDMA UL** d BV SENSE:INT ALIGN AUTO Center Freq; 707.000000 MHz Trig: Free Run Avg|Hold>100/100 #Atten: 26 dB Aug Aug Aug 11:11:23 AM Mar 28, 2017 Radio Std: None Frequency Center Freq 707.000000 MHz Radio Device: BTS #IFGain:Low Ref Offset 1 dB Ref 8.00 dBm 0 dB/di **Center Freq** 707.000000 MHz CF Step 300.000 kHz Man Span 3 MHz Sweep 3.2 ms Center 707 MHz #Res BW 30 kHz <u>Auto</u> #VBW 100 kHz Total Power -3.51 dBm Occupied Bandwidth Freq Offset 0 Hz 1.2452 MHz -381 Hz 99.00 % **OBW Power** Transmit Freg Error 1.374 MHz x dB Bandwidth x dB -26.00 dB Uplink-input gilent Spectrum Analyzer - Occupied BW SENSE:INT ALIGNAUTO Center Freq: 707.00000 MHz Trig: Free Run Avg|Hold>100/100 #dten: 26 dB 11:11:52 AM Mar 28, 2017 Radio Std: None ALIGN AUTC Frequency Center Freq 707.000000 MHz Radio Device: BTS Ref Offset 1 dB Ref 8.00 dBm **Center Freq** 707.000000 MHz mm CF Step 300.000 kHz Man Span 3 MHz Sweep 3.2 ms Center 707 MHz #Res BW 30 kHz <u>Auto</u> #VBW 100 kHz Occupied Bandwidth Total Power 16.2 dBm Freq Offset 0 Hz 1.2424 MHz Transmit Freq Error -380 Hz **OBW Power** 99.00 % 1.378 MHz x dB Bandwidth x dB -26.00 dB ↓ File <UL-CDMA-in.png> saved Uplink-output Page 48 of 69


Report No.: TCT170309E019

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Plot WCDMA UL d BV SENSE:INT ALIGN AUTO Center Freq; 707.000000 MHz Trig: Free Run Avg|Hold>100/100 #Atten: 26 dB Aug Aug Aug 11:15:09 AM Mar 28, 2017 Radio Std: None Frequency Center Freq 707.000000 MHz Radio Device: BTS #IFGain:Low Ref Offset 1 dB Ref 8.00 dBm 0 dB/di **Center Freq** 707.000000 MHz CF Step 1.000000 MHz Man Span 10 MHz Sweep 1 ms Center 707 MHz #Res BW 100 kHz <u>Auto</u> #VBW 300 kHz Total Power 1.97 dBm Occupied Bandwidth Freq Offset 0 Hz 4.2127 MHz -6.951 kHz **OBW Power** 99.00 % Transmit Freg Error 4.716 MHz x dB Bandwidth x dB -26.00 dB Uplink-input gilent Spectrum Analyzer - Occupied BW SENSE:INT ALIGNAUTO Center Freq: 707.00000 MHz Trig: Free Run Avg|Hold>100/100 #dten: 26 dB 11:16:27 AM Mar 28, 2017 Radio Std: None ALIGN AUTC Frequency Center Freq 707.000000 MHz Radio Device: BTS Ref Offset 1 dB Ref 8.00 dBm **Center Freq** 707.000000 MHz ~^^\ CF Step 1.000000 MHz Man Span 10 MHz Sweep 1 ms Center 707 MHz #Res BW 100 kHz Auto #VBW 300 kHz Occupied Bandwidth Total Power 17.3 dBm Freq Offset 0 Hz 4.2001 MHz Transmit Freq Error -3.634 kHz **OBW Power** 99.00 % 4.720 MHz x dB Bandwidth x dB -26.00 dB Uplink-output Page 50 of 69

Report No.: TCT170309E019

6.10. Oscillation Detection

6.10.1. Test Specification

Test Requirement:	FCC Part20 Section 20.21(e)(8)(iii)(A)						
Test Method:	KDB835210	D03 Signal booster	measurements v04				
Limit:	N/A						
Test setup:	coupler. For downlink bands	Directional Coupler Coupled Port from EUT SS Filter Variable RF Attenuator	e., signal flow is out from the donor port anto the directional direction and equipment connections shall be reversed, i.e., is into the donor port from the variable RF attenuator.				
Test Procedure:	 as shown in Full uplink output connected to NOTE-The brejection to preserve test. b) Spectrum a Center free Span equatest Continuou RBW≥1 M c) Decrease the displays as identify the arrow is unstable, centered by translyzer distist is unstable, centered be is wider thar centered on (e.g., cycle arrow is seconds, arrow analyzer sw 	a normal-operating mode Figure 7 beginning with the (donor) port. Confirm that the spectrum analyzer. and-pass filter shall prove revent oscillations from of malyzer settings: quency at the center of the all or slightly exceeding the s sweep, max-hold MHz, VBW > 3xRBW the variable attenuator unt ignal within the band und approximate center frequency splay, increase the attenue glay, increase the attenue glay, increase the attenue glay, increase the attenue glay, cycle ac/dc power). I.2c) twice to ensure that the booster remains within play center frequency. If confirm that the spectrum tween the frequency extra a 1 MHz, ensure that the signal by increasing ac/dc power) after each of Set the spectrum analyze eak amplitude of the display	EUT to the test equipment he spectrum analyzer on the it the RF coupled path is ide sufficient out-of-band ccurring in bands not under he band under test e width of the band under if the spectrum analyzer er test. Using a marker, ency of this signal on the uation by 10 dB, then reset the center of the signal in 250 kHz of the spectrum the frequency of the signal in analyzer display is emes observed. If the signal spectrum analyzer display is the RBW. Reset the EUT scillation event, if r sweep trigger level to just ayed EUT oscillation signal ban, with a sweep time of 5 -hold. The spectrum ind the subsequent steps				

	▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
	TESTING CENTRE TECHNOLOGY	Report No.: TCT170309E019
		 f) Decrease the variable attenuator until the spectrum analyzer sweep is triggered, increase the attenuation by 10 dB, then reset the EUT (e.g., cycle ac/dc power).
		g) Reset the zero-span trigger of the spectrum analyzer, then repeat 7.11.2f) twice to ensure that the spectrum analyzer is reliably triggered, resetting the EUT (e.g., cycle ac/dc power) after each oscillation event if necessary.
		 h) Reset the zero-span sweep trigger of the spectrum analyzer, and reset the EUT (e.g., cycle ac/dc power). i) Force the EUT into oscillation by reducing the attenuation. j) Use the marker function of the spectrum analyzer to measure the time from the onset of oscillation until the EUT turns off, by setting Marker 1 on the leading edge of the oscillation signal and Marker 2 on the trailing edge. The spectrum analyzer sweep time
(K)		 may be adjusted to improve the time resolution of these cursors. k) Capture the spectrum analyzer zero-span trace for inclusion in the test report. Report the power level associated with the oscillation separately if it can't be displayed on the trace. l) Repeat 7.11.2b) to 7.11.2k) for all operational uplink and downlink bands.
G		 m) Set the spectrum analyzer zero-span sweep time for longer than 60 seconds, then measure the restart time for each operational uplink and downlink band. n) Replace the normal-operating mode EUT with the EUT that supports an anti-oscillation test mode. o) Set the spectrum analyzer zero-span time for a minimum of 120
Ċ.		 seconds, and a single sweep. p) Manually trigger the spectrum analyzer zero-span sweep, and manually force the booster into oscillation as described in 7.11.2i). q) When the sweep is complete, place cursors between the first two oscillation detections, and save the plot for inclusion in the test
K		report. The time between restarts must match the manufacturer's timing for the test mode, and there shall be no more than 5 restarts. r) Repeat 7.11.2m) to 7.11.2q) for all operational uplink and downlink bands.
		 Test procedure for measuring oscillation mitigation or shutdown a) Connect the normal-operating mode EUT to the test equipment as shown in Figure 8. b) Set the spectrum analyzer center frequency to the center of band under test, and use the following settings:
X		 RBW=30 kHz, VBW ≥ 3 × RBW, power averaging (rms) detector, trace averages ≥ 100, span ≥ 120% of operational band under test number of sweep points ≥ 2 × Span/RBW.
(K)		 c) Configure the signal generator for AWGN operation with a 99% OBW of 4.1 MHz, tuned to the frequency of 2.5 MHz above the lower edge or below the upper edge of the operating band under test. Adjust the RF output level of the signal generator such that the measured power level of the AWGN signal at the output port of the booster is 30 dB less than the maximum power of the booster for the band under test. Affirm that the input signal is not obstructing the measurement of the strongest oscillation peak in the band, and is not included within the span in the measurement. 1) Boosters with operating spectrum passbands of 10 MHz or less may use a CW signal source at the band edge rather than

Page 53 of 69

TESTING CENTRE TECHNOLOGY	Report No.: TCT170309E0
	 AWGN. 2) For device passbands greater than 10 MHz, standard CMRS signal sources (i.e., CDMA, W-CDMA, LTE) may be used instead of AWGN at the band edge. d) Set the variable attenuator to a high attenuation setting such that the booster will operate at maximum gain when powered on. Reset the the EUT (e.g., cycle ac/dc power). Allow the EUT to complete its boot-up process, to reach full operational gain, and to stabilize its operation. e) Set the variable attenuator such that the insertion loss for the
	 center of the band under test (isolation) between the booster donor port and server port is 5 dB greater than the maximum gain, as recorded in the maximum gain test procedure (see 7.3), for the band under test. f) Verify the EUT shuts down, i.e., to mitigate the oscillations. If the booster does not shut down, measure and verify the peak oscillation level as follows. 1) Allow the spectrum analyzer trace to stabilize. 2) Place the marker at the highest oscillation level occurring within
	 the span, and record its output level and frequency. 3) Set the spectrum analyzer center frequency to the frequency with the highest oscillation signal level, and reduce the span such that the upper and lower adjacent oscillation peaks are within the span. 4) Use the Minimum Search Marker function to find the lowest output level that is within the span, and within the operational
	 band under test, and record its output level and frequency. 5) Affirm that the peak oscillation level measured in 7.11.3f2), does not exceed by 12.0 dB the minimal output level measured in 7.11.3f)4). Record the measurement results of 7.11.3f2) and 7.11.3f4) in tabular format for inclusion in the test report. 6) The procedure of 7.11.3f1) to 7.11.3.f5) allows the spectrum analyzer trace to stabilize, and verification of shutdown or oscillation level measurement must occur within 300 seconds.14
	 g) Decrease the variable attenuator in 1 dB steps, and repeat step 7.11.3f) for each 1 dB step. Continue testing to the level when the insertion loss for the center of band under test (isolation) between the booster donor port and server port is 5 dB lower than the maximum gain (see 7.3). h) Repeat 7.11.3a) to 7.11.3g) for all operational uplink and downlink bands.
Test results:	PASS

6.10.2. Test Instruments

Equipment	Manufactur er	Model	Serial Number	Calibration Date	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY4910006 0	Aug. 15, 2016	Aug. 11, 2017
Attenuation	AF115A-09- 34	JFW	907763	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.10.3. **Test Data**

Test results of detection time

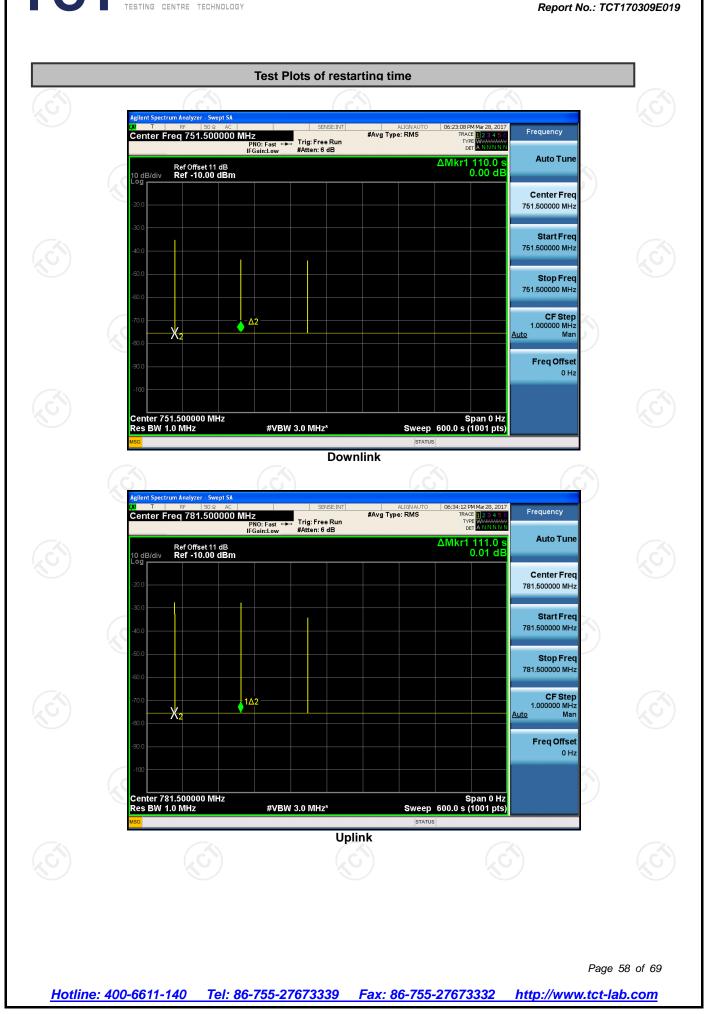
C	Link	Detection Time (s)	Limit (s)	Result
N	Uplink	0.15	0.300	PASS
	Downlink	0.13	1.000	PASS

Test results of restarting time

Link	Restarting Time (s)	Limit (s)	Result
Uplink	111.8	≥60.0	PASS
Downlink	111.6	≥60.0	PASS

Test results of restarting count

Link	Restarting Counts	Limit	Result
Uplink	2	≪5	PASS
Downlink	2	≤5	PASS



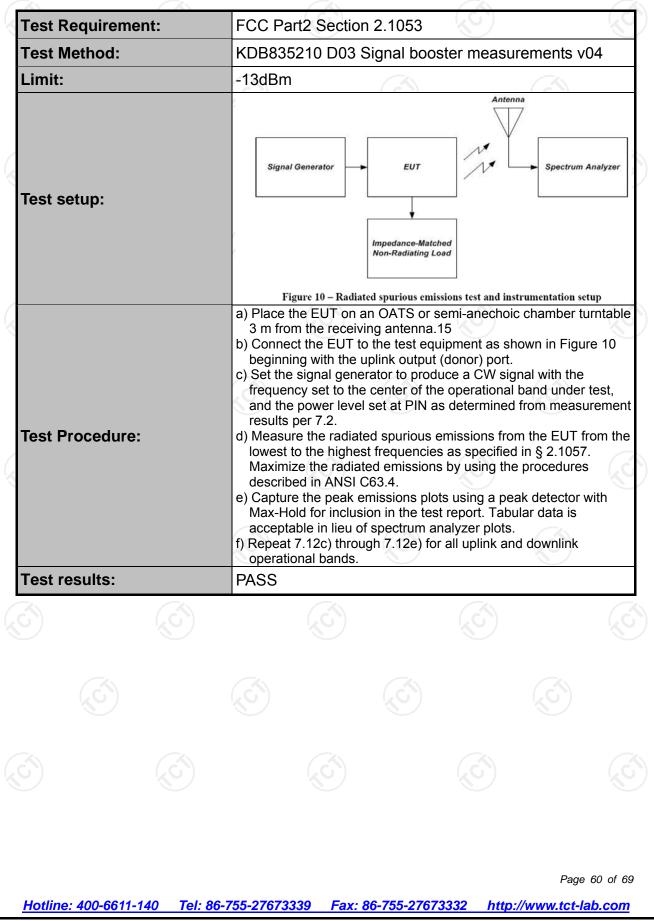
Page 55 of 69

Test Plots of detection time Agitent Speer Concerning Solo AC Center Freq 737.0000000 MHz PNO: Fast IFGain:Low Free Run BGain:Low m An #Avg Type: RMS Screen Image TYPE Themes 3D Color 130.0 ms -7.92 dB Ref 0.00 dBm Save As. X2 142 Span 0 Hz Sweep 5.000 s (1001 pts) Center 737.000000 MHz Res BW 1.0 MHz #VBW 3.0 MHz Downlink Agilent Spectrum 20 T RF SO Q AC Center Freq 707.000000 MHz PRO: Fast IFGain.tow #Avg Type: RMS Frequency Trig: Free Run Auto Tune ΔMkr1 150.0 ms -40.36 dE Ref 0.00 dBm Center Free 707.000000 MHz Start Freq 707.000000 MHz \mathcal{V} −X₂ Stop Freq 707.000000 MHz CF Step 1.000000 MHz Man 1Δ2 Freq Offset 0 H2 Center 707.000000 MHz Res BW 1.0 MHz Span 0 Hz Sweep 5.000 s (1001 pts) #VBW 3.0 MHz Uplink Page 56 of 69

Γ Report No.: TCT170309E019 Test Plots of restarting time Agilent Spöärtaan 20 T RF SOA AC Center Freq 737.000000 MHz PNO: Fast IFGain:High ALIGN ALIGN AL Frequency Trig: Free Run #Atten: 0 dB DE ΔMkr1 111.6 s 1.13 dB Auto Tune Ref Offset 1 dB Ref -19.00 dBm Center Free 737.000000 MHz ▲1∆2 Start Freq 737.000000 MHz X2 Stop Freq 737.000000 MHz CF Step 1.000000 MHz Man Auto Freq Offset 0 Hz Center 737.000000 MHz Res BW 1.0 MHz Span 0 Hz Sweep 600.0 s (1001 pts) #VBW 3.0 MHz* Downlink Center Freq 707.000000 MHz PNO: Fast → IFGain:High a 29, 201 Avg Type: RMS Save DE ΔMkr1 111.8 s 0.01 dE State Ref Offset 1 dB Ref -19.00 dBm Trace (+ State) ●1△2 χ Data (Export) Trace 1 Screen Image Center 707.000000 MHz Res BW 1.0 MHz Span 0 Hz Sweep 600.0 s (1001 pts) #VBW 3.0 MHz* Uplink

Test results of Mitigation or Shutdown

Oscillation Mitigation - U	plink								
Band	698-716M⊦	698-716MHz							
Test Signal Type	WCDMA								
Variable	Oscillati	ons	Lowest (Power	-	Manaia	1 : 14	Time to	Mitigation	Result
Attenuator Setting	Freq.	Level	Freq.	Level	Margin	Limit	Mitigate Oscillation	Time Limit	
dB	MHz	dBm	MHz	dBm	dB	dB	sec	sec	
+5	700.21	-51.2	704.36	-61.9	10.7	<12	NA	< 300	Pass
+4	700.21	-70.0	704.36	-73.0	3.0	<12	NA	< 300	Pass
+3	700.21	-70.5	704.36	-72.1	1.6	<12	NA	< 300	Pass
+2	700.21	-69.6	704.36	-73.2	3.6	<12	NA	< 300	Pass
+1	700.21	-69.4	704.36	-73.0	3.6	<12	NA	< 300	Pass
+0	700.21	-69.1	704.36	-73.1	4.0	<12	NA	< 300	Pass
-1	700.21	-69.0	704.36	-73.5	4.5	<12	NA	< 300	Pass
-2	700.21	-72.4	704.36	-73.5	1.1	<12	NA	< 300	Pass
-3	700.21	-72.2	704.36	-73.7	1.5	<12	NA	< 300	Pass
-4	700.21	-72.6	704.36	-73.1	0.5	<12	NA	< 300	Pass
-5	700.21	-73.0	704.36	-73.4	0.4	<12	NA	< 300	Pass


ownlink								
728-746N	728-746MHz							
WCDMA								
Oscil	lations		-			Time to	Mitigation	
Freq.	Level	Freq.	Level	Margin	Limit	Mitigate Oscillation		Result
MHz	dBm	MHz	dBm	dB	dB	sec	sec	
736.51	-56.4	739.37	-65.0	8.6	<12	NA	< 300	Pass
736.51	-56.5	739.37	-64.0	7.5	<12	NA	< 300	Pass
736.51	-57.6	739.37	-66.6	9	<12	NA	< 300	Pass
736.51	-55.5	739.37	-67.1	11.6	<12	NA	< 300	Pass
736.51	-55.3	739.37	-67.9	12.6	<12	81	< 300	Pass
736.51	-77.2	739.37	-77.0	-0.2	<12	NA	< 300	Pass
736.51	-76.3	739.37	-77.8	1.5	<12	NA	< 300	Pass
736.51	-75.3	739.37	-77.0	1.7	<12	NA	< 300	Pass
736.51	-75.4	739.37	-77.1	1.7	<12	NA	< 300	Pass
736.51	-75.2	739.37	-78.0	2.8	<12	NA	< 300	Pass
736.51	-73.9	739.37	-77.3	3.4	<12	NA	< 300	Pass
	WCDMA Oscil Freq. MHz 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51 736.51	728-746MHz WCDMA Oscillations Freq. Level MHz dBm 736.51 -56.4 736.51 -56.5 736.51 -57.6 736.51 -55.5 736.51 -55.3 736.51 -77.2 736.51 -76.3 736.51 -75.3 736.51 -75.4 736.51 -75.2	MCDMA Lowest G Oscillations Lowest G Freq. Level Freq. MHz dBm MHz 736.51 -56.4 739.37 736.51 -56.5 739.37 736.51 -55.5 739.37 736.51 -55.5 739.37 736.51 -55.3 739.37 736.51 -77.2 739.37 736.51 -76.3 739.37 736.51 -76.3 739.37 736.51 -75.4 739.37 736.51 -75.3 739.37 736.51 -75.3 739.37 736.51 -75.4 739.37 736.51 -75.4 739.37 736.51 -75.4 739.37 736.51 -75.2 739.37	MCDMA Lowest Output Power Level Freq. Level Freq. Level MHz dBm MHz dBm 736.51 -56.4 739.37 -65.0 736.51 -56.5 739.37 -64.0 736.51 -55.5 739.37 -66.6 736.51 -55.5 739.37 -67.1 736.51 -55.3 739.37 -67.0 736.51 -55.3 739.37 -67.1 736.51 -55.3 739.37 -77.0 736.51 -76.3 739.37 -77.0 736.51 -75.3 739.37 -77.0 736.51 -75.3 739.37 -77.0 736.51 -75.3 739.37 -77.0 736.51 -75.4 739.37 -77.0 736.51 -75.4 739.37 -77.0 736.51 -75.2 739.37 -78.0	728-746MHz WCDMA Lowest Output Power Level Freq. Level Freq. Level Margin MHz dBm MHz dBm dB 736.51 -56.4 739.37 -65.0 8.6 736.51 -56.5 739.37 -64.0 7.5 736.51 -55.5 739.37 -66.6 9 736.51 -55.3 739.37 -67.1 11.6 736.51 -55.3 739.37 -67.9 12.6 736.51 -76.3 739.37 -77.0 -0.2 736.51 -75.3 739.37 -77.0 1.7 736.51 -75.3 739.37 -77.0 1.7 736.51 -75.4 739.37 -77.0 1.7 736.51 -75.4 739.37 -77.0 1.7 736.51 -75.2 739.37 -78.0 2.8	728-746MHz WCDMA Lowest Output Power Level Margin Limit Freq. Level Freq. Level Margin Limit MHz dBm MHz dBm dB dB dB dB 736.51 -56.4 739.37 -65.0 8.6 <12 736.51 -56.5 739.37 -64.0 7.5 <12 736.51 -57.6 739.37 -66.6 9 <12 736.51 -55.5 739.37 -67.1 11.6 <12 736.51 -55.3 739.37 -67.9 12.6 <12 736.51 -77.2 739.37 -77.0 -0.2 <12 736.51 -75.3 739.37 -77.0 1.7 <12 736.51 -75.3 739.37 -77.0 1.7 <12 736.51 -75.4	728-746MHz WCDMA Lowest Output Power Level Margin Time to Mitigate Oscillation Freq. Level Freq. Level Margin Limit Time to Mitigate Oscillation MHz dBm MHz dBm dB dB sec 736.51 -56.4 739.37 -65.0 8.6 <12 NA 736.51 -56.5 739.37 -64.0 7.5 <12 NA 736.51 -55.5 739.37 -66.6 9 <12 NA 736.51 -55.5 739.37 -67.1 11.6 <12 NA 736.51 -55.3 739.37 -67.9 12.6 <12 NA 736.51 -75.3 739.37 -77.0 -0.2 <12 NA 736.51 -76.3 739.37 -77.0 1.7 <12 NA 736.51 -75.3 739.37 -77.0 1.7 <12 NA	728-746MHz WCDMA Lowest Output Power Level Time to Margin Time to Mitigate Oscillation Mitigation Time Limit MHz dBm MHz dBm dB dB sec sec 736.51 -56.4 739.37 -65.0 8.6 <12 NA < 300 736.51 -56.5 739.37 -64.0 7.5 <12 NA < 300 736.51 -56.5 739.37 -66.6 9 <12 NA < 300 736.51 -55.5 739.37 -67.1 11.6 <12 NA < 300 736.51 -55.5 739.37 -67.9 12.6 <12 NA < 300 736.51 -55.3 739.37 -77.0 -0.2 <12 NA < 300 736.51 -76.3 739.37 -77.0 1.7 <12 NA < 300 736.51 -75.3 739.37 -77.0 1.7

Page 59 of 69

6.11. Radiation Spurious Emission

6.11.1. Test Specification

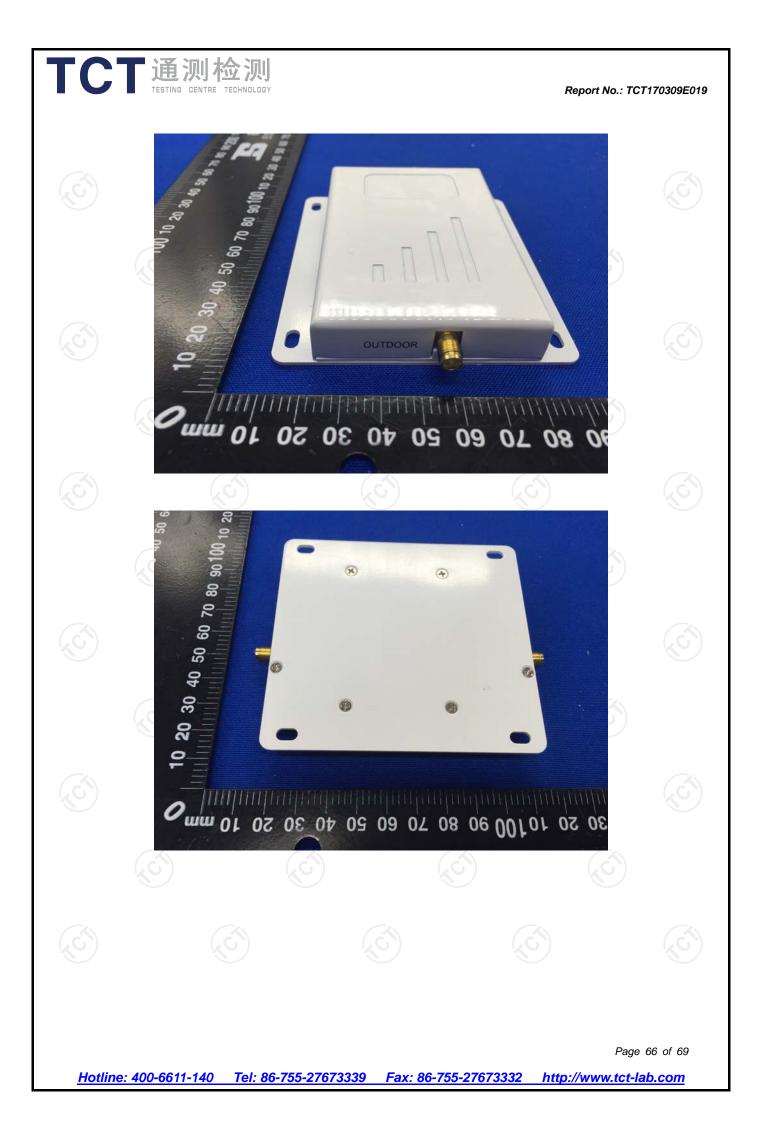
6.11.2. Test Instruments

Radiated Emission									
Name	Model No.	Manufacturer	Date of Cal.	Due Date					
Test Receiver	ESVD	R&S	Aug. 12, 2016	Aug. 11, 2017					
Spectrum Analyzer	FSEM	R&S	Aug. 12, 2016	Aug. 11, 2017					
Pre-amplifier	8447D	H.P.	Aug. 12, 2016	Aug. 11, 2017					
Pre-amplifier	EM30265	EM Electronics Corporation CO.,LTD	Aug. 12, 2016	Aug. 11, 2017					
BiConiLog Antenna	VULB9163	Schwarzbeck Mess- Elecktronik	Aug. 14, 2016	Aug. 13, 2017					
Double -ridged waveguide horn	BBHA9120D	Schwarzbeck Mess- Elecktronik	Aug. 14, 2016	Aug. 13, 2017					
Coaxial Cable	N/A	ТСТ	Aug. 13, 2016	Aug. 12, 2017					
Coaxial Cable	N/A	тст	Aug. 13, 2016	Aug. 12, 2017					
Coaxial Cable	N/A	тст	Aug. 13, 2016	Aug. 12, 2017					
Coaxial Cable	N/A	тст	Aug. 13, 2016	Aug. 12, 2017					
Loop antenna	ZN30900A	ZHINAN	Aug. 14, 2016	Aug. 13, 2017					
Signal Generator	N5182A	Agilent	Aug. 13, 2016	Aug. 12, 2017					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.11.1. Test data

		D	ownlink / 737M	Hz	
	Frequency	equency Spurious Emission		Limit (dBm)	Result
3	(MHz)	Polarization	Level (dBm)		Result
	42.40	Vertical	-49.16	-13.00	PASS
	45.60	V	-47.55		
	50.80	V	-52.70		
	43.40	Horizontal	-49.26		
	50.60	Н	-50.90		
	104.80	Н	-52.35		
	Uplink / 707MHz				
4	Frequency	Spurious	Emission	Limit (dBm)	Result
	(MHz)	Polarization	Level (dBm)		
	42.40	Vertical	-49.62	-13.00	PASS
	45.60	V	-53.42		
	50.80	V	-45.90		
	43.40	Horizontal	-47.06		
	50.60	Н	-53.19		


Note: Test Frequency range is up to 10GHz, and the test data below 30MHz and above 1000MHz is too lower than the limit, so not show in this report.

