

6.8. Variable Booster Gain

6.8.1. Test Specification

CT通测检测	
TESTING CENTRE TECHNOLOGY	Report No.: TCT170309E0
	 a) Set the spectrum analyzer to the uplink frequency to be measured. b) Set the span to 0 Hz with a sweep time of 10 seconds. c) Set the power level of signal generator #1 to the lowest level of the RSSI-dependent gain [see 7.9.1k)]. d) Select MAX HOLD and increase the power level of signal generator #1 by 10 dB for mobile boosters, and by 20 dB for fixed indoor boosters. Signal generator #2 remains same, as described in 7.9.1c). e) Confirm that the uplink gain decreases to the specified levels, within 1 accord for mobile devices, and within 2 accords for
	within 1 second for mobile devices, and within 3 seconds for fixed devices.13 f) Repeat 7.9.2a) to 7.9.2e) for all operational uplink bands.
Test Result:	PASS

6.8.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	E4421B	GB39340839	Aug. 15, 2016	Aug. 11, 2017
Signal Generator	Agilent	N5182	MY47070282	Aug. 15, 2016	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 15, 2016	Aug. 11, 2017
Attenuation	AF115A-09-34	JFW	907763	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.3. Test Data

Mobile station coupling loss (MSCL): the minimum coupling loss (in dB) between the wireless device and the input (server) port of the consumer booster. MSCL must be calculated or measured for each band of operation and provided in compliance test reports. MSCL includes the path loss from the wireless device, and the booster's server antenna gain and cable loss. The wireless device is assumed to be an isotropic (0 dBi) antenna reference. Minimum standoff distances from inside wireless devices to the booster's server antenna must be reasonable and specified by the manufacturer in customer provided installation manuals.

L p = $20\log f + 20\log d - 27.5$ Where: L P = basic free space path loss, f = Center frequency (MHz), d = 2 meters. MSCL for 824-849MHz Lp= $20\log(836.5)+20\log(2)-27.5=36.97$ RSSI=Downlink output power – Downlink gain

Page 42 of 67

824MHz~849MHz							
				Limit			Margin (dB)
RSSI	Input	Measured	Measured	RSSI	Fix		
(dBm)	Input (dBm)	Output Power	Gain	Dependent	Booster	TX off	
()	()	(dBm)	(dB)	(dB)	Limit		
-70.0	-45.0	14.6	59.6		65.0		-5.4
-61.0	-45.0	14.6	59.6		65.0		-5.4
-50.0	-45.0	5.7	50.7	56.5			-5.8
-48.0	-45.0	3.8	48.8	54.5			-5.7
-46.0	-45.0	2.4	47.4	52.5			-5.1
-45.0	-45.0	1.2	46.2	51.5			-5.3

Variable Uplink Gain Timing

	Frequency MHz	Measured Sec	Limit Sec	
0	UL 824-849	0.12	3	

Variable Uplink Gain Timing Plot

Page 43 of 67

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.9. Occupied Bandwidth

6.9.1. Test Specification

Test Requirement:	FCC Part2 Sec	FCC Part2 Section 2.1049					
Test Method:	KDB835210 D	KDB835210 D03 Signal booster measurements v04					
Limit:	N/A						
Test setup:		setup for measurin	Spectrum Analyzer g characteristics of test signals cupied bandwidth testing				
Test Procedure:	 a) Connect the test measure the christignal generators b) Set VBW ≥ 3 c) Set the center for of the operation modulation type the signals. d) Set the signal group obtained from the signal group obtained from the signal group attern and allogradjusting the spectrum g) Capture the spectrum g) Capture the spectrum g) Capture the spectrum g) Capture the spectrum for the spectrum g) Capture the spectrum	st equipment as sh haracteristics of the x RBW. frequency of the sp hal band. The span e and OBW as nece generator for power he tests of 7.2. generator modulation withe trace on the ban as necessary. m analyzer RBW for ectrum analyzer tra- to 7.10g) for CDMA ban as necessary. MA, as an option. to 7.10h) for all uplin at equipment as sho bort connected to the nected to the signal to 7.10j with this E to quipment as sho to feature as sho to f	own in Figure 6 to firstly test signals produced by the ectrum analyzer to the center will be adjusted for each essary for accurately viewing r level to match the values on type for GSM with a PRBS signal generator to stabilize or 1% to 5% of the EBW. ace for inclusion in the test A and W-CDMA modulation, AWGN or LTE may be used in nk and downlink operational own in Figure 1, with the uplink he spectrum analyzer, and the				
Test results:	PASS						

6.9.2. Test Instruments

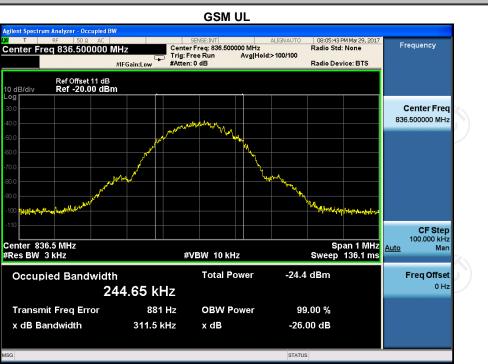
Report No.: TCT170309E020

Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	N5182	MY47070282	Aug. 15, 2016	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.9.3. Test Data

Signal Type	Frequency [MHz]	Input OBW [MHz]	Output OBW [MHz]
GSM	836.5	0.245	0.245
CDMA	836.5	1.241	1.247
AWGN	836.5	4.204	4.270
GSM	881.5	0.245	0.244
CDMA	881.5	1.243	1.241
AWGN	881.5	4.216	4.206
	CDMA AWGN GSM CDMA	GSM 836.5 CDMA 836.5 AWGN 836.5 GSM 836.5 GSM 836.5 CDMA 836.5 GSM 881.5 CDMA 881.5	GSM 836.5 0.245 CDMA 836.5 1.241 AWGN 836.5 4.204 GSM 881.5 0.245 CDMA 836.5 1.241

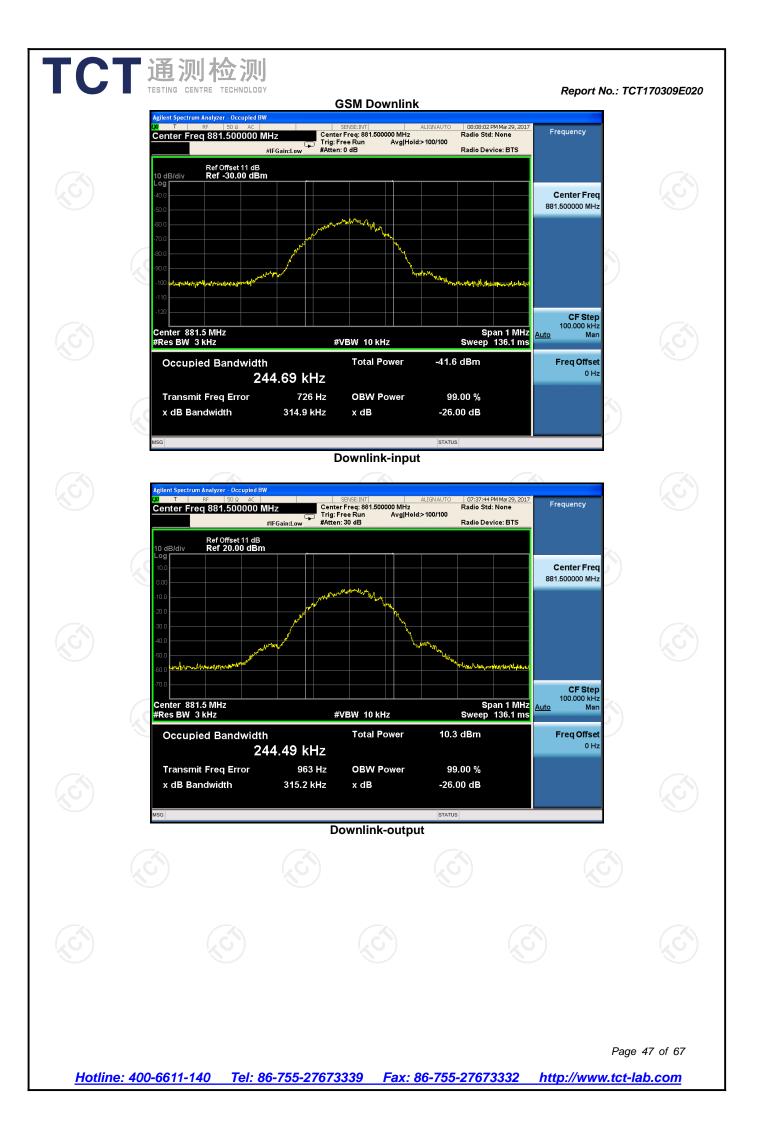


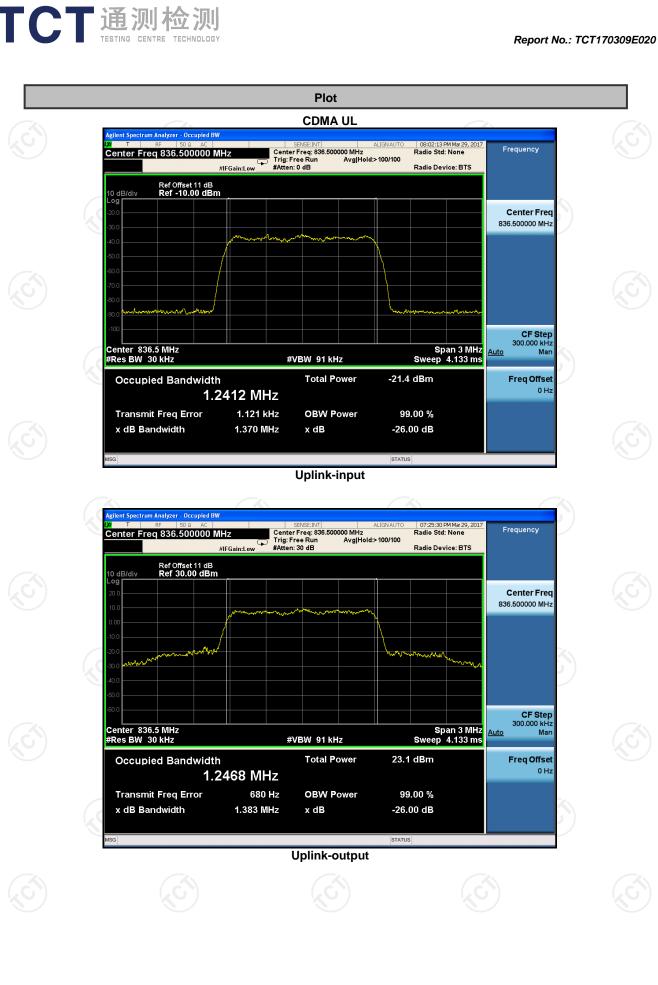
Page 45 of 67

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Plot

Uplink-input

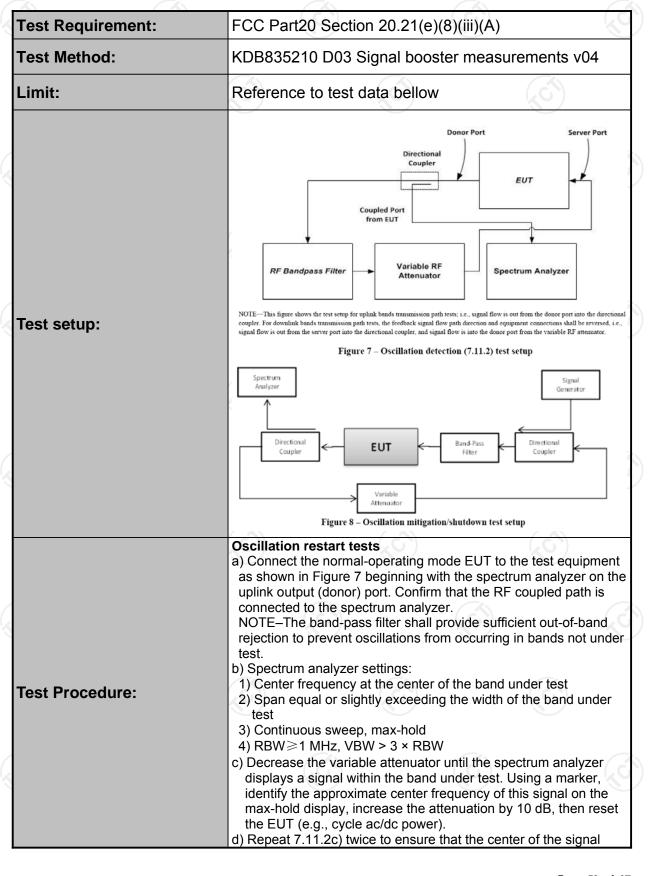



Uplink-output

Page 46 of 67

Page 48 of 67

Report No.: TCT170309E020 **CDMA** Downlink 07:58:51 PM Mar 29, 201 Radio Std: None Frequency Center Freq: 881.500000 MHz Trig: Free Run Avg|Hold:>100/100 #Atten: 0 dB Center Freq 881.500000 MHz #IFGain:Low Radio Device: BTS Ref Offset 11 dB Ref -20.00 dBm 10 dB/div **Center Freq** 881,500000 MHz CF Step 300.000 kHz Man Center 881.5 MHz #Res BW 30 kHz Span 3 MHz Sweep 4.133 ms <u>Auto</u> #VBW 91 kHz Total Power -38.9 dBm Freq Offset **Occupied Bandwidth** 0 Hz 1.2425 MHz -318 Hz **OBW** Power 99.00 % **Transmit Freq Error** x dB Bandwidth 1.375 MHz x dB -26.00 dB STATUS **Downlink-input** Occupied BV 07:39:18 PM Mar 29, 2013 Radio Std: None ALIGN AUT SENSE:INTI ALIGNAUTO Center Freq: 881.500000 MHz Trig: Free Run Avg|Hold:>100/100 #Atten: 30 dB Center Freq 881.500000 MHz Frequency #IFGain:Low Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 10 dB/div .oa **Center Freq** 881.500000 MHz mannon Le no CF Step 300.000 kHz Center 881.5 MHz #Res BW 30 kHz Span 3 MHz Sweep 4.133 ms <u>Auto</u> Man #VBW 91 kHz **Total Power** 12.9 dBm **Occupied Bandwidth Freq Offset** 0 Hz 1.2411 MHz Transmit Freq Error 297 Hz **OBW Power** 99.00 % 1.370 MHz -26.00 dB x dB Bandwidth x dB STATUS **Downlink-output** Page 49 of 67


Report No.: TCT170309E020 **AWGN Downlink** Center Free Run Avg|Hold>100/100 #Atten: 0 dB 07:56:15 PM Mar 29, 201 Radio Std: None Frequency Center Freq 881.500000 MHz #IFGain:Low Radio Device: BTS Ref Offset 11 dB Ref -20.00 dBm 10 dB/div **Center Freq** 881,500000 MHz CF Step 1.000000 MHz Man Center 881.5 MHz #Res BW 100 kHz Span 10 MHz Sweep 1.267 ms <u>Auto</u> #VBW 300 kHz Total Power -38.2 dBm Freq Offset **Occupied Bandwidth** 0 Hz 4.2160 MHz **OBW Power** 2.231 kHz 99.00 % **Transmit Freq Error** x dB Bandwidth 4.710 MHz x dB -26.00 dB STATUS **Downlink-input** Occupied BV SENSE:INT ALIGN AUTO Center Freq: 881.500000 MHz Trig: Free Run Avg|Hold:>100/100 #Atten: 30 dB 07:40:58 PM Mar 29, 2013 Radio Std: None Center Freq 881.500000 MHz Frequency #IFGain:Low Radio Device: BTS Ref Offset 11 dB Ref 20.00 dBm 10 dB/div .oa **Center Freq** 881.500000 MHz CF Step 1.000000 MHz Man Center 881.5 MHz #Res BW 100 kHz Span 10 MHz Sweep 1.267 ms <u>Auto</u> #VBW 300 kHz **Total Power** 13.2 dBm **Occupied Bandwidth Freq Offset** 0 Hz 4.2064 MHz Transmit Freq Error 1.772 kHz **OBW Power** 99.00 % 4.721 MHz -26.00 dB x dB Bandwidth x dB STATUS **Downlink-output** Page 51 of 67

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.10. Oscillation Detection and Mitigation

6.10.1. Test Specification

TCTi	通 测检测	
	STING CENTRE TECHNOLOGY	Report No.: TCT170309E020
		created by the booster remains within 250 kHz of the spectrum analyzer display center frequency. If the frequency of the signal is unstable, confirm that the spectrum analyzer display is centered between the frequency extremes observed. If the signal is wider than 1 MHz, ensure that the spectrum analyzer display is centered on the signal by increasing the RBW. Reset the EUT (e.g., cycle ac/dc power) after each oscillation event, if necessary. Set the spectrum analyzer sweep trigger level to just below the peak amplitude of the displayed EUT oscillation signal. e) Set the spectrum analyzer to zero-span, with a sweep time of 5 seconds, and single-sweep with max-hold. The spectrum analyzer sweep trigger level in this and the subsequent steps shall be the level identified in 7.11.2d).
		 f) Decrease the variable attenuator until the spectrum analyzer sweep is triggered, increase the attenuation by 10 dB, then reset the EUT (e.g., cycle ac/dc power). g) Reset the zero-span trigger of the spectrum analyzer, then repeat 7.11.2f) twice to ensure that the spectrum analyzer is reliably triggered, resetting the EUT (e.g., cycle ac/dc power)
		 after each oscillation event if necessary. h) Reset the zero-span sweep trigger of the spectrum analyzer, and reset the EUT (e.g., cycle ac/dc power). i) Force the EUT into oscillation by reducing the attenuation. j) Use the marker function of the spectrum analyzer to measure the time from the onset of oscillation until the EUT turns off, by setting Marker 1 on the leading edge of the oscillation signal and Marker 2 on the trailing edge. The spectrum analyzer sweep time may be adjusted to improve the time resolution of these cursors. k) Capture the spectrum analyzer zero-span trace for inclusion in the test report. Report the power level associated with the
		 oscillation separately if it can't be displayed on the trace. I) Repeat 7.11.2b) to 7.11.2k) for all operational uplink and downlink bands. m) Set the spectrum analyzer zero-span sweep time for longer than 60 seconds, then measure the restart time for each operational uplink and downlink band. n) Replace the normal-operating mode EUT with the EUT that supports an anti-oscillation test mode. o) Set the spectrum analyzer zero-span time for a minimum of 120 seconds, and a single sweep. p) Manually trigger the spectrum analyzer zero-span sweep, and
		 manually force the booster into oscillation as described in 7.11.2i). q) When the sweep is complete, place cursors between the first two oscillation detections, and save the plot for inclusion in the test report. The time between restarts must match the manufacturer's timing for the test mode, and there shall be no more than 5 restarts. r) Repeat 7.11.2m) to 7.11.2q) for all operational uplink and downlink bands. Test procedure for measuring oscillation mitigation or
		 a) Connect the normal-operating mode EUT to the test equipment as shown in Figure 8. b) Set the spectrum analyzer center frequency to the center of band under test, and use the following settings: 1) RBW=30 kHz, VBW ≥ 3 × RBW, 2) power averaging (rms) detector, 3) trace averages ≥ 100, 4) span ≥ 120% of operational band under test,

一一 通测检测	
TESTING CENTRE TECHNOLOGY	Report No.: TCT170309E02
	 5) number of sweep points ≥ 2 × Span/RBW. c) Configure the signal generator for AWGN operation with a 99% OBW of 4.1 MHz, tuned to the frequency of 2.5 MHz above the lower edge or below the upper edge of the operating band under test. Adjust the RF output level of the signal generator such that the measured power level of the AWGN signal at the output port of the booster is 30 dB less than the maximum power of the booster for the band under test. Affirm that the input signal is not obstructing the measurement of the strongest oscillation peak in the band, and is not included within the span in the measurement. 1) Boosters with operating spectrum passbands of 10 MHz or less
	 may use a CW signal source at the band edge rather than AWGN. 2) For device passbands greater than 10 MHz, standard CMRS signal sources (i.e., CDMA, W-CDMA, LTE) may be used instead of AWGN at the band edge. d) Set the variable attenuator to a high attenuation setting such that the booster will operate at maximum gain when powered on. Reset the the EUT (e.g., cycle ac/dc power). Allow the EUT to complete its boot-up process, to reach full operational gain, and
	 to stabilize its operation. e) Set the variable attenuator such that the insertion loss for the center of the band under test (isolation) between the booster donor port and server port is 5 dB greater than the maximum gain, as recorded in the maximum gain test procedure (see 7.3), for the band under test. f) Verify the EUT shuts down, i.e., to mitigate the oscillations. If the booster does not shut down, measure and verify the peak oscillation level as follows. 1) Allow the spectrum analyzer trace to stabilize.
	 Place the marker at the highest oscillation level occurring within the span, and record its output level and frequency. Set the spectrum analyzer center frequency to the frequency with the highest oscillation signal level, and reduce the span such that the upper and lower adjacent oscillation peaks are within the span. Use the Minimum Search Marker function to find the lowest output level that is within the span, and within the operational band under test, and record its output level and frequency. Affirm that the peak oscillation level measured in 7.11.3f2), does
	 not exceed by 12.0 dB the minimal output level measured in 7.11.3f)4). Record the measurement results of 7.11.3f2) and 7.11.3f4) in tabular format for inclusion in the test report. 6) The procedure of 7.11.3f1) to 7.11.3.f5) allows the spectrum analyzer trace to stabilize, and verification of shutdown or oscillation level measurement must occur within 300 seconds.14 g) Decrease the variable attenuator in 1 dB steps, and repeat step 7.11.3f) for each 1 dB step. Continue testing to the level when the insertion loss for the center of band under test (isolation) between the booster donor port and server port is 5 dB lower than the maximum gain (see 7.3). h) Repeat 7.11.3a) to 7.11.3g) for all operational uplink and downlink bands.
Test results:	PASS (C)

Page 54 of 67

CT通测检测 6.10.2. Test Instruments

Report No.: TCT170309E020

Equipment	Manufactu rer	Model	S/N	Calibration Date	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY491 00060	Aug. 15, 2016	Aug. 11, 2017
Attenuation	AF115A-09 -34	JFW	907763	Aug. 15, 2016	Aug. 11, 2017
RF Combiner	SUNVNDN	SUD-CS0800	162300 09	Aug. 15, 2016	Aug. 11, 2017
AN03468	Band Pass Filter	4CS10- 781.5/E12.2- O/O	N/A	Aug. 15, 2016	Aug. 11, 2017
AN03469	Band Pass Filter	4CS10- 751.5/E12-O/O	N/A	Aug. 15, 2016	Aug. 11, 2017
AN02475	1 dB step Attenuator	8494B	N/A	Aug. 15, 2016	Aug. 11, 2017
AN03429	10dB step Attenuator	8496B	N/A	Aug. 15, 2016	Aug. 11, 2017
ANC00082	RF Coupler	722-10-1.500V	N/A	Aug. 15, 2016	Aug. 11, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.10.3. Test Data

Test results of detection time

	Link	Detection Time (s)	Limit (s)	Result
3	Uplink	0.220	0.300	PASS
	Downlink	0.235	1.000	PASS

Test results of restarting time

Link	Restarting Time (s)	Limit (s)	Result
Uplink	S 110	≥60.0	PASS
Downlink	110	≥60.0	PASS

Test results of restarting count

Link	Restarting Counts	Limit	Result
Uplink	2	≤5	PASS
Downlink	2	≤5	PASS

Test Plots of restarting time

T

Uplink

Downlink

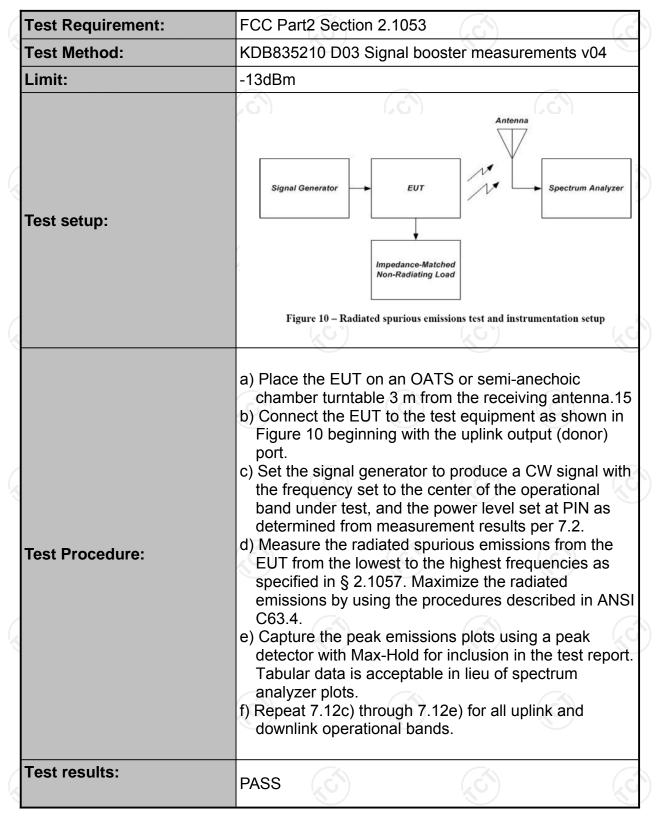
TCT 通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT170309E020

Test results of Mitigation or Shutdown

Oscillation Mitigation - Uplink											
	Band				824	-849MHz					
Те	est Signal	WCDMA									
	Variable	Oscillations		Lowest Output Power Level		Margin	Limit	Time to	Mitigation Time		
Setting	Freq.	Level	Freq.	Level	Margin	Liint	Mitigate Oscillation	Limit	Result		
	dB	MHz	dBm	MHz	dBm	dB	d	sec	sec		
	+5	834.85	-54.8	831.62	-68.2	13.4	<12	124	< 300	Pass	
	+4	834.85	-56.4	831.62	-70.5	14.1	<12	167	< 300	Pass	
	+3	834.85	-69.7	831.62	-72.8	3.1	<12	NA	< 300	Pass	
	+2	834.85	-69.2	831.62	-73.5	4.3	<12	NA	< 300	Pass	
	+1	834.85	-70.5	831.62	-73.2	2.7	<12	NA	< 300	Pass	
	+0	834.85	-69.2	831.62	-73.1	3.9	<12	NA	< 300	Pass	
	-1	834.85	-69.6	831.62	-72.7	3.1	<12	NA	< 300	Pass	
	-2	834.85	-71.8	831.62	-73.4	1.6	<12	NA	< 300	Pass	
	-3	834.85	-72.4	831.62	-73.9	1.5	<12	NA	< 300	Pass	
	-4	834.85	-71.1	831.62	-73.5	2.4	<12	NA	< 300	Pass	
	-5	834.85	-70.8	831.62	-73.1	2.3	<12	NA	< 300	Pass	

	Oscillation Mitigation - Downlink									
	Band	869-894MHz								
	Test Signal Type									
(Variable Attenuator Setting	Oscillations		Lowest Output Power Level		Margin	Limit	Time to Mitigate	Mitigation Time	
		Freq.	Level	Freq.	Level	_		Oscillation	Limit	Result
	dB	MHz	dBm	MHz	dBm	dB	d	sec	sec	
	+5	879.26	-53.4	882.67	-66.2	12.8	<12	87	< 300	Pass
	+4	879.26	-70.7	882.67	-73.4	2.7	<12	NA	< 300	Pass
	+3	879.26	-70.1	882.67	-72.8	2.7	<12	NA	< 300	Pass
	+2	879.26	-69.6	882.67	-73.5	3.9	<12	NA	< 300	Pass
	+1	879.26	-71.5	882.67	-73.2	1.7	<12	NA	< 300	Pass
9	+0	879.26	-69.2	882.67	-72.9	3.7	<12	NA	< 300	Pass
	-1	879.26	-69.9	882.67	-73.6	3.7	<12	NA	< 300	Pass
	-2	879.26	-72.1	882.67	-73.9	1.8	<12	NA	< 300	Pass
	-3	879.26	-71.7	882.67	-73.1	1.4	<12	NA	< 300	Pass
	-4	879.26	-72.4	882.67	-73.5	1.1	<12	NA	< 300	Pass
	-5	879.26	-71.8	882.67	-73.4	1.6	<12	NA	< 300	Pass
C C		S			Ś					K.

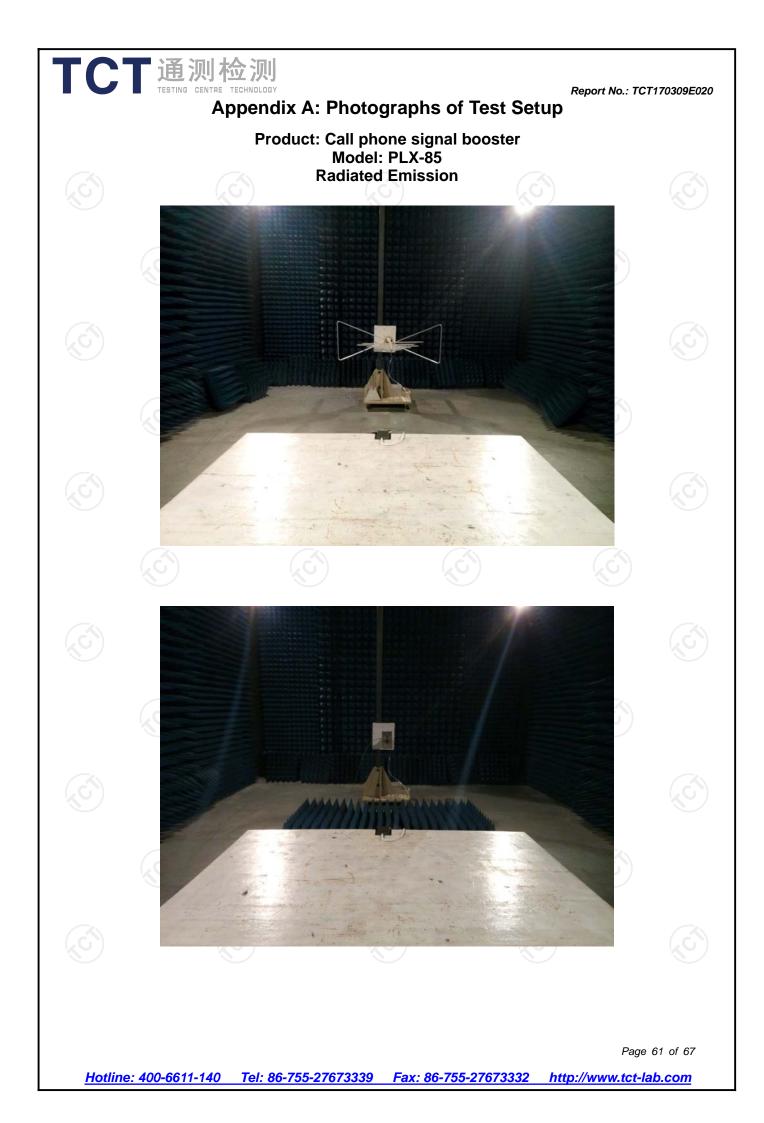

Page 58 of 67

7. Radiation Spurious Emission

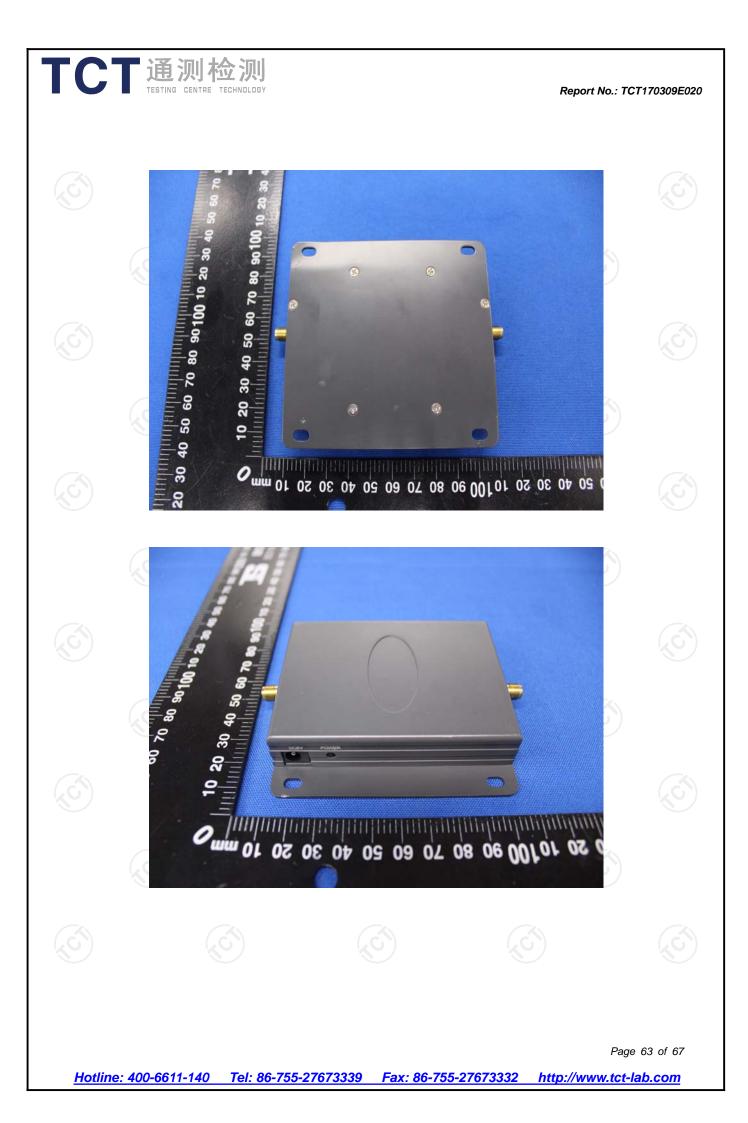
Report No.: TCT170309E020

7.1.1. Test Specification

7.1.2. Test Instruments


	Radiated Emission						
Name	Model No.	Manufacturer	Date of Cal.	Due Date			
Test Receiver	ESVD	R&S	Aug. 12, 2016	Aug. 11, 2017			
Spectrum Analyzer	FSEM	R&S	Aug. 12, 2016	Aug. 11, 2017			
Pre-amplifier	8447D	H.P.	Aug. 12, 2016	Aug. 11, 2017			
BiConiLog Antenna			Aug. 14, 2016	Aug. 13, 2017			
Coaxial Cable	N/A	ТСТ	Aug. 13, 2016	Aug. 12, 2017			
Coaxial Cable	N/A	ТСТ	Aug. 13, 2016	Aug. 12, 2017			
Coaxial Cable	N/A	тст	Aug. 13, 2016	Aug. 12, 2017			
Coaxial Cable	N/A	тст	Aug. 13, 2016	Aug. 12, 2017			
Loop antenna	ZN30900A	ZHINAN	Aug. 14, 2016	Aug. 13, 2017			
Signal Generator	N5182A	Agilent	Aug. 13, 2016	Aug. 12, 2017			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


7.1.1. Test data


Frequency [MHz]	Antenna polarity [H/V]	Level [dBm]	Limit [dBm]	Margin [dB]
Zen		Uplink		
235.13	e v	-60.60		47.60
458.40	V	-61.23	40.00	48.23
235.13	H	-65.98	-13.00	52.98
458.40	H	-66.19		53.19
3		Downlink		G
233.49	v	-60.50		47.50
498.73	V	-58.93	40.00	45.93
233.49	H	-47.65	-13.00	34.65
495.24	Н	-47.51		34.51

Note: Test Frequency range is up to 10GHz, and the test data below 30MHz and above 1000MHz is too lower than the limit, so not show in this report.

