

6.8. Variable Booster Gain

6.8.1. Test Specification

TESTING CENTRE TECHNOLOGY	Report No.: TCT190909E0
	test setup shown in Figure 5. a) Set the spectrum analyzer to the uplink frequency to be measured. b) Set the span to 0 Hz with a sweep time of 10 seconds. c) Set the power level of signal generator #1 to the lowest level of the RSSI-dependent gain [see 7.9.1k)]. d) Select MAX HOLD and increase the power level of signal generator #1 by 10 dB for mobile boosters, and by 20 dB for fixed indoor boosters. Signal generator #2 remains same, as described in 7.9.1c). e) Confirm that the uplink gain decreases to the specified levels, within 1 second for mobile devices, and within 3 seconds for fixed devices.13 f) Repeat 7.9.2a) to 7.9.2e) for all operational uplink bands.
Test Result:	PASS

6.8.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	E4421B	GB39340839	Jul. 30, 2019	Jul. 29, 2020
Signal Generator	Agilent	N5182A	MY47070282	Sep. 12, 2019	Sep. 11, 2020
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 12, 2019	Sep. 11, 2020
RF Combiner	SUNVNDN	SUD-CS 0800	16230009	Sep. 12, 2019	Sep. 11, 2020
Attenuator	50FP-006-H3	JFW	907763	Sep. 12, 2019	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.3. Test Data

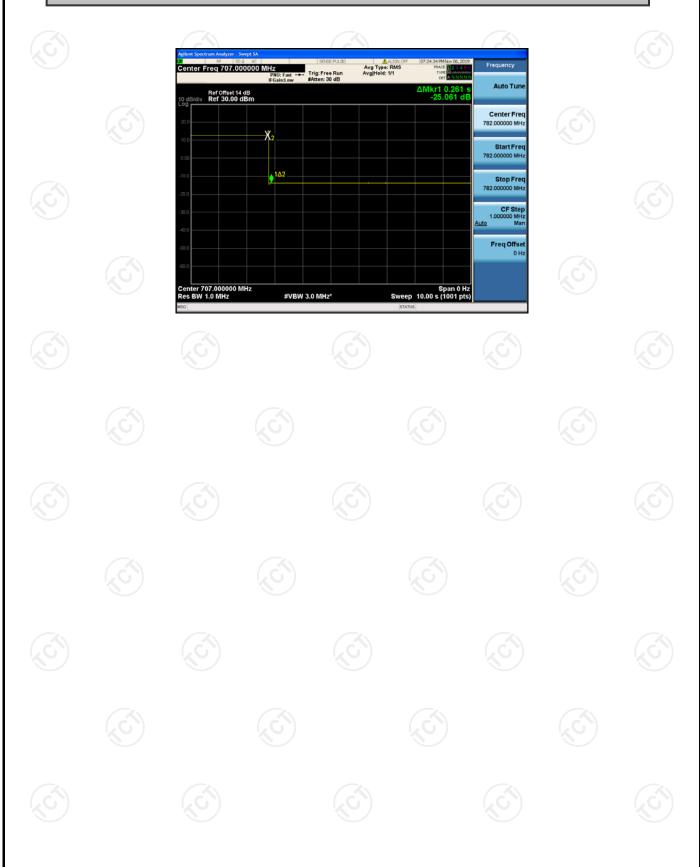
Mobile station coupling loss (MSCL): the minimum coupling loss (in dB) between the wireless device and the input (server) port of the consumer booster. MSCL must be calculated or measured for each band of operation and provided in compliance test reports. MSCL includes the path loss from the wireless device, and the booster's server antenna gain and cable loss. The wireless device is assumed to be an isotropic (0 dBi) antenna reference. Minimum standoff distances from inside wireless devices to the booster's server antenna must be reasonable and specified by the manufacturer in customer provided installation manuals.

MSCL Calculation							
Operation Frequency	Frequency (MHz)	Distance (m)	Path loss (dB)	Indoor Antenna Gain(dBi)	Indoor Cable Loss(dB)	Polarity Loss(dB)	MSCL (dB)
UL698-716	698	2	35.40	6	1.2	3.01	33.61

Note: Lp = 20logf + 20logd - 27.5

Polarity loss = 20Log (1/Sin (45deg)) dB = 3.01dB

	Variable booster gain								
Operation Frequency	RSSI (dBm)	Input Power (dBm)	Output Power (dBm)	Measured Gain (dB)	MSCL	Limit	Results		
	-64	-46.8	14.61	61.41	33.61	63.49	PASS		
	-63	-46.8	13.34	60.14	33.61	62.61	PASS		
UL698-716	-61	-46.8	11.26	58.06	33.61	60.61	PASS		
UL090-7 10	-59	-46.8	9.15	55.95	33.61	58.61	PASS		
	-58	-46.8	8.07	54.87	33.61	57.61	PASS		
	-56	-46.8	5.88	52.68	33.61	55.61	PASS		


Variable Uplink Gain Timing

٠.								
	Operation	Measured	Limit	Result				
	Frequency	Sec	Sec	result				
	698-716	0.261	3.0	PASS				

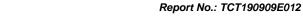
Variable Uplink Gain Timing Test Plots

6.9. Occupied Bandwidth

6.9.1. Test Specification

Test Requirement:	FCC Part2 Section 2.1049					
Test Method:	KDB835210 D03 Signal booster measurements v04r03					
Limit:	N/A					
Test setup:	Signal Generator Spectrum Analyzer Figure 6 – Test setup for measuring characteristics of test signals					
	used for subsequent EUT occupied bandwidth testing					
Test Procedure:	 a) Connect the test equipment as shown in Figure 6 to firstly measure the characteristics of the test signals produced by the signal generator. b) Set VBW ≥ 3 . RBW. c) Set the center frequency of the spectrum analyzer to the center of the operational band. The span will be adjusted for each modulation type and OBW as necessary for accurately viewing the signals. d) Set the signal generator for power level to match the values obtained from the tests of 7.2. e) Set the signal generator modulation type for GSM with a PRBS pattern and allow the trace on the signal generator to stabilize adjusting the span as necessary. f) Set the spectrum analyzer RBW for 1% to 5% of the EBW. g) Capture the spectrum analyzer trace for inclusion in the test report. h) Repeat 7.10c) to 7.10g) for CDMA and W-CDMA modulation, adjusting the span as necessary. AWGN or LTE may be used in place of W-CDMA, as an option. i) Repeat 7.10c) to 7.10h) for all uplink and downlink operational bands. j) Connect the test equipment as shown in Figure 1, with the uplind output (donor) port connected to the spectrum analyzer, and the server port connected to the signal generator. k) Repeat 7.10c) to 7.10i) with this EUT uplink path test setup. l) Connect the test equipment as shown in Figure 1, with the downlink output (server) port connected to the spectrum analyzer, and the downlink output (server) port connected to the signal generator. m) Repeat 7.10c) to 7.10i) with this EUT downlink path test setup. 					
Test results:	m) Repeat 7.10c) to 7.10i) with this EUT downlink path test setup. PASS					

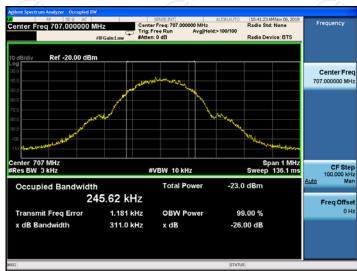
6.9.2. Test Instruments

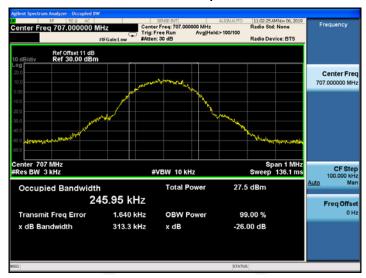

Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Signal Generator	Agilent	N5182A	MY47070282	Sep. 12, 2019	Sep. 11, 2020
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 12, 2019	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.9.3. Test Data

Operation Band	Signal Type	Input OBW [MHz]	Output OBW [MHz]	Results
	GSM	0.246	0.246	PASS
UL698-716	CDMA	1.242	1.246	PASS
	LTE	4.502	4.483	PASS
	GSM	0.244	0.244	PASS
DL728-746	CDMA	1.239	1.242	PASS
	LTE	4.501	4.503	PASS





Test Plots

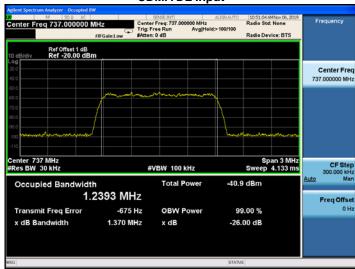
GSM UL Input

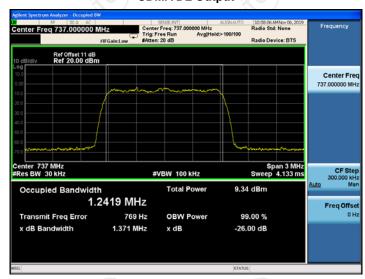
GSM UL output

GSM DL Input

GSM DL Output

CDMA UL Input


CDMA UL output



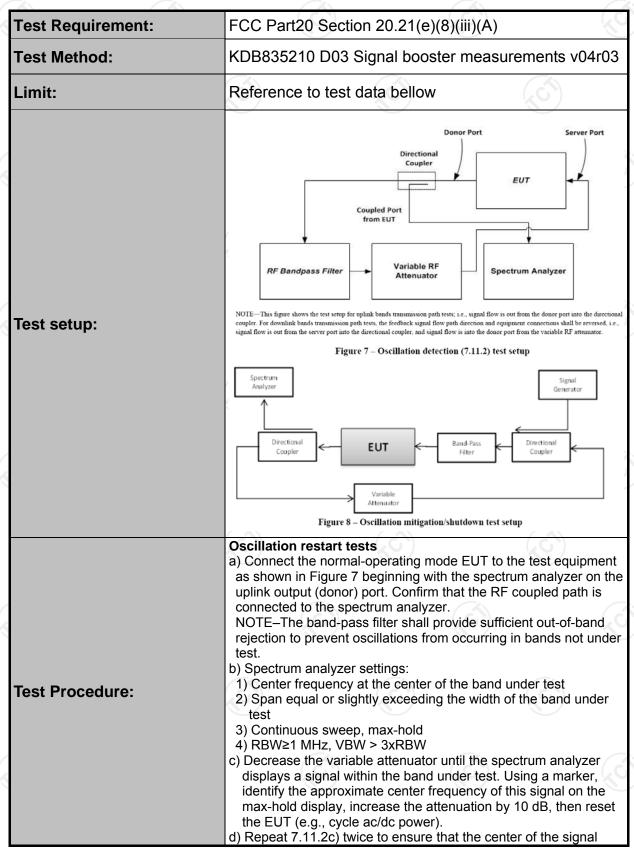
CDMA DL Input

CDMA DL Output

LTE UL Input

LTE UL output

LTE DL Input


LTE DL Output

6.10. Oscillation Detection and Mitigation

6.10.1. Test Specification

- created by the booster remains within 250 kHz of the spectrum analyzer display center frequency. If the frequency of the signal is unstable, confirm that the spectrum analyzer display is centered between the frequency extremes observed. If the signal is wider than 1 MHz, ensure that the spectrum analyzer display is centered on the signal by increasing the RBW. Reset the EUT (e.g., cycle ac/dc power) after each oscillation event, if necessary. Set the spectrum analyzer sweep trigger level to just below the peak amplitude of the displayed EUT oscillation signal.
- e) Set the spectrum analyzer to zero-span, with a sweep time of 5 seconds, and single-sweep with max-hold. The spectrum analyzer sweep trigger level in this and the subsequent steps shall be the level identified in 7.11.2d).
- f) Decrease the variable attenuator until the spectrum analyzer sweep is triggered, increase the attenuation by 10 dB, then reset the EUT (e.g., cycle ac/dc power).
- g) Reset the zero-span trigger of the spectrum analyzer, then repeat 7.11.2f) twice to ensure that the spectrum analyzer is reliably triggered, resetting the EUT (e.g., cycle ac/dc power) after each oscillation event if necessary.
- h) Reset the zero-span sweep trigger of the spectrum analyzer, and reset the EUT (e.g., cycle ac/dc power).
- i) Force the EUT into oscillation by reducing the attenuation.
- j) Use the marker function of the spectrum analyzer to measure the time from the onset of oscillation until the EUT turns off, by setting Marker 1 on the leading edge of the oscillation signal and Marker 2 on the trailing edge. The spectrum analyzer sweep time may be adjusted to improve the time resolution of these cursors.
- k) Capture the spectrum analyzer zero-span trace for inclusion in the test report. Report the power level associated with the oscillation separately if it can't be displayed on the trace.
- Repeat 7.11.2b) to 7.11.2k) for all operational uplink and downlink bands.
- m) Set the spectrum analyzer zero-span sweep time for longer than 60 seconds, then measure the restart time for each operational uplink and downlink band.
- n) Replace the normal-operating mode EUT with the EUT that supports an anti-oscillation test mode.
- o) Set the spectrum analyzer zero-span time for a minimum of 120 seconds, and a single sweep.
- p) Manually trigger the spectrum analyzer zero-span sweep, and manually force the booster into oscillation as described in 7.11.2i).
- q) When the sweep is complete, place cursors between the first two oscillation detections, and save the Test Plots for inclusion in the test report. The time between restarts must match the manufacturer's timing for the test mode, and there shall be no more than 5 restarts.
- r) Repeat 7.11.2m) to 7.11.2q) for all operational uplink and downlink bands.

Test procedure for measuring oscillation mitigation or shutdown

- a) Connect the normal-operating mode EUT to the test equipment as shown in Figure 8.
- b) Set the spectrum analyzer center frequency to the center of band under test, and use the following settings:
- 1) RBW=30 kHz, VBW \geq 3 × RBW,
- 2) power averaging (rms) detector,
- 3) trace averages ≥ 100,
- 4) span ≥ 120% of operational band under test

TESTING CENTRE TECHNOLOGY	Report No.: TCT190909E0
	5) number of sweep points ≥ 2 × Span/RBW. c) Configure the signal generator for AWGN operation with a 99% OBW of 4.1 MHz, tuned to the frequency of 2.5 MHz above the lower edge or below the upper edge of the operating band under test. Adjust the RF output level of the signal generator such that the measured power level of the AWGN signal at the output port of the booster is 30 dB less than the maximum power of the booster for the band under test. Affirm that the input signal is not obstructing the measurement of the strongest oscillation peak in the band, and is not included within the span in the
	 measurement. 1) Boosters with operating spectrum passbands of 10 MHz or less may use a CW signal source at the band edge rather than AWGN. 2) For device passbands greater than 10 MHz, standard CMRS signal sources (i.e., CDMA, W-CDMA, LTE) may be used instead of AWGN at the band edge. d) Set the variable attenuator to a high attenuation setting such that the booster will operate at maximum gain when powered on. Reset the the EUT (e.g., cycle ac/dc power). Allow the EUT to complete its boot up process, to reach full operational gain, and
	complete its boot-up process, to reach full operational gain, and to stabilize its operation. e) Set the variable attenuator such that the insertion loss for the center of the band under test (isolation) between the booster donor port and server port is 5 dB greater than the maximum gain, as recorded in the maximum gain test procedure (see 7.3), for the band under test. f) Verify the EUT shuts down, i.e., to mitigate the oscillations. If the booster does not shut down, measure and verify the peak oscillation level as follows. 1) Allow the spectrum analyzer trace to stabilize. 2) Place the marker at the highest oscillation level occurring within
	 the span, and record its output level and frequency. 3) Set the spectrum analyzer center frequency to the frequency with the highest oscillation signal level, and reduce the span such that the upper and lower adjacent oscillation peaks are within the span. 4) Use the Minimum Search Marker function to find the lowest output level that is within the span, and within the operational band under test, and record its output level and frequency.
	 5) Affirm that the peak oscillation level measured in 7.11.3f2), does not exceed by 12.0 dB the minimal output level measured in 7.11.3f)4). Record the measurement results of 7.11.3f2) and 7.11.3f4) in tabular format for inclusion in the test report. 6) The procedure of 7.11.3f1) to 7.11.3.f5) allows the spectrum analyzer trace to stabilize, and verification of shutdown or oscillation level measurement must occur within 300 seconds.14 g) Decrease the variable attenuator in 1 dB steps, and repeat step 7.11.3f) for each 1 dB step. Continue testing to the level when the insertion loss for the center of band under test (isolation) between the booster donor port and server port is 5 dB lower than the maximum gain (see 7.3). h) Repeat 7.11.3a) to 7.11.3g) for all operational uplink and downlink bands.
Test results:	PASS (C)

6.10.2. Test Instruments

Equipment	uipment Manufacturer		S/N	Calibration Date	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 12, 2019	Sep. 11, 2020
Attenuation	AF115A-09-34	JFW	907763	Sep. 12, 2019	Sep. 11, 2020
RF Combiner	SUNVNDN	SUD-CS0800	162300 09	Sep. 12, 2019	Sep. 11, 2020
AN03468	Band Pass Filter	4CS10- 781.5/E12.2- O/O	N/A	Sep. 12, 2019	Sep. 11, 2020
AN03469	Band Pass Filter	4CS10- 751.5/E12-O/ O	N/A	Sep. 12, 2019	Sep. 11, 2020
AN02475	1 dB step Attenuator	8494B	N/A	Sep. 12, 2019	Sep. 11, 2020
AN03429	10dB step Attenuator	8496B	N/A	Sep. 12, 2019	Sep. 11, 2020
ANC00082	RF Coupler	722-10-1.500V	N/A	Sep. 12, 2019	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.10.3. Test Data

Test results of detection time						
Operation Frequency	Detection Time (s)	Limit (s)	Result			
UL698-716	0.23	0.300	PASS			
DL728-746	0.07	1.000	PASS			

Test results of detection time							
Operation Frequency	Restarting Time(s)	Limit (s)	Restarting Counts	Limit	Result		
UL698-716	81.38	60	1	5	PASS		
DL728-746	83.40	60	1	5	PASS		

Test Test Plotss of detection time

UL

DL

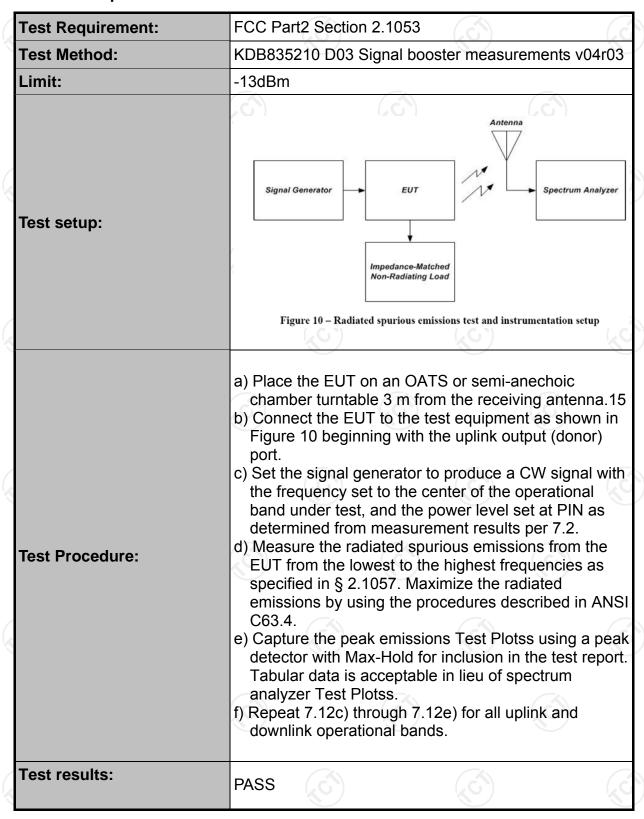
Test Test Plotss of restarting time

UL

DL

Test results of Mitigation or Shutdown

Band12	Uplink(698-716MHz)								
Signal Type AWGN									
	Peak Oscillations		Minimal Level		Delta			Mitigation	
Isolation	Freq.	Level	Freq.	Level	Value Lin	Limit	Mitigate Oscillation	Time Limit	Result
dB	MHz	dBm	MHz	dBm	dB	dB	sec	sec	
+5	708.30	-60.37	713.25	-68.63	8.26	<12	162	300	Pass
+4	708.30	-58.34	713.25	-68.92	10.58	<12	175	300	Pass
+3	708.30	-56.85	713.25	-69.14	12.29	<12	221	300	Pass
+2	708.30	-54.37	713.25	-68.68	14.31	<12	184	300	Pass
+1	708.30	-50.59	713.25	-69.34	18.75	<12	153	300	Pass
+0	708.30	-42.65	713.25	-68.67	26.02	<12	147	300	Pass
-1	EUT Shutdown								


Band12	Downlink(728-746MHz)								
Signal Type	AWGN								
	Peak Oscillations Minim			al Level Delta		1	Time to	Mitigation	
Isolation	Freq.	Level	Freq.	Level	Value	Value Limit	Mitigate Oscillation	Time Limit	Result
dB	MHz	dBm	MHz	dBm	dB	dB	sec	sec	
+5	738.70	-56.74	733.41	-68.74	12.00	<12	215	300	Pass
+4	738.70	-54.36	733.41	-69.02	14.66	<12	193	300	Pass
+3	738.70	-51.42	733.41	-68.68	17.26	<12	206	300	Pass
+2	738.70	-48.63	733.41	-68.59	19.96	<12	223	300	Pass
+1	738.70	-45.36	733.41	-69.25	23.89	<12	198	300	Pass
0	738.70	-41.35	733.41	-68.34	26.99	<12	176	300	Pass
-1	EUT Shutdown								

TESTING CENTRE TECHNOLOGY Report No.: TCT190909E012

7. Radiation Spurious Emission

7.1.1. Test Specification

7.1.2. Test Instruments

Radiated Emission							
Name	Model No.	Manufacturer	Date of Cal.	Due Date			
EMI Test Receiver	ESIB7	R&S	Jul. 30, 2019	Jul. 29, 2020			
Spectrum Analyzer	FSQ40	R&S	Sep. 12, 2019	Sep. 11, 2020			
Amplifier	8447D	HP	Sep. 09, 2019	Sep. 08, 2020			
Amplifier	EM30265	EM Electronics Corporation CO.,LTD	Sep. 09, 2019	Sep. 08, 2020			
Broadband Antenna	VULB9163	Schwarzbeck	Sep. 07, 2019	Sep. 06, 2020			
Horn Antenna	BBHA 9120D	Schwarzbeck	Sep. 07, 2019	Sep. 06, 2020			
Coax cable (9KHz-40GHz)	RE-high-02	тст	Sep. 09, 2019	Sep. 08, 2020			
Coax cable (9KHz-40GHz)	RE-high-04	ТСТ	Sep. 09, 2019	Sep. 08, 2020			
Loop antenna	ZN30900A	ZHINAN	Sep. 12, 2019	Sep. 11, 2020			
Signal Generator	N5182A	Agilent	Sep. 12, 2019	Sep. 11, 2020			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

7.1.1. Test data

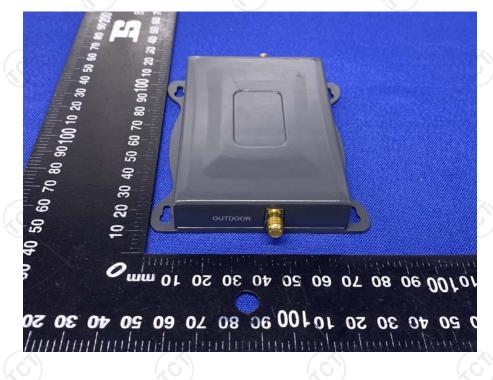

Frequency [MHz]	Antenna polarity [H/V]	Level [dBm]	Limit [dBm]	Margin [dB]
`		Uplink		
188.05	V	-52.10		39.10
275.20	H	-54.85	9)	41.85
1414.00	V	-50.79	-13.00	37.79
1414.00	С Н	-49.42		36.42
				
		Downlink		
188.58	V	-52.52		39.52
275.76	Н	-54.60		41.60
1474.00	S) v	-50.81	-13.00	37.81
1474.00	Н	-51.56		38.56
	-(6)	((C)

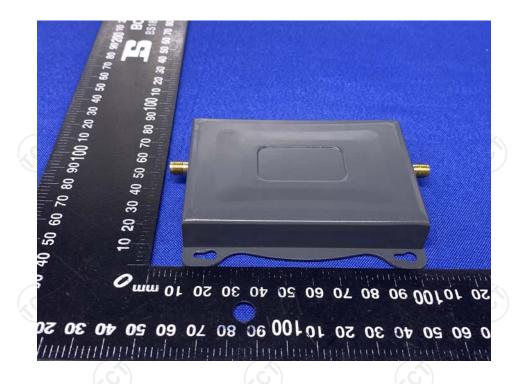
Appendix A: Photographs of Test Setup

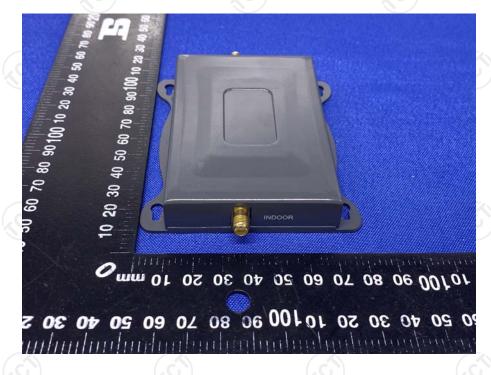
Product: cell phone signal booster Model: NA70

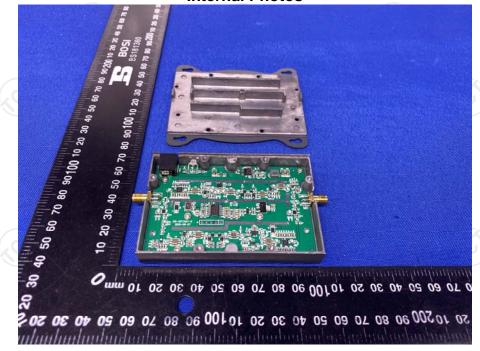
Appendix B: Photographs of EUT

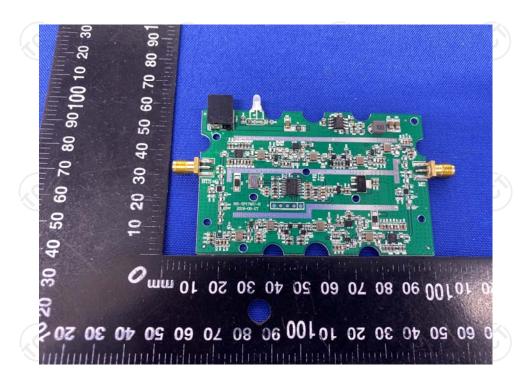
Product: cell phone signal booster

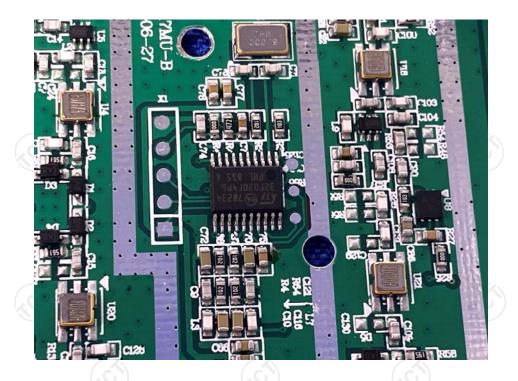

Model: NA70 External Photos










Product: cell phone signal booster Model: NA70 Internal Photos

