

Report No.: 2105TW0001-U5Report Version:V1.0Issue Date:2021-07-09

RF Exposure Evaluation Declaration

- FCC ID: 2ALGLX2000-MP
- Applicant: CASSIA NETWORKS INC
- Application Type: Certification

Product: X2000/ATX2000 Main PCBA

- Model No.: X2000-MP
- Brand Name: CASSIA
- FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (NII)

- **Test Procedure(s):** KDB 447498 D01v06
- **Test Date:** 2021.06.17

Reviewed By

Approved By

: Paddy Chen (Paddy Chen) : Amy ker (Chenz Ker)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2105TW0001-U6	1.0	Initial Report	2021-07-09	Valid

CONTENTS

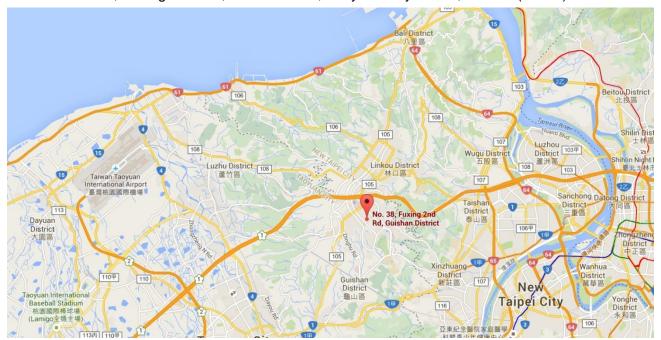
Des	cription		Page
Gen	eral Infor	mation	4
1.	INTROD	UCTION	5
	1.1.	Scope	5
	1.2.	MRT Test Location	5
2.	PRODUC	CT INFORMATION	6
	2.1.	Equipment Description	6
	2.2.	Description of Available Antennas	7
3.	RF Expo	sure Evaluation	9
	3.1.	Limits	9
	3.2.	Test Result of RF Exposure Evaluation	10
Арр	endix A -	External Photograph	11
Арр	endix B -	Internal Photograph	12

General Information

Applicant	CASSIA NETWORKS INC			
Applicant Address	1840 Majestic Way San Jose, CA 95132,USA			
Manufacturer	CASSIA NETWORKS INC			
Manufacturer Address	1840 Majestic Way San Jose, CA 95132,USA			
Test Site	MRT Technology (Taiwan) Co., Ltd			
Test Site Address	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)			
MRT FCC Registration No.	291082			
Test Device Serial No.	N/A Production Pre-Production Engineering			

Test Facility / Accreditations

- 1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Taiwan, EU and TELEC Rules.


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. **PRODUCT INFORMATION**

2.1. Equipment Description

Product Name	X2000/ATX2000 Main PCBA
Model No.	X2000, X2000-10, X2000-20
Chip 0 Bluetooth Version	V5.0 (Single Mode)
Chip 1 Bluetooth Version	V5.0 (Single Mode)
Wi-Fi Specification	802.11a/b/g/n/ac
Working Voltage	12Vdc 2.0A or 57Vdc 350mA (PoE)
Pomark:	

Remark:

 PoE adapter was selected by MRT for all testing, due to DC adapter and PoE adapter not selling with product.

 For new device (X2000-MP), it's a PCBA, same as the internal PCBA of original device (X2000). The difference is shown in the table 1 as below.

	Table 1				
Diff	Original (X2000)	New (X2000-MP)	Remark		
1	With Enclosure Without Enclosure, only PCBA		Remove enclosure and do not change PCBA design.		
2	With three internal BLE antennas	Without Internal BLE antenna	Remove BLE internal antennas, but reserve the antenna connect, the function of these internal antenna ports will be closed by software.		
3	Without Omni Antenna	Add Omni antennas for BLE and Wi-Fi 2.4G and 5G	Add some omni antennas for BLE and Wi-Fi, but the Power setting and power will not be greater than the original device under directional antennas.		

2.2. Description of Available Antennas

Antenna	Model No.	Manufacturer	Frequency Band	T _X	Ant Gain
Туре			(MHz)	Paths	(dBi)
BLE (Externa	al Antenna)		•		
Directional	DF24-30V14F				14.0
Directional	DB24-40V14A				14.0
Directional	DB24-120VH14A				14.0
Directional	DB24-65V12A				12.0
Directional	DF24-60V12M	DIPOLE COMMUNICATIO			12.0
Directional	DB24-90V11A	NS LIMITED			11.0
Directional	DF24-90V11M				11.0
Directional	DF24-110V10F				10.0
Directional	DB24-120V10A		2402 ~ 2480	1	10.0
Directional	DB24-120VH09A				9.0
Directional	TDJ-2400BKC14	Kanhatang			14.0
Directional	TDJ-2400BFE	Kenbotong			14.0
Directional	KBT120VP13-24RT0	Technology Co., Ltd.			13.0
Directional	TDJ-2400BKCH70	Liu.			11.0
Directional	SPDG16T2	SuperPass			12.2
		Company Inc.			
Directional	OSCAR18	Siretta Ltd			10.0
Directional	iANT214-2400				8.5
Directional	iANT214-2400D	Extronics Ltd.			8.0
Directional	iANT221				7.5
Wi-Fi (Interna	al Antenna)		Γ	Γ	
			2412 ~ 2462	1	3.70
PCB	N2420DTS	Airgain	5150 ~ 5725	1	6.60
			5725 ~ 5850	1	7.30

Wi-Fi & BLE (External Antenna)						
	iANT213-2400	Extronics Ltd.	2402 ~ 2480	1	6.0	
Omni			2412 ~ 2462	1	6.0	
			5150 ~ 5850	1	6.0	
			2402 ~ 2480	1	6.0	
Omni	iANT216M	Extronics Ltd.	2412 ~ 2462	1	6.0	
			5150 ~ 5850	1	6.0	
	iANT212	Extronics Ltd.	2402 ~ 2480	1	2.0	
Omni			2412 ~ 2462	1	2.0	
			5150 ~ 5850	1	2.0	
	MHODB24490507NM -IP	PCTEL, Inc.	2402 ~ 2480	1	5.0	
Omni			2412 ~ 2462	1	5.0	
	-11-		5150 ~ 5850	1	7.0	

Note 1: Bluetooth and Wi-Fi 2.4G or Wi-Fi 5G can transmit simultaneously, but it can not transmit simultaneously between the Bluetooth chips.

Note 2: Only the directional antenna (DF24-30V14F) was selected for all test, the same power setting with the different BLE external antennas.

Note 3: The omni antenna (iANT216M) was selected for Wi-Fi 2.4G & BLE test, omni antenna (MHODB24490507NM-IP) was selected for Wi-Fi 5G test, the same power setting with the different external omni antennas.

Note 3: All messages as above are declared by manufacturer.

3. RF Exposure Evaluation

3.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (Minutes)		
	(A) Limits for Occupational/ Control Exposures					
300-1500			f/300 6			
1500-100,000			5	6		
	(B) Limits for Gene	ral Population/ Unco	ontrolled Exposures			
300-1500		f/1500		6		
1500-100,000			1	30		

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

f= Frequency in MHz

Calculation Formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

3.2. Test Result of RF Exposure Evaluation

Product	X2000/ATX2000 Main PCBA
Test Item	RF Exposure Evaluation

Test Mode	Frequency	Maximum	Antenna	Maximum	Power	Limit
	Band (MHz)	conducted	Gain	EIRP	Density at	(mW/cm ²)
		power	(dBi)	(dBm)	R = 20 cm	
		(dBm)			(mW/cm ²)	
Bluetooth	2402 ~ 2480	7.94	14.0	21.94	0.0311	1
	2412 ~ 2462	24.27	6.0	30.27	0.2117	1
Wi-Fi	5180 ~ 5825	15.92	7.3	23.22	0.0418	1

CONCLUSION:

The max Power Density at R (20 cm) = 0.0311 mW/cm² + 0.2117 mW/cm² + 0.0418 mW/cm² = 0.2846 mW/cm² < 1 mW/cm².

Therefore, the Min Safety Distance is 20cm.

- The End

Appendix A - External Photograph

Refer to "2105TW0001-External Photo" file.

Appendix B - Internal Photograph

Refer to "2105TW0001-Internal Photo" file.