FCC Part 15.247 RF TEST REPORT

Test Report Number	RBC-18070901-FCC-RF-Beacon Rev1.0		
Applicant	Roambee Corporation		
Applicant Address	3120 De La Cruz Blvd Suite 121, Santa Clara	, CA 95054	
Product Name	BeeBeacon Secure		
Model Number	BB-SEC-1		
FCC ID	2ALG8BB-SEC		
Date of EUT received	07/12/2018		
Date of Test	07/16/2018 – 08/03/2018		
Report Issue Date	08/03/2018		
Test Standards	47CFR Part 15.247: 2018		
Test Result	Pass		

Issued By:

Vista Laboratories, Inc.

1261 Puerta Del Sol, San Clemente, CA 92673 USA

www.vista-compliance.com

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This report is not to be reproduced by any means except in full and in any case not without the written approval of Vista Laboratories, Inc..

Tested by:	Approved By:
SN	Davidey
Sherwin Lee/Test Engineer	David Zhang/Technical Manager

Product: BeeBeacon Secure
Model Number: BB-SEC-1

Page 2 of 36

Laboratory Introduction

Vista Labs is an A2LA accredited 17025 compliant regulatory compliance testing laboratories (Cert. number: 4848-01) and product certification service provider strategically located in Orange County, providing services in the electrical and telecommunication industries. Vista labs is also recognized testing facility for Australia (ACMA), Chinese Taipei (BSMI), Chinese Taipei (NCC), Hong Kong (OFCA), Israel (MOC), Korea (RRA), Singapore (IMDA), Vietnam (MIC), etc.

Our comprehensive testing services include safety testing, EMC emission and susceptibility testing, RF and wireless testing (including DFS).

As your partner, Vista investigates appropriate test standards, develops test plans, performs troubleshooting & failure analysis, reviews documentation, and provides test reports for a complete compliance testing and certification package.

Accredited Laboratory

A2LA has accredited

VISTA LABORATORIES, INC.

San Clemente, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005
General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system

(refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 21st day of June 2018

President and CEO
For the Accreditation Council
Certificate Number 4848.01
Valid to July 31, 2020

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Page 3 of 36

TABLE OF CONTENTS

1	(GENERAL INFORMATION	5
	1.1	Applicant	5
	1.2	Product information	5
	1.3	3 Test standard and method	5
	1.4	Test Purpose and statement	5
2	1	TEST SITE INFORMATION	6
3	ſ	MODIFICATION OF EUT	6
4	1	TEST CONFIGURATION AND OPERATION	6
	4.1	EUT test configuration	6
	4.2	P EUT test mode	6
	4.3	Supporting Equipment	7
	4.4	EUT setup diagram	7
	4.5	EUT operation	7
	4.6	S Test software	7
5	E	EUT AND TEST SETUP PICTURES	8
	5.1	EUT pictures	8
	5.2	PEUT test setup pictures	8
6	1	TEST SUMMARY	9
7	ι	UNCERTAINLY OF MEASUREMENT	10
8	1	TEST SUMMARY AND RESULT	11
	8.1	Antenna Requirement	11
	8.2	DTS (6 dB) Bandwidth	12
	8.3	Maximum Output Power	17
	8.4	Power Spectral Density	21
	8.5	Conducted Band-Edge & Unwanted Emissions Measurement	25
	8.6	Radiated Band-Edge & Spurious Emissions into Restricted Frequency Bands	31
9	7	TEST INSTRUMENT LIST	36

www.vista-compliance.com

Product: BeeBeacon Secure
Model Number: BB-SEC-1

Page 4 of 36

REVISION HISTORY

Revision	Issue Date	Description	Note
Original	08/03/2018	Original release	N/A
Rev1.0	08/08/2018	Correct test lab information	N/A

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Page 5 of 36

1 General Information

1.1 Applicant

Applicant:	Roambee Corporation	
Applicant address:	3120 De La Cruz Blvd #121, Santa Clara, CA 95054	
Manufacturer:	Roambee Corporation	
Manufacturer Address:	3120 De La Cruz Blvd #121, Santa Clara, CA 95054	

1.2 Product information

Product Name	BeeBeacon Secure
Model Number	BB-SEC-1
Serial Number	N/A
Frequency Band	BLE: 2402-2480MHz
Type of modulation	GFSK
Equipment Class/ Category	DTS
Maximum output power	3.104 dBm
Antenna Information	SMD chip antenna (P/N 2500AT44M0400)
Antenna information	Gain: 2.5 dBi
Clock Frequencies	N/A
Port/Connectors	N/A
Input Power	Battery: 1 x CR2025 (165mAh)
Power Adapter Manu/Model	N/A
Power Adapter SN	N/A
Hardware version	N/A
Software version	N/A
Simultaneous Transmission	N/A
Additional Info	N/A

1.3 Test standard and method

Test standard	47CFR Part 15.247: 2018	
Tost mothod	ANSI C63.10: 2013	
Test method	558074 D01 DTS Meas Guidance v04 (April 5, 2017)	

1.4 Test Purpose and statement

The purpose of this test report is intended to demonstrate the compliance of product listed in section 1.2, received from company listed in section 1.1, to the requirements of standard and method listed in section 1.3. Based on our test results, we conclude that the product tested complies with the requirements of the standards indicated.

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Page 6 of 36

Test site information

Lab performing tests	Vista Laboratories, Inc.	
Lab Address	1261 Puerta Del Sol, San Clemente, CA 92673 USA	
Phone Number	+1 (949) 393-1123	
Website	www. Vista-compliance.com	

Test condition	Test Engineer	Test Environment	Test Date
RF conducted	Sherwin Lee	23.5°C / 58.2%/996 mbar	07/16/2018 - 08/03/2018
Radiated	Sherwin Lee	23.5°C / 58.2%/996 mbar	07/16/2018 - 08/03/2018

Modification of EUT

For RF conducted measurement purpose, the original antenna of test sample was removed and replace with external SMA connector; a short serial wire cable was soldered onto the PCB for sending command from Laptop to EUT to enable RF test mode; the special test firmware is used for testing purpose.

For Radiated measurement, a short serial wire cable was soldered onto the PCB for sending command from Laptop to EUT to enable RF test mode; the special test firmware is used for testing purpose. No other physical modification was made.

Test configuration and operation

4.1 **EUT test configuration**

EUT is powered by internal battery. It is connected to a test laptop through serial cable to receive test command for RF measurement. Tera Term serial port software is used to send command to EUT to enable the RF test mode.

4.2 **EUT test mode**

Radio	Channel	Data Rates	Frequency (MHz)
BLE	1 (Low)	1 Mbps	2402
BLE	17 (Mid)	1 Mbps	2440
BLE	39 (High)	1 Mbps	2480
BLE	1 (Low)	2 Mbps	2402
BLE	17 (Mid)	2 Mbps	2440
BLE	39 (High)	2 Mbps	2480

Report Number:	RBC-18070901-FCC-RF-Beacon Rev1.0	
Product:	BeeBeacon Secure	
Model Number:	RR-SEC-1	

Page 7 of 36

4.3 Supporting Equipment

Index	Description	Model	S/N	Brand	Remark
1	Laptop	P29G003	G1H5102	Dell	N/A

4.4 EUT setup diagram

4.5 EUT operation

Tera Term serial port software is used to send command to EUT to enable the RF test mode.

4.6 Test software

Index	Description	Remark
1	Tera Term Ver.4.99	Serial utility software to send command to device for running RF test mode.
2	EMISoft Vasona 6.0049	EMC/Spurious emission test software used during testing

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Page 8 of 36

EUT and test setup pictures

5.1 **EUT pictures**

See FCC filing

5.2 **EUT test setup pictures**

See FCC filing

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Page 9 of 36

6 Test Summary

FCC Rules	Test Item	Test standard	Section in report	Verdict
§15.203	Antenna Requirement	47CFR Part 15.247	8.1	Pass
§15.247 (a)(2)	DTS (6 dB) Channel Bandwidth	47CFR Part 15.247	8.2	Pass
§15.247(b)(3)	Conducted Maximum Output Power	47CFR Part 15.247	8.3	Pass
§15.247(e)	Power Spectral Density	47CFR Part 15.247	8.4	Pass
§15.247(d)	Conducted Band-Edge & Unwanted Emissions	47CFR Part 15.247	8.5	Pass
§15.207 (a)	AC Power Line Conducted Emissions	47CFR Part 15.247	N/A	N/A 1)
§15.205, §15.209, §15.247(d)	Radiated Emissions & Unwanted Emissions into Restricted Frequency Bands	47CFR Part 15.247	8.6	Pass

Note:

1) EUT is powered by battery only. This item is not applicable.

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Uncertainly of Measurement

Test item	Measurement Uncertainty (dB)
RF Output Power (Conducted)	±1.2 dB
Power Spectral Density	±0.9 dB
Unwanted Emission (conducted)	±2.6 dB
Occupied Channel Bandwidth	±5 %
Radiated Emission (30MHz-1GHz)	±4.6 dB
Radiated Emission (1-18GHz)	±4.9 dB
Radiated Emission (18-40GHz)	±3.5 dB

Report Number: RBC-18070901-FCC-RF-Beacon Rev1.0 **Product:** BeeBeacon Secure **Model Number:**

Test summary and result

BB-SEC-1

8.1 **Antenna Requirement**

8.1.1 Requirement

Per § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

8.1.2 Result

Analysis:

- EUT use SMD chip antenna that is soldered permanently attached onto the PCB.
- There is no provision for connection to an external antenna.

Conclusion:

EUT complies with antenna requirement in § 15.203.

Page 12 of 36

8.2 DTS (6 dB) Bandwidth

8.2.1 Requirement

Per § 15.247 (a)(2), systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 KHz.

8.2.2 Test setup

Test Procedure 8.2.3

According to section 8.2, Option 2, in KDB 558074 D01 DTS Meas Guidance v04

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

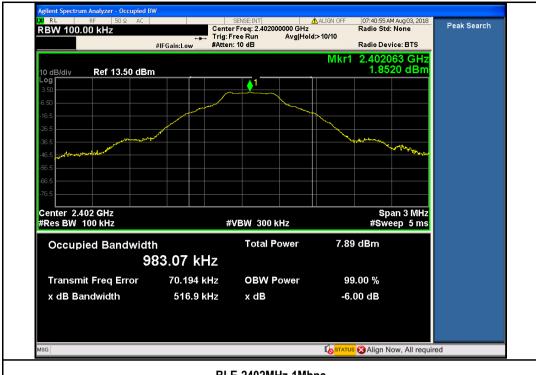
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Use automatic bandwidth measurement capability on instrument to obtain BW result.

Product: BeeBeacon Secure

Model Number: BB-SEC-1

8.2.4 Test Result

Radio	Data rate	Data rate Test Frequency (MHz)		Minimum Bandwidth (KHz)	Result
	1Mbps	2402	516.9	500	Pass
	1Mbps	2440	514.2	500	Pass
DLE	1Mbps	2480	511.1	500	Pass
BLE	2Mbps	2402	783.7	500	Pass
	2Mbps	2440	827.1	500	Pass
	2Mbps	2480	827.7	500	Pass

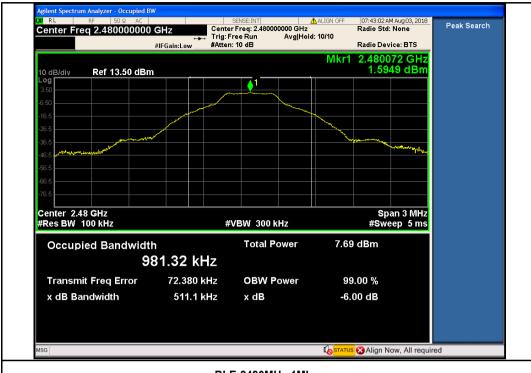


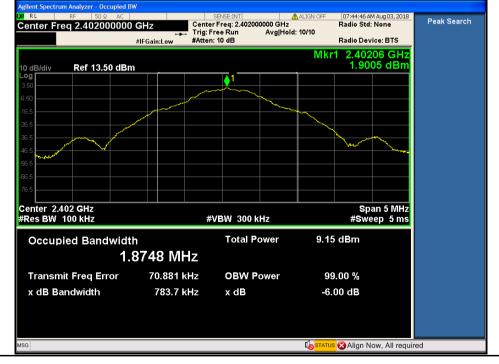
Product: BeeBeacon Secure

Model Number: BB-SEC-1

8.2.5 Test Plots

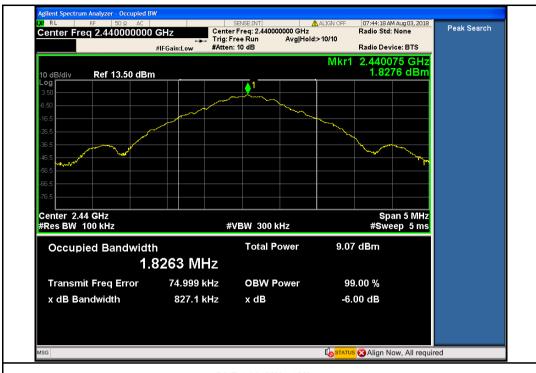
BLE-2402MHz-1Mbps




Product: BeeBeacon Secure

Model Number: BB-SEC-1

BLE-2480MHz-1Mbps


BLE-2402MHz-2Mbps


Product: BeeBeacon Secure

Model Number: BB-SEC-1

BLE-2440MHz-2Mbps

8.3 Maximum Output Power

8.3.1 Requirement

Per § 15.247 (b)(3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: the maximum output power is 1 Watt.

8.3.2 Test setup

8.3.3 Test Procedure

According to section 9.1.1 RBW≥DTS bandwidth, in KDB 558074 D01 DTS Meas Guidance v04

- 1. Set the RBW ≥ DTS bandwidth.
- 2. Set VBW \geq 3 X RBW.
- 3. Set span ≥ 3 X RBW
- 4. Sweep time = auto couple.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

8.3.4 Test Result

Radio	Data rate	Test Frequency (MHz)	Measured Output Power (dBm)	Maximum Output Power (dBm)	Result
	1Mbps	2402	2.947	30	Pass
	1Mbps	2440	3.081	30	Pass
BLE	1Mbps	2480	2.991	30	Pass
DLE	2Mbps	2402	3.003	30	Pass
	2Mbps	2440	3.104	30	Pass
	2Mbps	2480	3.041	30	Pass

Product: BeeBeacon Secure

Model Number: BB-SEC-1

8.3.5 Test Plots

BLE-2402MHz-1Mbps

Product: BeeBeacon Secure

Model Number: BB-SEC-1

BLE-2480MHz-1Mbps

BLE-2402MHz-2Mbps


Product: BeeBeacon Secure

Model Number: BB-SEC-1

BLE-2440MHz-2Mbps

BLE-2480MHz-2Mbps

Page 21 of 36

8.4 Power Spectral Density

8.4.1 Requirement

Per § 15.247 (e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.4.2 Test setup

8.4.3 Test Procedure

According to section 10.2 Method PKPSD, in KDB 558074 D01 DTS Meas Guidance v04

- 1. Set analyser centre frequency to DTS channel centre frequency.
- 2. Set the span to 1.5 X DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

8.4.4 Test Result

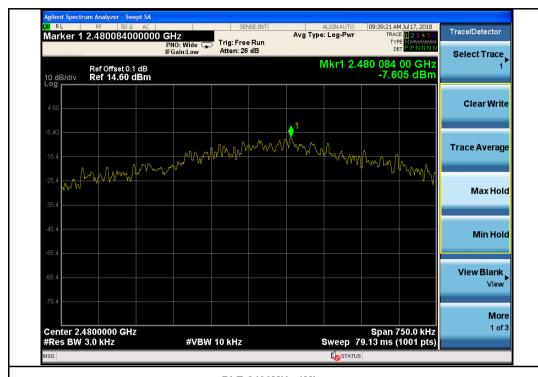
Radio	Data rate	Test Frequency (MHz)	Measured Output Power (dBm/3KHz)	Maximum Output Power (dBm/3KHz)	Result
	1Mbps	2402	-7.923	8	Pass
	1Mbps	2440	-7.548	8	Pass
BLE	1Mbps	2480	-7.605	8	Pass
DLE	2Mbps	2402	-14.709	8	Pass
	2Mbps	2440	-7.615	8	Pass
	2Mbps	2480	-10.949	8	Pass

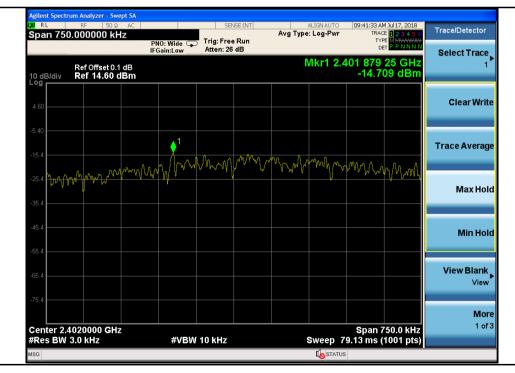
Product: BeeBeacon Secure

Model Number: BB-SEC-1

8.4.5 Test Plots

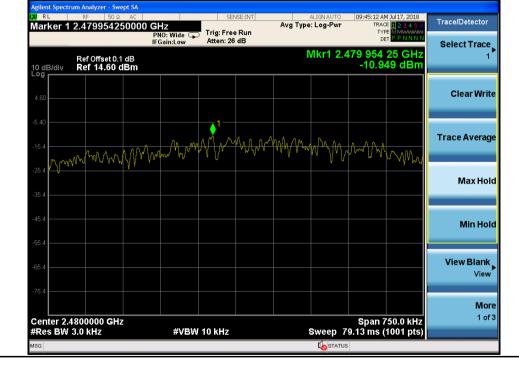
BLE-2402MHz-1Mbps


BLE-2440MHz-1Mbps


Product: BeeBeacon Secure

Model Number: BB-SEC-1

BLE-2480MHz-1Mbps


Product: BeeBeacon Secure

Model Number: BB-SEC-1

BLE-2440MHz-2Mbps

Page 25 of 36

8.5 Conducted Band-Edge & Unwanted Emissions Measurement

8.5.1 Requirement

Per § 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

8.5.2 Test setup

8.5.3 Test Procedure

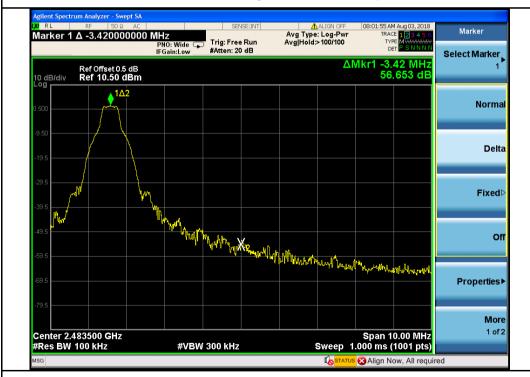
According to section 11.3 Emission level measurement, in KDB 558074 D01 DTS Meas Guidance v04

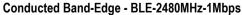
- 1. Set the centre frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.
- 3. Set the VBW \geq 3 X RBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level.

8.5.4 Test Result

See test plots

Product: BeeBeacon Secure


Model Number: BB-SEC-1



8.5.5 Test Plots

Conducted Band-Edge - BLE-2402MHz-1Mbps

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Conducted Band-Edge - BLE-2402MHz-2Mbps

Conducted Band-Edge - BLE-2480MHz-2Mbps

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Conducted Unwanted Emission - BLE-2402MHz-1Mbps

Conducted Unwanted Emission -Edge - BLE-2440MHz-1Mbps

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Conducted Unwanted Emission - BLE-2480MHz-1Mbps

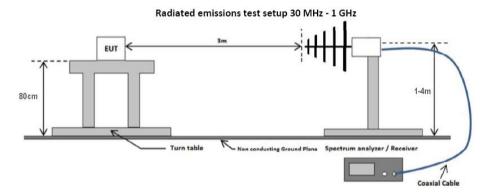
Product: BeeBeacon Secure

Model Number: BB-SEC-1

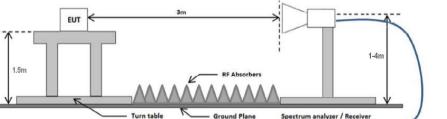
Conducted Unwanted Emission - BLE-2480MHz-1Mbps

Conducted Unwanted Emission - BLE-2402MHz-2Mbps

Page 31 of 36


8.6 Radiated Band-Edge & Spurious Emissions into Restricted Frequency Bands

8.6.1 Requirement


Per § 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency range (MHz)	Field Strength (μV/m)
0.009~0.490	2400/F(KHz)
0.490~1.705	24000/F(KHz)
1.705~30.0	30
30 – 88	100
88 – 216	150
216 - 960	200
Above 960	500

8.6.2 Test setup

Radiated emissions test setup above 1 GHz

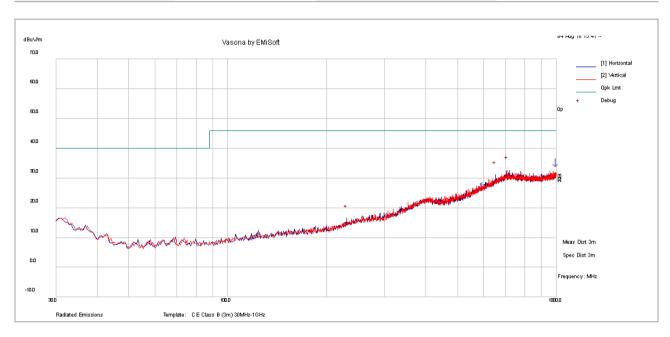
Report Number:	RBC-18070901-FCC-RF-Beacon Rev1.0	
Product:	BeeBeacon Secure	Page 32 of 36
Model Number:	BB-SEC-1	ACCREDITED Testing Cert #4848-01
		William Testing Certification

8.6.3 Test Procedure

According to section 12.2.7 Radiated spurious emission measurements in KDB 558074 D01 DTS Meas Guidance v04 and the procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 was followed. Boresight antenna mast was used during the scanning to point to EUT to maximize the emission.

ampin.

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-Peak detection at frequency below 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz.
 - The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz with Peak detection for Average Measurement as below at frequency above 1GHz.
- 5. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.



8.6.4 Test Result

30-1000MHz test result

Test Standard:	47CFR 15.209	Mode:	BLE-2440MHz-2Mbps
Frequency Range:	30-1000MHz	Test Date:	07/18/2018
Antenna Type/Polarity:	Bi-Log/Hor & Ver	Test Personnel:	Sherwin Lee
Remark:	N/A	Test Result:	Pass

Frequency	Raw	Cable	AF	Level	Det	Pol	Height	Table	Limit	Margin
MHz	dB	dB	dB	dBuV/m	Det	deg	cm	cm	dBuV/m	dB
707.55	31.80	7.30	-6.40	32.60	QP	V	300	121	47	-14.4
234.58	-2.90	5.20	-12.90	15.20	QP	Н	252	167	47	-31.8
652.32	17.50	7.00	-6.30	30.80	QP	V	122	137	47	-16.2
37.55	-9.20	3.90	-17.90	12.60	QP	Н	358	243	47	-34.4

Note: For below 1GHz, all different channel and modes were verified but only the worst case result is shown here.

1GHz - 25GHz Test Result

Test Mode: BLE -2402MHz-2Mbps

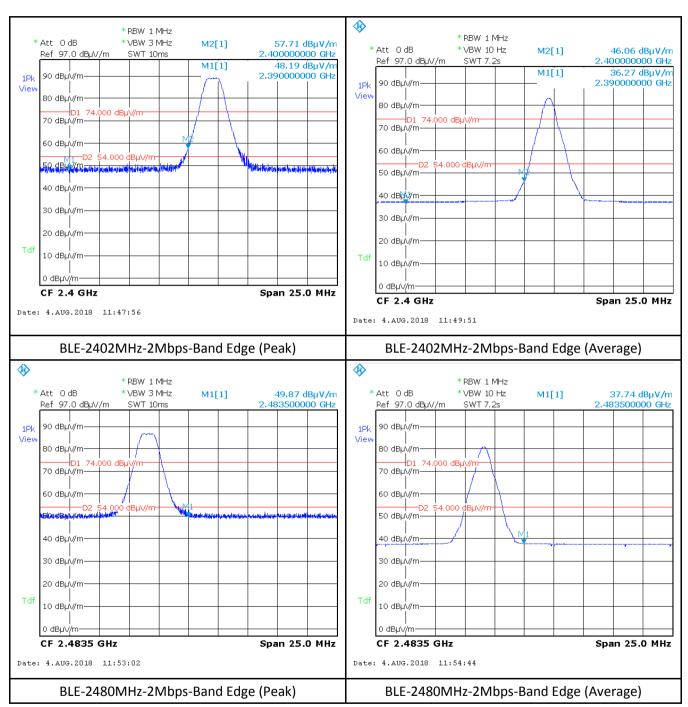
Freq. MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Meas. Type	Pol	Hgt cm	Deg	Limit dBuV/m	Margin dB	Pass /Fail
7206.67	38.18	9.18	-1.4	45.96	Peak	Н	100	82	74	-28.04	Pass
4803.20	41.16	6.87	-5.54	42.49	Peak	V	100	194	74	-31.51	Pass
7206.67	27.78	9.18	-1.4	35.57	Average	Н	100	82	54	-18.43	Pass
4803.20	28.71	6.87	-5.54	30.04	Average	V	100	194	54	-23.96	Pass

Test Mode: BLE -2440MHz-2Mbps

Freq. MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Meas. Type	Pol	Hgt cm	Deg	Limit dBuV/m	Margin dB	Pass /Fail
4879.79	45.67	6.89	-5.55	47.01	Peak	V	104	154	74	-26.99	Pass
14934.88	20.95	15.92	5.52	42.39	Peak	Н	296	82	74.00	-31.61	Pass
4879.79	37.75	6.89	-5.55	39.09	Average	V	104	154	54	-14.91	Pass
14934.88	9.62	15.92	5.52	31.06	Average	Н	296	82	54.00	-22.94	Pass

Test Mode: BLE -2480MHz-2Mbps

Freq. MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Meas. Type	Pol	Hgt cm	Deg	Limit dBuV/m	Margin dB	Pass /Fail
4960.82	46.27	6.91	-5.70	47.48	Peak	V	100	312	74	-26.52	Pass
14927.00	21.00	15.90	5.54	42.43	Peak	Н	263	231	74	-31.57	Pass
4960.82	35.66	6.91	-5.70	36.87	Average	V	100	312	54	-17.13	Pass
14927.00	9.47	15.90	5.54	30.90	Average	Н	263	231	54	-23.10	Pass



Radiated Band Edge measurement result

BB-SEC-1

Model Number:

Note: Both Horizontal and vertical polarities were investigated.

Product: BeeBeacon Secure

Model Number: BB-SEC-1

Test instrument list

Equipment	Manufacturer	Model	Serial Number	Cal. Date	Cal. Due
Semi-Anechoic Chamber	ETS-Lindgren	10M	VL001	5/11/2018	5/11/2019
Shielding Control Room	ETS-Lindgren	Series 81	VL006	N/A	N/A
Spectrum Analyzer	Keysight	N9020A	MY50110074	5/4/2018	5/4/2019
EMC Test Receiver	R&S	ESL6	100230	5/7/2018	5/7/2019
Bi-Log Antenna	ETS-Lindgren	3142E	217921	11/15/2017	11/15/2018
Horn Antenna	AH Systems	SAS-571	433	8/14/2017	8/14/2018
Horn Antenna	Electro-Metrics	EM-6961	6292	5/2/2018	5/2/2019
Horn Antenna (18-40GHz)	Com-Power	AH-840	101109	5/2/2018	5/2/2019
Preamplifier	RF Bay, Inc.	LPA-10-20	11180621	N/A	N/A
True RMS Multi-meter	UNI-T	UT181A	C173014829	5/10/2018	5/10/2019
Temp / Humidity / Pressure Meter	PCE Instruments	PCE-THB 40	R062028	5/9/2018	5/9/2019
RF Attenuator	Pasternack	PE7005-3	VL061	N/A	N/A
Preamplifier 100KHz - 40GHz	Aeroflex	33711-392- 77150-11	064	N/A	N/A
EM Center Control	ETS-Lindgren	7006-001	160136	N/A	N/A
Turn Table	ETS-Lindgren	2181-3.03	VL002	N/A	N/A
Boresight Antenna Tower	ETS-Lindgren	2171B	VL003	N/A	N/A
Loop Antenna (9k-30MHz)	Com-Power	AL-130	121012	5/9/18	5/9/19

