



Test Report Prepared By:

Electronics Test Centre 27 East Lake Hill Airdrie, Alberta Canada T4A 2K3

sales@etc-mpbtech.com http://www.etc-mpb.com

Telephone: 1-403-912-0037

ETC Report #: t29e20a152-P-DTS\_FCC Release 1

Report date: September 15, 2021

Test Dates: December 21, 22 and 23, 2020 January 15, 2021

EMC testing of the Tektelic Communication Inc. BLE Sensor GEN2 in accordance with FCC Part 15.247, ANSI C63.4: 2014 and ANSI C63.10: 2013 as referenced by FCC OET KDB 558074 D01 15.247 Measurement Guidance v05r02.

# FCC ID: 2ALEPT0007796

Tested by: Imran Akram, Janet Mijares

Prepared for:

Tektelic Communication Inc.

7657 10<sup>th</sup> Street NE Calgary, Alberta Canada T2E 8X2

Telephone: 1-403-338-6910

Imran Akram <u>iakram@etc-mpbtech.com</u> EMC Technologist Electronics Test Centre (Airdrie)

Marc Rousseau <u>marc.rousseau@mpbc.ca</u> QA Manager Electronics Test Centre (Airdrie)

Page 1 of 57

# **REVISION RECORD**

| ISSUE     | DATE       | AUTHOR                  | REVISIONS                           |
|-----------|------------|-------------------------|-------------------------------------|
| DRAFT 1   | 2021-07-30 | I. Akram                | Initial draft submitted for review. |
| Release 1 | 2021-09-15 | M. Rousseau<br>I. Akram | Sign off                            |

# TABLE OF CONTENTS

| 1.0 | INTR | ODUCTION                                                                                                                                                                                                                                                                                                                                                                                      | 5                                    |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|     | 1.1  | Scope                                                                                                                                                                                                                                                                                                                                                                                         | 5                                    |
|     | 1.2  | Applicant                                                                                                                                                                                                                                                                                                                                                                                     | 5                                    |
|     | 1.3  | Test Sample Description                                                                                                                                                                                                                                                                                                                                                                       | 5                                    |
|     | 1.4  | Multiple Models with different form factors                                                                                                                                                                                                                                                                                                                                                   | 6                                    |
|     | 1.5  | General Test Conditions                                                                                                                                                                                                                                                                                                                                                                       | 6                                    |
|     | 1.6  | Scope of Testing                                                                                                                                                                                                                                                                                                                                                                              | 7                                    |
|     |      | <ul><li>1.6.1 Test Methodology</li><li>1.6.2 Variations in Test Methodology</li></ul>                                                                                                                                                                                                                                                                                                         |                                      |
|     |      | <ul><li>1.6.2 Variations in Test Methodology</li><li>1.6.3 Test Sample Verification, Configuration &amp; Modifications</li></ul>                                                                                                                                                                                                                                                              |                                      |
|     |      | 1.6.4 Uncertainty of Measurement:                                                                                                                                                                                                                                                                                                                                                             |                                      |
| 2.0 | TEST | CONCLUSION                                                                                                                                                                                                                                                                                                                                                                                    | 8                                    |
|     | 2.1  | AC Power Line Conducted Emissions                                                                                                                                                                                                                                                                                                                                                             | 9                                    |
|     | 2.2  | Channel Occupied Bandwidth (DTS Mode)<br>2.2.1 Test Guidance: FCC KDB 558074 D01 15.247 Measurement Guidance v<br>ANSI C63.10 clause 11.8                                                                                                                                                                                                                                                     | /05r02/<br>.10                       |
|     |      | <ul><li>2.2.2 Deviations From The Standard:</li><li>2.2.3 Test Equipment</li></ul>                                                                                                                                                                                                                                                                                                            |                                      |
|     |      | 2.2.4 Test Sample Verification, Configuration & Modifications                                                                                                                                                                                                                                                                                                                                 | .11                                  |
|     |      | <ul><li>2.2.5 Channel Occupied Bandwidth Data: (LoRa)</li><li>2.2.6 Channel Occupied Bandwidth Data: (BLE)</li></ul>                                                                                                                                                                                                                                                                          |                                      |
|     | 2.3  | Maximum conducted (average) output power (DTS Mode)<br>2.3.1 Test Guidance: FCC KDB 558074 D01 15.247 Measurement Guidance v<br>ANSI C63.10 Sub clause 11.9.2.2                                                                                                                                                                                                                               | .15<br>⁄05r02/                       |
|     |      | 2.3.2 Deviations From The Standard:                                                                                                                                                                                                                                                                                                                                                           |                                      |
|     |      | <ul><li>2.3.3 Test Equipment</li><li>2.3.4 Test Sample Verification, Configuration &amp; Modifications</li></ul>                                                                                                                                                                                                                                                                              |                                      |
|     |      | 2.3.5 Average Output Power Data (LoRa)                                                                                                                                                                                                                                                                                                                                                        | .16                                  |
|     |      | 2.3.6 Average Output Power Data (BLE)                                                                                                                                                                                                                                                                                                                                                         |                                      |
|     | 2.4  | <ul> <li>Power Spectral Density (DTS Mode)</li> <li>2.4.1 Test Guidance: FCC KDB 558074 D01 15.247 Measurement Guidance v</li> <li>clause 11.10 of ANSI C63.10</li> <li>2.4.2 Deviations From The Standard:</li> </ul>                                                                                                                                                                        | /05r02/ Sub<br>.21                   |
|     |      | 2.4.3 Test Equipment.                                                                                                                                                                                                                                                                                                                                                                         |                                      |
|     |      | <ul><li>2.4.4 Test Sample Verification, Configuration &amp; Modifications</li><li>2.4.5 Peak PSD Data (LoRa DTS MODE)</li></ul>                                                                                                                                                                                                                                                               |                                      |
|     |      | 2.4.6 Peak PSD Data (BLE DTS MODE)                                                                                                                                                                                                                                                                                                                                                            |                                      |
|     | 2.5  | <ul> <li>Band Edge Attenuation (DTS Mode)</li> <li>2.5.1 Test Guidance: ANSI C63.10-2013 Clause 11.11, 11.13.2 / FCC KDB 55</li> <li>15.247 Measurement Guidance v05r02 Clause 8.7</li> <li>2.5.2 Deviations From The Standard:</li> <li>2.5.3 Test Equipment.</li> <li>2.5.4 Test Sample Verification, Configuration &amp; Modifications</li> <li>2.5.5 Band Edge Data (DTS MODE)</li> </ul> | 8074 D01<br>.26<br>.26<br>.27<br>.27 |
|     |      | 2.5.6       Band Edge Data (BLE DTS MODE)                                                                                                                                                                                                                                                                                                                                                     | .29                                  |

|        | 2.6      | Conducted Spurious Emissions in non-restricted frequency bands (DTS Mode)32.6.1Test Guidance: ANSI C63.10-2013, Clause 11.11, FCC KDB 558074 D01Measurement Guidance v05r02 Clause 8.5 | 15.247<br>30<br>30<br>30<br>30<br>30<br>31<br>34   |
|--------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|        | 2.7      | EUT Positioning Assessment                                                                                                                                                             | 7                                                  |
|        | 2.8      | Radiated Spurious Emissions in restricted frequency bands (TX Mode)                                                                                                                    | 47<br>88<br>89<br>89<br>89<br>89<br>89<br>82<br>88 |
|        | 2.9      | RF Exposure                                                                                                                                                                            | 4                                                  |
| 3.0    | TEST     | FACILITY 5                                                                                                                                                                             | 5                                                  |
|        | 3.1      | Location                                                                                                                                                                               | 5                                                  |
|        | 3.2      | Grounding Plan                                                                                                                                                                         | 5                                                  |
|        | 3.3      | Power Supply                                                                                                                                                                           | 5                                                  |
| Append | lix A (\ | Worse Emission test Setup Block Diagram)5                                                                                                                                              | 6                                                  |
| End of | Docun    | nent 5                                                                                                                                                                                 | 7                                                  |

# 1.0 INTRODUCTION

### 1.1 Scope

The purpose of this report is to present the results of compliance testing performed in accordance with FCC Part 15.247, ANSI C63.4-2014 and ANSI C63.10-2013 to gain FCC Certification Authorization for Low-Power License-Exempt transmitters. All test procedures, limits, criteria, and results described in this report apply only to the Tektelic Communication Inc. BLE Sensor GEN2 test sample, referred to herein as the EUT (Equipment Under Test).

The sample has been provided by the customer.

This report does not imply product endorsement by the Electronics Test Centre, A2LA, nor any Canadian Government agency.

### 1.2 Applicant

This test report has been prepared for Tektelic Communication Inc., located in Calgary, Alberta, Canada.

### 1.3 Test Sample Description

| Product Nam  | e:                           | BLE Sensor GEN2                                                        |
|--------------|------------------------------|------------------------------------------------------------------------|
|              | Frequency Band               | 902 – 928 MHz                                                          |
|              | Type of Modulation           | Chirp Spread Spectrum                                                  |
|              | BW/Frequency Range           | DTS 500kHz, 903 – 914.2 MHz                                            |
| LoRa Radio   | Associated Antenna           | Mfr: Fractus Antennas S.L, p/n: NN02-224,                              |
|              | ASSociated Antenna           | omni-directional, Gain 2.8dBi                                          |
|              | Detachable/Non<br>Detachable | Non-Detachable (internal to product) Compliant FCC15.203 requirements) |
|              | Model# / Serial#             | T0007378 / 2048A0224                                                   |
|              | Frequency Band               | 2400 – 2483.5 MHz                                                      |
|              | Type of Modulation           | DTS                                                                    |
|              | BW/Frequency Range           | 2402 – 2480 MHz                                                        |
| BLE Radio    | Associated Antenna           | Mfr: Pulse Larsen Antennas, p/n: W3008,                                |
|              | ASSociated Antenna           | Omnidirectional, Gain: 1.1dBi                                          |
|              | Detachable/Non               | Non-Detachable (internal to product) Compliant FCC15.203               |
|              | Detachable                   | requirements)                                                          |
|              | Model# / Serial#             | T0007128 / 2048A0049                                                   |
| Power supply | y:                           | Internal Battery                                                       |

As provided to ETC (Airdrie) by Tektelic Communication Inc.:

**Note:** All three channels / axis for worse selected variant were evaluated. Worse channel and axis were selected for detail analysis for radiated emission. Differences in variant are given in product family document.

# **1.4** Multiple Models with different form factors

The BLE Generation 2 product family portable device variants share the same PCB and have the same RF circuitry, antenna, and output power. The differences between the variants in the product family are strictly functional - the sensor transducers and batteries supported for each variant are dependent on the use case it will address.

The enclosures of all variant are made of the same plastic. The only difference is the size to accommodate the battery and battery type (AA cell, or C cell) it holds. During our initial analysis of the product variants, we performed worst case power emission on both enclosure types for both radios and all modulation on each channel and axis's. The result of our worst-case engineering measurement is shown below.

| Enclosure   | Mode       | Frequency<br>(MHz) | Field Strength (dBµV/m) |
|-------------|------------|--------------------|-------------------------|
|             |            | 903                | 104.16                  |
|             | LoRa (DTS) | 907.8              | 101.71                  |
|             |            | 914.2              | 102.12                  |
| AA          | LoRa       | 902.33             | 102.49                  |
| Enclosure   | (DSS)      | 908.7              | 102.96                  |
| Linciosure  | (033)      | 914.9              | 101.79                  |
|             | BLE        | 2402               | 89.0                    |
|             |            | 2438               | 91.0                    |
|             |            | 2480               | 81.0                    |
|             | LoRa (DTS) | 903                | 106.0                   |
|             |            | 907.8              | 108.0                   |
|             |            | 914.2              | 106.0                   |
|             | LoRa       | 902.33             | 110.0                   |
| C Enclosure |            | 908.7              | 108.0                   |
|             | (DSS)      | 914.9              | 107.0                   |
|             |            | 2402               | 84.37                   |
|             | BLE        | 2438               | 83.28                   |
|             |            | 2480               | 81.35                   |

# 1.5 General Test Conditions

The EUT was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. All inputs and outputs to and from other equipment associated with the EUT were adequately simulated.

In this report, the EUT is only tested for the DTS transmission. Test results regarding Hybrid 125 kHz transmission mode is provided in the separate report. The environmental conditions are recorded during each test and are reported in the relevant sections of this document.

## 1.6 Scope of Testing

Tests were performed in accordance with FCC Part 15.247, ANSI C63.4: 2014, ANSI C63.10: 2013 as referenced in FCC OET KDB 558074 D01 15.247 Measurement Guidance v05r02.

The EUT was also tested as an unintentional radiator, as reported separately.

### 1.6.1 Test Methodology

Test methods are specified in the Basic Standard as referenced and/or modified by the Product Standard in the part of Section 2 of this report associated with each particular test case.

## 1.6.2 Variations in Test Methodology

Any variance in methodology or deviation from the reference Standard is documented in the part of Section 2 of this report associated with each particular Test Case.

## **1.6.3 Test Sample Verification, Configuration & Modifications**

EUT setup, configuration, protocols for operation and monitoring of EUT functions, and any modifications performed in order to meet the requirements, are detailed in each Test Case of Section 2 of this report.

### **1.6.4 Uncertainty of Measurement:**

The factors contributing to measurement uncertainty are identified and calculated in accordance with CISPR 16-4-2: 2011.

This uncertainty estimate represents an expended uncertainty expressed at approximately 95% confidence using a coverage factor of k = 2.

| Test Method                                   | Uncertainty |
|-----------------------------------------------|-------------|
| Radiated Emissions Level (9 KHz – 1 GHz)      | ±5.8 dB     |
| Radiated Emissions Level (1 GHz – 18 GHz)     | ±4.9 dB     |
| Radiated Emissions Level (18 GHz – 26.5 GHz)  | ±5.0 dB     |
| Conducted Emissions Level (150 KHz – 30 MHz)  | ±3.0 dB     |
| Uncertainty Conducted Power level             | ±0.5 dB     |
| Uncertainty Conducted Spurious emission level | ±0.6 dB     |
| Uncertainty for Bandwidth test                | ±1.5 %      |

# 2.0 TEST CONCLUSION

### STATEMENT OF COMPLIANCE

The customer equipment referred to in this report was found to comply with the requirements, as summarized below.

The measurement uncertainty is not accounted for determination of the statement of compliance. The statement of compliance is based only on the measurement value recorded.

The EUT was subjected to the following tests. Compliance status is reported as **Compliant** or **Non-compliant**. **N/A** indicates the test was Not Applicable to the EUT.

**Note:** Maintenance of compliance is the responsibility of the Manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the EUT with respect to the standards detailed in this test report.

The following table summarizes the tests performed in terms of the specification, class or performance criterion applied, and the EUT modification state.

| Test<br>Case | Test Type                                                                                                       | Specification                  | Test Sample     | Modifications | Config.   | Result    |  |
|--------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|---------------|-----------|-----------|--|
|              | Frequency Range = (903 – 914.2) MHz<br>500 KHz DTS Mode Max. Conducted Average Tx Power = 18.67dBm (0.074 Watt) |                                |                 |               |           |           |  |
| 2.1          | AC Conducted<br>Emissions (Tx)                                                                                  | 15.207                         | BLE Sensor GEN2 | none          | see § 2.1 | n/a       |  |
| 2.2          | Occupied<br>Bandwidth                                                                                           | 15.247(a)(1)<br>15.247(2)(2)   | BLE Sensor GEN2 | none          | see § 2.2 | Compliant |  |
| 2.3          | Max Average<br>Output Power<br>Conducted                                                                        | 15.247(b)                      | BLE Sensor GEN2 | none          | see § 2.3 | Compliant |  |
| 2.4          | Power Spectral<br>Density                                                                                       | 15.247(e)<br>15.247(f)         | BLE Sensor GEN2 | none          | see § 2.4 | Compliant |  |
| 2.5          | Band Edge                                                                                                       | 15.247(d)                      | BLE Sensor GEN2 | none          | see § 2.5 | Compliant |  |
| 2.6          | Conducted<br>Spurious Emission<br>in Non-Restricted<br>Band                                                     | 15.247(d)                      | BLE Sensor GEN2 | none          | see § 2.6 | Compliant |  |
| 2.7          | EUT Position                                                                                                    | ANSI C63.4                     | BLE Sensor GEN2 | none          | see § 2.7 | Assessed  |  |
| 2.8          | Radiated Spurious<br>Emission in<br>Restricted Band<br>(Tx Mode)                                                | 15.205,<br>15.209<br>15.247(d) | BLE Sensor GEN2 | none          | see § 2.8 | Compliant |  |
| 2.9          | RF Exposure                                                                                                     | 15.247(i)                      | BLE Sensor GEN2 | none          | see § 2.9 | Exempt    |  |

Refer to the test data for applicable test conditions.

## 2.1 AC Power Line Conducted Emissions

Test Lab: Electronics Test Centre, Airdrie

**Test Personnel:** 

EUT: BLE Sensor GEN2 Standard: FCC Part 15.207

Date:

Basic Standard: ANSI C63.10: 2013

# EUT status: n/a

**Comments:** Comments: BLE Sensor GEN2 is battery powered and there is no direct connection to Main.

# 2.2 Channel Occupied Bandwidth (DTS Mode)

| Test Lab: Electronics Test Centre, Airdrie                         | EUT: BLE Sensor GEN2                                                                     |  |  |  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Test Personnel: Imran Akram                                        | Standard: FCC PART 15.247                                                                |  |  |  |
| Date: 2020-12-23 (21.6°C,14 % RH)<br>2021-01-15 (21.0°C,17.8 % RH) | Basic Standard: ANSI C63.10-2013<br>KDB 558074 D01 15.247 Measurement<br>Guidance v05r02 |  |  |  |
| EUT status: Compliant                                              |                                                                                          |  |  |  |

# Specification: FCC Part 15.247 (a, 2), FCC 15.215 (c)

**Criteria:** Systems using digital modulation techniques may operate in the 902-928 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

# 2.2.1 Test Guidance: FCC KDB 558074 D01 15.247 Measurement Guidance v05r02/ ANSI C63.10 clause 11.8

This measurement is performed at low, mid and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

| Use the following spectrum analyzer settings:                                      |                                                                   |  |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Span                                                                               | between two times and five times the channel center frequency OBW |  |  |  |
| RBW                                                                                | 100 KHz                                                           |  |  |  |
| VBW                                                                                | Set the VBW $\geq$ [3 x RBW].                                     |  |  |  |
| Sweep                                                                              | Auto Couple                                                       |  |  |  |
| Detector function                                                                  | peak                                                              |  |  |  |
| Trace mode max hold                                                                |                                                                   |  |  |  |
| Allow the trace to stabilize. The automatic bandwidth measurement capability of an |                                                                   |  |  |  |
| instrument employed using the X dB bandwidth mode with X set to 6 dB               |                                                                   |  |  |  |

### 2.2.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

### 2.2.3 Test Equipment

Testing was performed with the following equipment:

| Equipment              | Manufacturer                 | Model #              | Asset # | Cal. Date<br>(yyyy-mm-dd) | Cal. Due<br>(yyyy-mm-dd) |
|------------------------|------------------------------|----------------------|---------|---------------------------|--------------------------|
| MXE EMI Receiver       | Keysight<br>Technologies Inc | N9038A<br>FW A 22.08 | 6906    | 2019-10-29                | 2020-10-29               |
| Temp/Humidity          | Extech                       | 42270                | 5892    | 2019-04-05                | 2020-04-05               |
| Attenuator             | FairView<br>Microwave        | SA18N5WA-10          | 6886    | 2020-02-01                | 2021-02-01               |
| DC Blocker             | MCL                          | BLK-89-S+            | -       | 2020-02-01                | 2021-02-01               |
| CE Cable (50cm length) | Huber+Suhner                 | Enviroflex 400       | -       | 2020-02-01                | 2021-02-01               |

# 2.2.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation. The EUT modified to provide the direct access to antenna port for conducted measurements.

For compliance purposes EUT met requirements without any modification

There is no Deviation and exclusions from test specifications.

### Test setup diagrams for Occupied Bandwidth testing:

### Conducted:

| EUT | Attenuator |  | Spectrum Analyzer |
|-----|------------|--|-------------------|
|     |            |  |                   |

# 2.2.5 Channel Occupied Bandwidth Data: (LoRa)

| Channel | Freq.<br>[MHz] | 6 dB<br>OBW<br>[kHz] | 99%<br>OBW<br>[KHz] | Limit<br>6 dB<br>OBW |
|---------|----------------|----------------------|---------------------|----------------------|
| Low     | 903            | 629.9                | 671.94              | ≥ 500 KHz            |
| Mid     | 907.8          | 629.2                | 671.14              | ≥ 500 KHz            |
| High    | 914.2          | 634.1                | 677.19              | ≥ 500 KHz            |

# Screen Captures from the spectrum analyzer: Low Channel (LoRA)

|                       | trum Analyzer - Occupied BW         |             |                          |                       |         |             |           |                            |      |                   |
|-----------------------|-------------------------------------|-------------|--------------------------|-----------------------|---------|-------------|-----------|----------------------------|------|-------------------|
| Ref Offset            | RF 50 Ω AC                          |             | Center Fre               | SE:INT<br>eq: 903.000 | 000 MHz | LIGN AUTO   | Radio Sto | AM Dec 23, 2020<br>d: None | Trac | e/Detector        |
|                       |                                     | #IFGain:Low | Trig: Free<br>#Atten: 30 |                       | Avg Hol | ld:>100/100 | Radio De  | vice: BTS                  |      |                   |
| 10 dB/div             | Ref Offset 10.5 dE<br>Ref 38.50 dBm |             |                          |                       |         |             |           |                            |      |                   |
| 28.5                  |                                     |             |                          |                       |         |             |           |                            |      |                   |
| 18.5                  |                                     |             |                          |                       |         |             |           |                            | (    | Clear Write       |
| 8.50                  |                                     |             |                          |                       |         |             |           |                            |      |                   |
| -1.50                 |                                     |             |                          |                       |         |             |           |                            |      |                   |
| -11.5                 |                                     | ~~~         |                          |                       |         |             | - marine  |                            |      | Average           |
| -21.5                 | and the second states               |             |                          |                       |         |             | - man     | man                        |      |                   |
| -31.5                 |                                     |             |                          |                       |         |             |           |                            |      |                   |
| -41.5                 |                                     |             |                          |                       |         |             |           |                            |      | Max Hold          |
| -51.5                 |                                     |             |                          |                       |         |             |           |                            |      |                   |
| Center 903<br>#Res BW |                                     |             | #VB                      | W 300 k               | Hz      |             |           | 2.000 MHz<br>eep 1 ms      |      | Min Hold          |
| Occup                 | ied Bandwidt                        | h           |                          | Total P               | ower    | 26.         | 2 dBm     |                            |      |                   |
|                       | 6                                   | 71.94 k     | Hz                       |                       |         |             |           |                            |      | Detector<br>Peak▶ |
| Transm                | nit Freq Error                      | 13.419      | kHz                      | % of O                | 3W Pov  | ver 9       | 9.00 %    |                            | Auto | Man               |
| x dB Ba               | andwidth                            | 629.9       | kHz                      | x dB                  |         | -6          | .00 dB    |                            |      |                   |
|                       |                                     |             |                          |                       |         |             |           |                            |      |                   |
|                       |                                     |             |                          |                       |         |             |           |                            |      |                   |
|                       |                                     |             |                          |                       |         |             |           |                            |      |                   |
| MSG                   |                                     |             |                          |                       |         | STATU       | IS        |                            |      |                   |

Average

Max Hold

Min Hold

Detector Peak▶

Man

Auto

Span 2.000 MHz

26.2 dBm

99.00 %

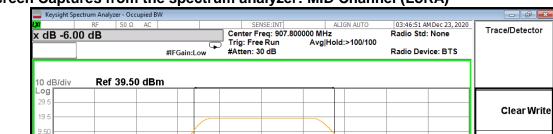
-6.00 dB

STATUS

Sweep 1 ms

10.6 20.5 30.5 40.5

50.


Center 907.800 MHz

**Occupied Bandwidth** 

Transmit Freq Error

x dB Bandwidth

#Res BW 100 kHz



#VBW 300 kHz

x dB

Total Power

% of OBW Power

### Screen Captures from the spectrum analyzer: MID Channel (LoRA)

### Screen captures from the spectrum analyzer High Channel (LoRA)

671.14 kHz

13.480 kHz

629.2 kHz

| Keysight Spectrum Analyzer - Occupied BW           RF         50 Ω         AC           Center Freq 914.200000 M | IH7 Ce    | SENSE:INT   | ALIGN AUTO        | 04:10:46 AM Dec 23, 2020     | Trace/Detecto |
|------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------------|------------------------------|---------------|
|                                                                                                                  | Tr        |             | Avg Hold:>100/100 | Radio Device: BTS            |               |
| 0 dB/div Ref 38.50 dBm                                                                                           |           |             |                   |                              |               |
| og<br>28.5                                                                                                       |           |             |                   |                              | Clear Wr      |
| 3.50                                                                                                             |           |             |                   |                              |               |
| 1.5                                                                                                              |           |             |                   |                              | Avera         |
| 1.5                                                                                                              |           |             |                   | man man man man              |               |
| 1.5                                                                                                              |           |             |                   |                              | Max Ho        |
| enter 914.200 MHz                                                                                                |           |             |                   | Cron 2 000 MHz               |               |
| Res BW 100 kHz                                                                                                   |           | #VBW 300 kH | Z                 | Span 2.000 MHz<br>Sweep 1 ms | Min Ho        |
| Occupied Bandwidth                                                                                               | ı         | Total Pov   | wer 26.           | 3 dBm                        |               |
| 67                                                                                                               | 7.19 kHz  |             |                   |                              | Detec<br>Pea  |
| Transmit Freq Error                                                                                              | 9.026 kHz | % of OBV    | V Power 9         | 9.00 %                       | Auto <u>N</u> |
| x dB Bandwidth                                                                                                   | 634.1 kHz | x dB        | -6                | .00 dB                       |               |
|                                                                                                                  |           |             |                   |                              |               |
| G                                                                                                                |           |             | STATU             | JS                           |               |

## 2.2.6 Channel Occupied Bandwidth Data: (BLE)

| Channel | Freq.<br>[MHz] | 6 dB<br>OBW<br>[kHz] | 99%<br>OBW<br>[MHz] | Limit<br>6 dB<br>OBW |
|---------|----------------|----------------------|---------------------|----------------------|
| Low     | 2402           | 715.9                | 1.0487              | ≥ 500 KHz            |
| Mid     | 2438           | 716.6                | 1.0669              | ≥ 500 KHz            |
| High    | 2480           | 710.2                | 1.0524              | ≥ 500 KHz            |

### Screen Captures from the spectrum analyzer: Low Channel (BLE)



## Screen Captures from the spectrum analyzer: MID Channel (BLE)

| Keysight Spectrum Analyzer - Occupied BW |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>X</b> RF 50 Ω AC                      |                                                           | IGN AUTO 11:37:41 AM Jan 15, 2021<br>Radio Std: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trace/Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ref Value 20.00 dBm                      | Center Freq: 2.438000000 GHz<br>Trig: Free Run Avg Hold:> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #IFGain:Lo                               |                                                           | Radio Device: BTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                           | Mkr1 0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10 dB/div Ref 20.00 dBm                  |                                                           | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Log 1                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10.0                                     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clear Write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.00                                     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -10.0                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -20.0                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -30.0                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -40.0                                    |                                                           | and a second sec | , in the second s |
|                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -50.0                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -60.0                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -70.0                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Center 2.438000 GHz                      |                                                           | Span 4.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #Res BW 100 kHz                          | #VBW 300 kHz                                              | Sweep 1 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | #•BH 000 MIL                                              | encop i no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Occupied Bandwidth                       | Total Power                                               | 7.12 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.0669                                   | MU-7                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0003                                   |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector<br>Peak▶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Transmit Freq Error -54.7                | 57 kHz % of OBW Power                                     | 99.00 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Auto <u>Man</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| x dB Bandwidth 716                       | .6 kHz x dB                                               | -6.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MSG                                      |                                                           | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Screen captures from the spectrum analyzer High Channel (BLE)

| Keysight Spect                   | rum Analyzer - Occupied B<br>RF 50 Ω AC | N           | SENSE:INT ALIG                    | N AUTO 12:15:22 PM 3 15               | 2021            |
|----------------------------------|-----------------------------------------|-------------|-----------------------------------|---------------------------------------|-----------------|
| Ref Value                        | 30.70 dBm                               |             | er Freq: 2.480000000 GHz          | I2:15:22 PM Jan 15<br>Radio Std: None | Trace/Detector  |
|                                  |                                         |             | Free Run Avg Hold:>10<br>n: 12 dB | 710<br>Radio Device: B1               | s               |
| 10 dB/div                        | Ref 30.70 dBr                           | n           |                                   | Mkr1 0<br>d                           |                 |
| 20.7 10.7                        |                                         |             |                                   |                                       | Clear Write     |
| -9.30<br>-19.3                   |                                         |             |                                   |                                       | Averag          |
| -29.3<br>-39.3<br>-49.3<br>-59.3 |                                         |             |                                   |                                       |                 |
| ,                                | 80000 GHz<br>100 kHz                    | #           | ≠VBW 300 kHz                      | Span 4.000<br>Sweep 1                 |                 |
| Occup                            | ied Bandwid                             |             | Total Power                       | 7.05 dBm                              |                 |
|                                  | 1.                                      | 0524 MHz    |                                   |                                       | Detecto<br>Peak |
| Transm                           | it Freq Error                           | -57.220 kHz | % of OBW Power                    | 99.00 %                               | Auto <u>Ma</u>  |
| x dB Ba                          | ndwidth                                 | 710.2 kHz   | x dB                              | -6.00 dB                              |                 |
| ISG                              |                                         |             |                                   | STATUS                                |                 |

# 2.3 Maximum conducted (average) output power (DTS Mode)

| Test Lab: Electronics Test Centre, Airdrie                         | EUT: BLE Sensor GEN2                                                                      |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Test Personnel: Imran Akram                                        | Standard: FCC PART 15.247                                                                 |
| Date: 2020-12-23 (21.6°C,14 % RH)<br>2021-01-15 (21.0°C,17.8 % RH) | Basic Standard: ANSI C63.10: 2013<br>KDB 558074 D01 15.247 Measurement<br>Guidance v05r02 |

# **EUT status: Compliant**

### Specification: FCC Part 15.247(b, 3)

**Criteria** For systems using digital modulation in the 902-928 MHz bands: 1 Watt.

# 2.3.1 Test Guidance: FCC KDB 558074 D01 15.247 Measurement Guidance v05r02/ ANSI C63.10 Sub clause 11.9.2.2

This measurement is performed at low, mid and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

| Outp                      | ut Power Method AVGSA-1                                                                                                                             |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Span                      | ≥ 1.5 times the OBW                                                                                                                                 |
| RBW                       | $1 - 5$ % of the OBW, $\leq 1$ MHz                                                                                                                  |
| VBW                       | ≥ 3 x RBW                                                                                                                                           |
| Number of Points in sweep | ≥ 2 x Span / RBW                                                                                                                                    |
| Sweep time                | Auto                                                                                                                                                |
| Detector                  | RMS (Power Averaging)                                                                                                                               |
| Sweep trigger             | Free Run (If Duty Cycle ≥98%)                                                                                                                       |
| Trace Average             | At least 100 traces in power Averaging (RMS)                                                                                                        |
| Power measured            | Integrated the spectrum across the OBW of the signal using the S/A band power measurement function, with band limit set equal to the OBW band edge. |

# 2.3.2 Deviations From The Standard:

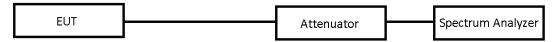
There were no deviations from the EUT setup or methodology specified in the standard.

# 2.3.3 Test Equipment

Testing was performed with the following equipment:

| Equipment              | Manufacturer                 | Model #              | Asset # | Cal. Date<br>(yyyy-mm-dd) | Cal. Due<br>(yyyy-mm-dd) |
|------------------------|------------------------------|----------------------|---------|---------------------------|--------------------------|
| MXE EMI Receiver       | Keysight<br>Technologies Inc | N9038A<br>FW A 22.08 | 6906    | 2019-10-29                | 2020-10-29               |
| Temp/Humidity          | Extech                       | 42270                | 5892    | 2019-04-05                | 2020-04-05               |
| Attenuator             | FairView<br>Microwave        | SA18N5WA-10          | 6886    | 2020-02-01                | 2021-02-01               |
| DC Blocker             | MCL                          | BLK-89-S+            | -       | 2020-02-01                | 2021-02-01               |
| CE Cable (50cm length) | Huber+Suhner                 | Enviroflex 400       | -       | 2020-02-01                | 2021-02-01               |

### 2.3.4 Test Sample Verification, Configuration & Modifications


The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT modified to provide the direct access to antenna port for conducted measurements.

For compliance purposes EUT met requirements without any modification

### Test setup diagrams for Peak Power testing:

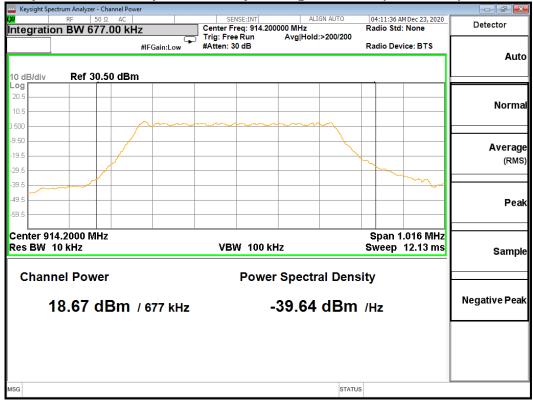
### **Conducted:**




### 2.3.5 Average Output Power Data (LoRa)

### LoRa 500 KHz

| Channel | Freq.<br>[MHz] | Out Put<br>Power<br>(dBm) | Out Put<br>Power Limit<br>(dBm) | Margin<br>(dB) |
|---------|----------------|---------------------------|---------------------------------|----------------|
| Low     | 903            | 18.59                     | 30                              | 11.41          |
| Mid     | 907.8          | 18.64                     | 30                              | 11.36          |
| High    | 914.2          | 18.67                     | 30                              | 11.33          |


### Screen Captures from the spectrum analyzer Low Channel (DTS Mode)



### Screen Captures from the spectrum analyzer: MID Channel (DTS Mode)

| Keysight Spect | trum Analyzer - (                    |         |                                        |                          |            | 1                                      |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|----------------|--------------------------------------|---------|----------------------------------------|--------------------------|------------|----------------------------------------|------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| tegration      |                                      | Ω AC    |                                        | Center Fre               | g: 907.800 |                                        | IGN AUTO   |         | 7 AM Dec 23, 2020<br>td: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Detector     |
|                | gration BW 671.00 kHz<br>#IFGain:Low |         |                                        | Trig: Free<br>#Atten: 30 |            | Avg Hold                               | i:>200/200 | Radio D | Device: BTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Au           |
| 0 dB/div<br>og | Ref 30.                              | .50 dBm |                                        |                          |            |                                        |            | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| 0.5            |                                      |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| ).5            |                                      |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Norn         |
|                |                                      | $\sim$  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                          |            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| 50             | _                                    |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Avera        |
| .5             | _                                    |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Avera<br>(RM |
| .5             |                                      |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (            |
| 5              |                                      | ~       |                                        |                          |            |                                        |            |         | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| .5             |                                      |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pe           |
| .5             | _                                    |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| enter 907      | 7.8000 MH                            | 7       |                                        |                          |            |                                        |            | Snar    | 1.007 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| es BW 9.       |                                      |         |                                        | VBW                      | 91 kHz     |                                        |            |         | p 14.53 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sam          |
|                |                                      |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Chann          | el Powe                              | er      |                                        |                          | Power      | Spect                                  | ral Dens   | sity    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                |                                      | _       |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negative Pe  |
| 1              | 8.64 d                               | Bm / 67 | 71 kHz                                 |                          | -          | 39.63                                  | dBm        | /Hz     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nogunter e   |
|                |                                      |         |                                        |                          |            |                                        |            |         | P. Contraction of the second se |              |
|                |                                      |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                |                                      |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                |                                      |         |                                        |                          |            |                                        |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                |                                      |         |                                        |                          |            |                                        | STATU      | \$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |

### Screen Captures from the spectrum analyzer: High Channel (DTS Mode)



### 2.3.6 Average Output Power Data (BLE)

| Channel | Freq.<br>[MHz] | Out Put<br>Power<br>(dBm) | Out Put<br>Power Limit<br>(dBm) | Margin<br>(dB) |
|---------|----------------|---------------------------|---------------------------------|----------------|
| Low     | 2402           | 0.79                      | 30                              | 29.21          |
| Mid     | 2438           | 0.42                      | 30                              | 29.58          |
| High    | 2480           | 0.38                      | 30                              | 29.62          |

### Screen Captures from the spectrum analyzer Low Channel (BLE)



## Screen Captures from the spectrum analyzer: MID Channel (BLE)

| Keysight Spe<br>Span 2.00 | ctrum Analyzer - Chan<br>RF 50 Ω | AC      |     |                                | : 2.438000000 |              |        | 11:44:10 A<br>Radio Std | MJan 15, 2021<br>: None |      | Detector               |
|---------------------------|----------------------------------|---------|-----|--------------------------------|---------------|--------------|--------|-------------------------|-------------------------|------|------------------------|
|                           |                                  | #IFGai  |     | Trig: Free Ru<br>#Atten: 40 dl |               | g Hold:>200/ | /200   | Radio Dev               | rice: BTS               |      |                        |
| 10 dB/div                 | Ref 10.00                        | dBm     |     |                                |               |              | •      |                         |                         |      |                        |
| -10.0                     |                                  |         |     |                                |               |              |        |                         |                         | с    | lear Writ              |
| -20.0                     |                                  |         |     |                                |               | ~            |        |                         |                         |      |                        |
| -40.0                     |                                  |         |     |                                |               |              |        |                         |                         |      | Averaç                 |
| 60.0                      |                                  |         |     |                                |               |              |        |                         |                         |      |                        |
| 70.0<br>80.0              |                                  |         |     |                                |               |              |        |                         |                         |      | Max Ho                 |
| Center 2.4<br>Res BW 1    | 138000 GHz<br>18 kHz             |         |     | VBW                            | 180 kHz       |              |        |                         | .000 MHz<br>p 7.4 ms    |      | Min Ho                 |
| Chanr                     | nel Power                        |         |     | Р                              | ower Sp       | ectral D     | )ens   | ity                     |                         |      |                        |
|                           | 0.42 dB                          | m / 1 M | ۱Hz |                                | -59           | .58 dE       | 3m     | /Hz                     |                         | Auto | Detect<br>Average<br>M |
|                           |                                  |         |     |                                |               |              |        |                         |                         |      |                        |
|                           |                                  |         |     |                                |               |              |        |                         |                         |      |                        |
| SG                        |                                  |         |     |                                |               |              | STATUS |                         |                         |      |                        |

### Screen Captures from the spectrum analyzer: High Channel (BLE)



# 2.4 Power Spectral Density (DTS Mode)

| Test Lab: Electronics Test Centre, Airdrie                         | EUT: BLE Sensor GEN2                                                                      |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Test Personnel: Imran Akram                                        | Standard: FCC PART 15.247                                                                 |
| Date: 2020-12-23 (21.6°C,14 % RH)<br>2021-01-15 (21.0°C,17.8 % RH) | Basic Standard: ANSI C63.10: 2013<br>KDB 558074 D01 15.247 Measurement<br>Guidance v05r02 |

# EUT status: Compliant

# Specification: FCC Part 15.247(e)

**Criteria** For digitally modulated systems the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

# 2.4.1 Test Guidance: FCC KDB 558074 D01 15.247 Measurement Guidance v05r02/ Sub clause 11.10 of ANSI C63.10

This measurement is performed at low, mid and high frequencies, in continuous transmission, with modulation.

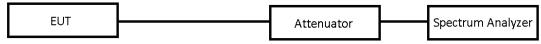
The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

| Use the following s                 | spectrum analyzer settings:                                        |
|-------------------------------------|--------------------------------------------------------------------|
| Span                                | At least 1.5 times the OBW.                                        |
| RBW                                 | 3 KHz                                                              |
| VBW                                 | Set the VBW $\geq$ [3 × RBW].                                      |
| Sweep                               | Auto Couple                                                        |
| Detector function                   | Power averaging (RMS) or sample detector (when RMS not available). |
| Trace mode                          | Employ trace averaging (RMS) mode over a minimum of 100 traces.    |
| Allow the trace to amplitude level. | stabilize. Use the peak marker function to determine the maximum   |

# 2.4.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

# 2.4.3 Test Equipment


Testing was performed with this equipment:

| Equipment              | Manufacturer                 | Model # Asset        |      | Cal. Date<br>(yyyy-mm-dd) | Cal. Due<br>(yyyy-mm-dd) |
|------------------------|------------------------------|----------------------|------|---------------------------|--------------------------|
| MXE EMI Receiver       | Keysight<br>Technologies Inc | N9038A<br>FW A 22.08 | 6906 | 2019-10-29                | 2020-10-29               |
| Temp/Humidity          | Extech                       | 42270                | 5892 | 2019-04-05                | 2020-04-05               |
| Attenuator             | FairViewSA18N5WA-<br>106886  |                      | 6886 | 2020-02-01                | 2021-02-01               |
| DC Blocker             | MCL                          | BLK-89-S+            | -    | 2020-02-01                | 2021-02-01               |
| CE Cable (50cm length) | Huber+Suhner                 | Enviroflex 400       | -    | 2020-02-01                | 2021-02-01               |

# 2.4.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation. The EUT met the requirements without modification.

# Test setup diagrams for Peak Power Spectral Density testing: Conducted:



# 2.4.5 Peak PSD Data (LoRa DTS MODE)

# 500 KHZ Channels

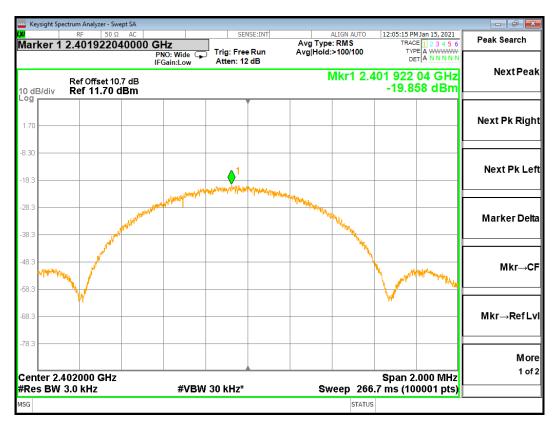
| Channel | Freq.<br>[MHz] | PSD<br>(dBm/3KHz) | PSD Limit<br>(dBm/3KHz) |
|---------|----------------|-------------------|-------------------------|
| Low     | 903            | -1.070            | 8                       |
| Mid     | 907.8          | -1.370            | 8                       |
| High    | 914.2          | -1.179            | 8                       |

# Screen Capture from Spectrum Analyzer: LOW Channel (DTS Mode)



#### Screen Capture from Spectrum Analyzer: MID Channel (DTS Mode)

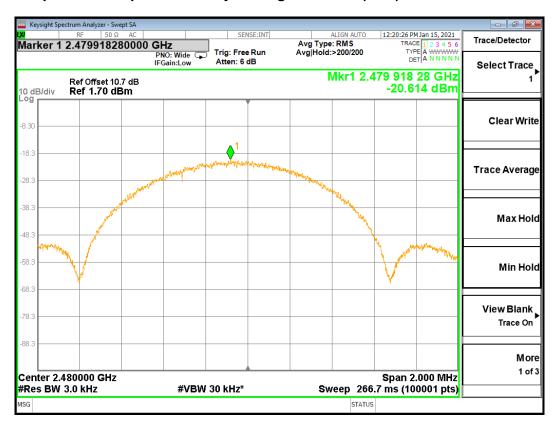



Screen Capture from Spectrum Analyzer: High Channel (DTS Mode)




# 2.4.6 Peak PSD Data (BLE DTS MODE)

| Channel | Freq.<br>[MHz] | PSD<br>(dBm/3KHz) | PSD Limit<br>(dBm/3KHz) |
|---------|----------------|-------------------|-------------------------|
| Low     | 2402           | -19.858           | 8                       |
| Mid     | 2438           | -20.743           | 8                       |
| High    | 2480           | -20.614           | 8                       |


# Screen Capture from Spectrum Analyzer: LOW Channel (BLE)



### Screen Capture from Spectrum Analyzer: MID Channel (BLE)



### Screen Capture from Spectrum Analyzer: High Channel (BLE)



# 2.5 Band Edge Attenuation (DTS Mode)

| Test Lab: Electronics Test Centre, Airdrie                         | EUT: BLE Sensor GEN2                                                                      |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Test Personnel: Imran Akram                                        | Standard: FCC PART 15.247                                                                 |
| Date: 2020-12-23 (21.6°C,14 % RH)<br>2021-01-15 (21.0°C,17.8 % RH) | Basic Standard: ANSI C63.10: 2013<br>KDB 558074 D01 15.247 Measurement<br>Guidance v05r02 |

# EUT status: Compliant

# Specification: FCC Part 15.247(d)

**Criteria:** In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

# 2.5.1 Test Guidance: ANSI C63.10-2013 Clause 11.11, 11.13.2 / FCC KDB 558074 D01 15.247 Measurement Guidance v05r02 Clause 8.7

This measurement is performed at the low and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

| Use the following s | spectrum analyzer settings:                                        |
|---------------------|--------------------------------------------------------------------|
| Span                | That encompasses both the peak of the fundamental emission and the |
|                     | band-edge emission under investigation.                            |
| RBW                 | 1% of the total span                                               |
| VBW                 | Set the VBW $\geq$ [3 × RBW].                                      |
| Sweep               | Auto Couple                                                        |
| Detector function   | Peak                                                               |
| Trace mode          | Max Hold.                                                          |
| Allow the trace to  | stabilize. Use the peak marker function to determine the maximum   |
| amplitude level.    |                                                                    |

# 2.5.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

# 2.5.3 Test Equipment

Testing was performed with the following equipment:

| Equipment              | Manufacturer                 | Model #              | Asset # | Cal. Date<br>(yyyy-mm-dd) | Cal. Due<br>(yyyy-mm-dd) |
|------------------------|------------------------------|----------------------|---------|---------------------------|--------------------------|
| MXE EMI Receiver       | Keysight<br>Technologies Inc | N9038A<br>FW A 22.08 | 6906    | 2019-10-29                | 2020-10-29               |
| Temp/Humidity          | Extech                       | 42270                | 5892    | 2019-04-05                | 2020-04-05               |
| Attenuator             | FairView<br>Microwave        | SA18N5WA-10          | 6886    | 2020-02-01                | 2021-02-01               |
| DC Blocker             | MCL                          | BLK-89-S+            | -       | 2020-02-01                | 2021-02-01               |
| CE Cable (50cm length) | Huber+Suhner                 | Enviroflex 400       | -       | 2020-02-01                | 2021-02-01               |

## 2.5.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation. The EUT met the requirements without modification.

## Test setup diagrams for Band Edge Attenuation testing:

### Conducted:

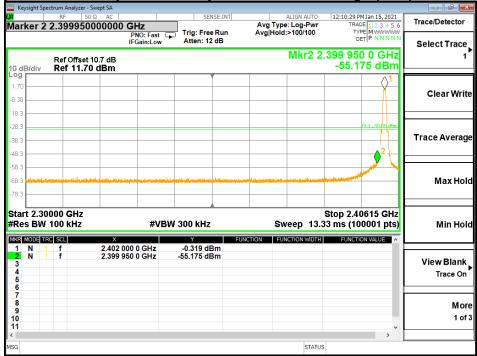
| EUT | Attenuator |  | Spectrum Analyzer |
|-----|------------|--|-------------------|
|-----|------------|--|-------------------|

# 2.5.5 Band Edge Data (DTS MODE)

| Modulation  | Channel | Attenuation<br>at Band Edge | Attenuation Limit<br>at Band Edge |
|-------------|---------|-----------------------------|-----------------------------------|
| Lora 500KHz | 903     | 47.995 dBc                  | 30 dBc                            |
| Channels    | 914.2   | 68.679 dBc                  | 30 dBc                            |

## Screen Capture from the spectrum analyzer: Lower Band Edge (DTS Mode)

| 🔤 Keysight Sp                   | ectrum Analyzer - Swept                              | t SA                        |                             |         |                                       |                                    |                   |                |
|---------------------------------|------------------------------------------------------|-----------------------------|-----------------------------|---------|---------------------------------------|------------------------------------|-------------------|----------------|
| w<br>Marker 1                   | RF PRESEL         50 Ω           Δ         972.50000 |                             | SENSE                       | Avg Typ | IGN AUTO<br>be: Log-Pwr<br>d:>200/200 | TRACI                              | Dec 23, 2020      | Peak Search    |
| 10 dB/div                       | Ref Offset 10.5<br>Ref 30.50 dE                      |                             | #Atten: 30 d                |         |                                       | Mkr1 97:                           | 2.5 kHz<br>995 dB | Next Peak      |
| 20.5<br>10.5                    |                                                      |                             |                             |         | 1Δ2                                   |                                    |                   | Next Pk Right  |
| -9.50<br>-19.5<br>-29.5         |                                                      |                             |                             |         |                                       |                                    | DL1_11.42 dBm     | Next Pk Left   |
| -39.5<br>-49.5<br>-59.5         |                                                      |                             |                             |         |                                       |                                    |                   | Marker Delta   |
|                                 | .000 MHz<br>/ 100 kHz<br>RG SCL                      | Х                           | BW 300 kHz                  |         | Sweep 1.                              | Stop 903.<br>.000 ms (1<br>FUNCTIO | 1001 pts)         | Mkr→CF         |
| 1 Δ2<br>2 F<br>3<br>4<br>5<br>6 | 1 f (Δ)<br>1 f                                       | 972.5 kHz(<br>901.900 0 MHz | ∆) 47.995 dE<br>-29.251 dBm |         |                                       |                                    | E                 | Mkr→RefLv      |
| 7<br>8<br>9<br>10<br>11         |                                                      |                             |                             |         |                                       |                                    |                   | More<br>1 of 2 |
| MSG                             |                                                      |                             | m                           |         | STATUS                                | ;                                  | 4                 |                |


## Screen Capture from the spectrum analyzer: Upper Band Edge (DTS Mode)

| Avg Type: Log-Pwr TRACE 1 2 3 4 5 6                                | Trace/Detector |
|--------------------------------------------------------------------|----------------|
| st Trig: Free Run Avg Hold:>100/100 TVPE MWWWWW<br>w #Atten: 30 dB | Select Trace   |
| ΔMkr1 -13.573 6 MHz<br>68.679 dB                                   | 1              |
|                                                                    | 01             |
|                                                                    | Clear Write    |
| DL1-1113.dBm                                                       |                |
|                                                                    | Trace Average  |
|                                                                    |                |
| Mar war war war war war war war war war w                          | Max Hold       |
|                                                                    |                |
| Stop 930.000 MHz<br>VBW 300 kHz Sweep 1.533 ms (1001 pts)          | Min Hold       |
| Y FUNCTION FUNCTION WIDTH FUNCTION VALUE                           |                |
| z (Δ) 68.679 dB<br>z -49.846 dBm                                   | View Blank     |
| E                                                                  | Trace On       |
|                                                                    |                |
|                                                                    | More<br>1 of 3 |
|                                                                    |                |
| STATUS                                                             |                |

# 2.5.6 Band Edge Data (BLE DTS MODE)

| Modulation | Channel | Attenuation<br>at Band Edge | Attenuation Limit<br>at Band Edge |
|------------|---------|-----------------------------|-----------------------------------|
| BLE        | 2402    | 54.856 dBc                  | 30 dBc                            |
| DLE        | 2480    | 57.866 dBc                  | 30 dBc                            |

### Screen Capture from the spectrum analyzer: Lower Band Edge (BLE)



#### Screen Capture from the spectrum analyzer: Upper Band Edge (BLE)

|                      |                                                                                                                 |                          |                            |                           |          |                              | nalyzer - Sw       |                       | ght Spec      | Key                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|---------------------------|----------|------------------------------|--------------------|-----------------------|---------------|-----------------------|
| Trace/Detector       | 12:26:39 PM Jan 15, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE M WWWWW                                                   | ALIGN AUTO<br>e: Log-Pwr |                            | SENSE:INT                 |          | AC 00000 GH                  | 50 Ω<br>35500      | <sup>RF</sup><br>2.48 | er 2 3        | lark                  |
| Select Trac          | DET P NNNN                                                                                                      |                          | Avg Hold                   | g: Free Run<br>ten: 12 dB |          | PN0<br>IFG                   |                    |                       |               |                       |
|                      | l83 550 00 GHz<br>-58.864 dBm                                                                                   | Mkr2 2.4                 |                            |                           |          |                              | Offset 10<br>11.70 |                       | div           | 0 dE                  |
|                      |                                                                                                                 |                          |                            |                           |          |                              |                    | 1                     | ()            | . <b>og</b><br>1.70   |
| Clear Wr             |                                                                                                                 |                          |                            |                           |          |                              |                    | $\mathcal{A}$         | ~~~~          | 8.30                  |
|                      | DL 1 -30 00 dBm                                                                                                 |                          |                            |                           |          |                              |                    |                       |               | 18.3                  |
| Trace Avera          | DL1 -30.00.dHm                                                                                                  |                          |                            |                           |          |                              | $\sim$             |                       |               | 28.3<br>38.3 -        |
|                      |                                                                                                                 |                          |                            |                           | 2        |                              | <u> </u>           |                       |               | 48.3                  |
|                      |                                                                                                                 | a tiday a sure of the    | والمردية والمراجع والمراجع |                           |          | Marile Market Street         |                    |                       |               | 58.3                  |
| Max Ho               | and an all and a state of the second state of the second state of the second state of the second state of the s |                          |                            |                           |          |                              |                    |                       |               | 58.3 ·                |
|                      |                                                                                                                 |                          |                            |                           |          |                              |                    |                       |               | 78.3                  |
| Min Ho               | top 2.490000 GHz<br>57 ms (100001 pts)                                                                          |                          | S                          | ) kHz                     | #VBW 300 |                              |                    |                       | 2.479<br>BW 1 |                       |
|                      | FUNCTION VALUE                                                                                                  | NCTION WIDTH             | INCTION FL                 |                           |          | х                            |                    |                       | DDE TRO       |                       |
| View Blan<br>Trace O |                                                                                                                 |                          |                            | 998 dBm<br>864 dBm        |          | 2.480 000 00<br>2.483 550 00 |                    | f                     | N 1<br>N 1    | 2<br>3<br>4<br>5<br>6 |
| Мс<br>1 с            |                                                                                                                 |                          |                            |                           |          |                              |                    |                       |               | 7<br>8<br>9<br>10     |
|                      | ×                                                                                                               |                          |                            |                           |          |                              |                    |                       |               | 11                    |
|                      |                                                                                                                 | STATUS                   |                            |                           |          |                              |                    |                       |               | G                     |

### 2.6 Conducted Spurious Emissions in non-restricted frequency bands (DTS Mode)

Test Personnel: Imran Akram

Date: 2020-12-23 (21.6°C,14 % RH) 2021-01-15 (21.0°C,17.8 % RH) Standard: FCC PART 15.247 Basic Standard: ANSI C63.4-2014 KDB 558074 D01 15.247 Measurement Guidance v05r02

EUT: BLE Sensor GEN2

# **EUT status: Compliant**

### Specification: FCC Part 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

### 2.6.1 Test Guidance: ANSI C63.10-2013, Clause 11.11, FCC KDB 558074 D01 15.247 Measurement Guidance v05r02 Clause 8.5

This measurement is performed at the low, mid and high frequencies, with modulation. The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

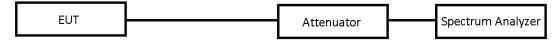
The spectrum analyzer is stepped through the spectrum in frequency spans selected to ensure acceptable frequency resolution. The RBW is set to 100 kHz. The VBW is set to  $\geq$  300 kHz. The Peak detector is used, with the trace set to Max Hold.

#### 2.6.2 Deviations From The Standard:

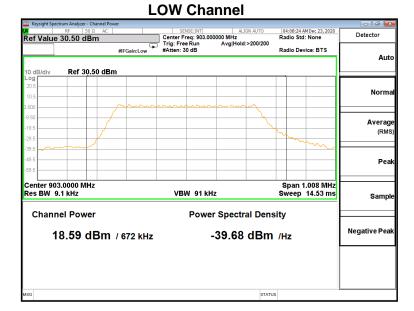
There were no deviations from the EUT setup or methodology specified in the standard.

### 2.6.3 Test Equipment

Testing was performed with the following equipment:


| Equipment              | Manufacturer                 | Model #              | Asset # | Cal. Date<br>(yyyy-mm-dd) | Cal. Due<br>(yyyy-mm-dd) |
|------------------------|------------------------------|----------------------|---------|---------------------------|--------------------------|
| MXE EMI Receiver       | Keysight<br>Technologies Inc | N9038A<br>FW A 22.08 | 6906    | 2019-10-29                | 2020-10-29               |
| Temp/Humidity          | Extech                       | 42270                | 5892    | 2019-04-05                | 2020-04-05               |
| Attenuator             | FairView<br>Microwave        | SA18N5WA-10          | 6886    | 2020-02-01                | 2021-02-01               |
| DC Blocker             | MCL                          | BLK-89-S+            | -       | 2020-02-01                | 2021-02-01               |
| CE Cable (50cm length) | Huber+Suhner                 | Enviroflex 400       | -       | 2020-02-01                | 2021-02-01               |

### 2.6.4 Test Sample Verification, Configuration & Modifications


The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation. The EUT met the requirements without modification.

The EUT modified to provide the direct access to antenna port for conducted measurements

#### Test setup diagram for Conducted Spurious Emissions testing:



## 2.6.5 Conducted Suprious Emissions Data: LoRa



|                                                                                                                                             |                                                                                      | it Spectrum Analyzer - Si              |                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | ight Spectrum Analyzer - Swept SA       |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|---------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|
| SENSE:INT ALIGN AUTO 03:32:27 AM Dec 23, 2020<br>Avg Type: Log-Pwr TRACE 1 2 3 4 5 6                                                        |                                                                                      | r 8 8.1274508                          | Sweep/Control             | 03:13:20 AM Dec 23, 2020<br>TRACE 1 2 3 4 5 6 | Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SENSE:INT                                   | RF PRESEL 50 Ω ▲ DC<br>ts 4000          |
| W #Atten: 30 dB DET P NNNN                                                                                                                  | PNO: Fast ++<br>IFGain:Low                                                           |                                        | Sweep Time                | TYPE MWWWWW<br>DET P NNNNN                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fast Trig: Free Run<br>n:Low #Atten: 30 dB  |                                         |
| Mkr8 8.127 5 GHz<br>-43.290 dBm                                                                                                             |                                                                                      | Ref Offset 1<br>v Ref 31.50            | 276 ms<br><u>Auto</u> Man | Mkr1 120 kHz<br>-41.052 dBm                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | Ref Offset 10.5 dB<br>div Ref 30.50 dBm |
| Nes                                                                                                                                         |                                                                                      |                                        | Sweep Setup ►             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                         |
| CL1.10.42.886                                                                                                                               | 3                                                                                    |                                        |                           | DL111.42 oBn                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                         |
|                                                                                                                                             | 4                                                                                    |                                        |                           |                                               | No. 1. March 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 | in division in a contrain a constant series |                                         |
| Stop 10.000 GHz           /BW 300 kHz         Sweep 953.6 ms (32000 pts)           Y         FUNCTION I FUNCTION WIDTH   FUNCTION VALUE   - | #VBW                                                                                 | 0 MHz<br>SW 100 kHz<br>E TROISCU       |                           | Stop 30.00 MHz<br>75.9 ms (4000 pts)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBW 300 kHz                                | : 30 KHz<br>BW 10 KHz<br>ODE TRC SCL X  |
| 18,718 dBm<br>-32,884 dBm<br>-24,382 dBm<br>-43,382 dBm<br>-38,875 dBm<br>-40,986 dBm                                                       | 902.6 MHz<br>1.805 7 GHz<br>2.708 9 GHz<br>3.612 1 GHz<br>4.513 8 GHz<br>7.224 8 GHz | 1 f<br>1 f<br>1 f<br>1 f<br>1 f<br>1 f | Gate<br>[Off,∟0]          | E                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | N 1 f 120                               |
| 43.022 dBm<br>43.290 dBm                                                                                                                    | 5.419 3 GHz<br>8.127 5 GHz                                                           | i f<br>1 f                             | Points<br>4000            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                         |
| III STATUS                                                                                                                                  |                                                                                      |                                        | I                         | DC Coupled                                    | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m                                           | Points changed; all traces cleared      |

### MID Channel

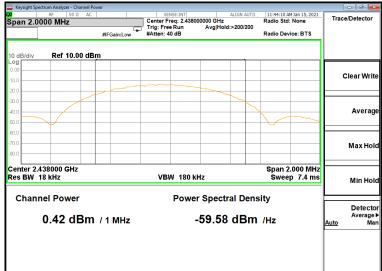
| ntegratio |         | Ω AC    |           | SENSE:INT<br>Center Freq: 907.80 |               | Radio St      | AM Dec 23, 2020 | Detector    |
|-----------|---------|---------|-----------|----------------------------------|---------------|---------------|-----------------|-------------|
|           |         |         | FGain:Low | Trig: Free Run<br>#Atten: 30 dB  | Avg Hold:>200 |               | evice: BTS      | Aut         |
| 0 dB/div  | Ref 30  | .50 dBm |           |                                  |               |               |                 |             |
| 20.5      |         |         |           |                                  |               |               |                 |             |
| 10.5      |         |         |           |                                  |               |               |                 | Norm        |
| 500       |         |         | ~~~~~     | <u> </u>                         |               |               |                 |             |
| .50       |         | +       |           |                                  |               | $\rightarrow$ |                 | Avera       |
| 9.5       |         |         |           |                                  |               |               |                 | (RM         |
| 9.5       |         | /       | -         |                                  |               |               | ma              |             |
| 9.5       |         |         |           |                                  |               |               |                 |             |
| 9.5       |         |         |           |                                  |               |               |                 | Pe          |
| 9.5       |         |         |           |                                  |               |               |                 |             |
| enter 907 |         | lz      |           |                                  |               |               | 1.007 MHz       |             |
| es BW 9   | .1 kHz  |         |           | VBW 91 kH                        | lz            | Sweep         | 14.53 ms        | Sam         |
| Chann     | el Powe | ər      |           | Powe                             | r Spectral D  | ensity        |                 |             |
| aiiii     |         |         |           |                                  | . opeolia b   | y             |                 |             |
| 1         | 8.64 d  | Bm /    | 671 kHz   |                                  | -39.63 dE     | 3m /Hz        |                 | Negative Pe |
|           |         |         |           |                                  |               |               | F               |             |
|           |         |         |           |                                  |               |               |                 |             |
|           |         |         |           |                                  |               |               |                 |             |
|           |         |         |           |                                  |               |               |                 |             |
|           |         |         |           |                                  |               | STATUS        |                 |             |


| 🔤 Keysight Sp              | ectrum Analyzer - Swept SA                                                                                     |                           |                                           |                         |                      |                                                       | @ <b></b>      | 🔤 Key                   | /sight Spect         | um Analyzer - Sw             |                                            |                      |                                                         |                                                    |                                                            |                |
|----------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|-------------------------|----------------------|-------------------------------------------------------|----------------|-------------------------|----------------------|------------------------------|--------------------------------------------|----------------------|---------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|----------------|
| <mark>ø</mark><br>Marker 1 | RF 50 Ω <u>A</u> DC<br>89.954989 kHz                                                                           |                           | SENSE                                     | Avg Ty                  | IGN AUTO             | 03:53:52 AM Dec 23, 2020<br>TRACE 1 2 3 4 5 6         | Peak Search    | w<br>Mar⊧               | ker 4 4              | RF 50 Ω                      | 97991 GH                                   |                      | SENSE:INT                                               | ALIGN AUTO<br>Avg Type: Log-Pwr<br>Avg Hold: 10/10 | 03:59:40 AM Dec 23, 2020<br>TRACE 1 2 3 4 5 6              | Peak Search    |
| 10 dB/div                  | Ref Offset 10.5 dB<br>Ref 20.50 dBm                                                                            | PNO: Fast G<br>IFGain:Low | #Atten: 30 d                              |                         | 4.210/10             | Mkr1 90 kHz                                           | Next Peak      | 10 dE                   |                      | Ref Offset 11<br>Ref 31.50 ( | IFG                                        | O: Fast ↔<br>ain:Low | #Atten: 30 dB                                           |                                                    | TYPE N NNNN<br>DET NNNNN<br>r4 4.538 70 GHz<br>-37.342 dBm | Next Peak      |
| 10.500                     |                                                                                                                |                           |                                           |                         |                      | DL1 -11 37.dBm                                        | Next Pk Right  | 21.5                    |                      |                              |                                            |                      |                                                         |                                                    |                                                            | Next Pk Right  |
| -19.5<br>-29.5<br>-39.5    |                                                                                                                |                           |                                           |                         |                      | UL1-11-32.00h                                         | Next Pk Left   | -8.50<br>-18.5          |                      | 0                            | 2                                          |                      | A4                                                      |                                                    | DL1 +10.37 dBm                                             | Next Pk Left   |
| -49.5                      | n) Hi kalanga katan tang kata tang kata ki kang kata ki ka | nark slade stad           | general and the state of the state of the | atanti mana mana takina | giq-darldat piquanty | entionectoresesses sectores and the open-             | Marker Delta   | -38.5<br>-48.5<br>-58.5 | and a product of the | Y                            |                                            |                      |                                                         |                                                    |                                                            | Marker Delta   |
| Start 30 H<br>#Res BW      | 10 kHz<br>RC SCL X                                                                                             |                           | W 300 kHz                                 | FUNCTION FI             | Sweep 2              | Stop 30.00 MHz<br>75.9 ms (4000 pts)<br>FUNCTIONVALUE | Mkr→CF         | #Res                    | MODE TRC             | 00 kHz                       | ×                                          |                      |                                                         | Sweep 9                                            | Stop 10.000 GHz<br>57.0 ms (99000 pts)                     | Mkr→CF         |
| 1 N<br>2<br>3<br>4<br>5    | 1 f                                                                                                            | 90 kHz                    | -43.799 dBm                               |                         |                      | E                                                     | Mkr→RefLvl     | 2                       | N 1                  | f<br>f<br>f                  | 907.87<br>1.815 25<br>2.723 64<br>4.538 70 | GHz<br>GHz           | 19.767 dBm<br>-33.930 dBm<br>-24.514 dBm<br>-37.342 dBm |                                                    |                                                            | Mkr→RefLv      |
| 7<br>8<br>9<br>10<br>11    |                                                                                                                |                           |                                           |                         |                      |                                                       | More<br>1 of 2 | 7<br>8<br>9<br>10<br>11 |                      |                              |                                            |                      |                                                         |                                                    |                                                            | More<br>1 of 2 |
| MSG                        |                                                                                                                |                           | m                                         |                         | STATUS               | DC Coupled                                            |                | K MSG                   |                      |                              |                                            |                      |                                                         | STAT                                               | JS                                                         |                |

# High Channel

| Keysight Spectrum Analyzer - Channel Power |                                                           |                                             | #_ <b>_</b>  |
|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------|--------------|
| rf 50 Ω AC<br>ntegration BW 677.00 kHz     | SENSE:INT ALIGN AUTO Center Freq: 914.200000 MHz          | 04:11:36 AM Dec 23, 2020<br>Radio Std: None | Detector     |
| #F0                                        | Gain:Low Trig: Free Run Avg Hold:>200/20<br>#Atten: 30 dB | 00<br>Radio Device: BTS                     | Aut          |
| 0 dB/div Ref 30.50 dBm                     |                                                           |                                             | Norm         |
| 9.5                                        |                                                           |                                             | Avera<br>(RM |
| 9.5                                        |                                                           |                                             | Pe           |
| enter 914.2000 MHz<br>es BW 10 kHz         | VBW 100 kHz                                               | Span 1.016 MHz<br>Sweep 12.13 ms            | Samı         |
| Channel Power<br>18.67 dBm / 6             | Power Spectral De<br>77 kHz -39.64 dBi                    |                                             | Negative Pe  |
|                                            |                                                           |                                             |              |
| 3G                                         | st                                                        | TATUS                                       |              |

| Keysight Spectrum Analyzer - Swept SA                                                                                   |                                       |                                           | wy Keysight Spectrum Analyzer - Swept SA                                                                                                                                                                                                 | - # 💌          |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| RF 50 2 ADC SENSE:INT ALION AUTO<br>Average/Hold Number 10<br>PMC East ( Trig: Free Run AvgType: Log-Pw                 | 04:18:36 AM Dec 23, 2020              | Meas Setup                                |                                                                                                                                                                                                                                          | Peak Search    |
| PNO: Fast Trig: Free Run Avg Hold:>10/10<br>IFGain:Low #Atten: 30 dB                                                    | TYPE MWWWWW<br>DET PNNNNN             | Avg/Hold Num                              | IFGain:Low Atten: 30 dB DET P NNNNN                                                                                                                                                                                                      | Next Peak      |
| Ref Offset 10.5 dB<br>10 dB/div Ref 30.50 dBm                                                                           | Mkr1 105 kHz<br>-44.217 dBm           | 10                                        | Ref Offset 11.5 dB         Mkr4 7.312 10 GHz           10 dB/div         Ref 31.50 dBm         -38.674 dBm                                                                                                                               | INCAL P COR    |
|                                                                                                                         |                                       | Avg Type<br>Log-Pwr (Video) ►<br>Auto Man |                                                                                                                                                                                                                                          | Next Pk Right  |
| 295                                                                                                                     | Di 111.13 dBm                         | Limits►                                   |                                                                                                                                                                                                                                          | Next Pk Left   |
| -39 5 1                                                                                                                 |                                       | N dB Points<br>-3.01 dB<br>On <u>Off</u>  |                                                                                                                                                                                                                                          | Marker Delta   |
| Start 30 kHz<br>#Res BW 10 kHz #VBW 300 kHz Sweep<br>MxR Mode tric sci x y Function wid                                 | Stop 30.00 MHz<br>275.9 ms (4000 pts) | PhNoise Opt<br>Fast Tuning ►<br>Auto Man  | Start 30 MHz         Stop 10.000 GHz           #Res BW 100 kHz         #VBW 300 kHz         Sweep 957.0 ms (99000 pts)           Ime@imdolfpingisci         x         y         Function         Function wubbit         Function wubbit | Mkr→CF         |
| 1         N         1         f         105 kHz         -44.217 dBm           3         4         5         6         6 | E                                     | ADC Dither<br>Medium ►<br>Auto Man        |                                                                                                                                                                                                                                          | Mkr→RefLvl     |
| 7<br>8<br>9<br>10<br>11                                                                                                 |                                       | More<br>1 of 2                            | 9                                                                                                                                                                                                                                        | More<br>1 of 2 |
| ≮ [™<br>MSG  STA                                                                                                        | TUS J. DC Coupled                     |                                           | K W STATUS                                                                                                                                                                                                                               |                |

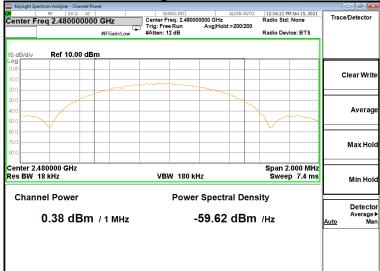

# 2.6.6 Conducted Spurious Emissions Data: BLE



|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MBG                                                |                                                               |                |                   |                         | 314103                      |                                        |                                         |                                                |                                         |              |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|----------------|-------------------|-------------------------|-----------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|--------------|
| Keysight Spectrum Analyzer - Swept SA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                               | <b>-</b>       | 🔤 Keysigl         | ht Spectrum Ar          | nalyzer - Swept SA          |                                        |                                         |                                                |                                         |              |
| ম⊧ <u>50 Ω ∆</u> চc<br>arker 1 286.243500 kHz | Z<br>PNO: Fast Trig: Free Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALIGN AUTO<br>Avg Type: Log-Pwr<br>Avg Hold:>10/10 | 12:13:30 PM Jan 15, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE M WWWWW | Peak Search    | Marke             | r 3 9.60                | 50 Ω AC<br>6752100000       | 0 GHz<br>PNO: Fast                     | SENSE:INT                               | ALIGN AU<br>Avg Type: Log-P<br>Avg Hold:>10/10 | Wr TRACE 1 2 3 4 5 6                    | Peak Search  |
|                                               | IFGain:Low Atten: 12 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | DET P N N N N N                                               | NextPeak       |                   |                         |                             | IFGain:Low                             | Atten: 12 dB                            |                                                | DET P NNNN                              | NextPe       |
| Ref Offset 10.7 dB<br>dB/div Ref 11.70 dBm    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IVI)                                               | kr1 286.24 kHz<br>-64.234 dBm                                 |                | 10 dB/d           | Ref C<br>liv <b>Ref</b> | Offset 11.7 dB<br>12.70 dBm |                                        |                                         | IV                                             | kr3 9.606 75 GHz<br>-54.513 dBm         |              |
| .70                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                               | New Di Diebé   | 2.70              |                         | <b>≬</b> <sup>1</sup>       |                                        |                                         |                                                |                                         | Naut Die Die |
| .3                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                               | Next Pk Right  | -7.30             |                         |                             |                                        |                                         |                                                |                                         | Next Pk Rig  |
| 3                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 011-30.00 dBm                                                 |                | -17.3             |                         |                             |                                        |                                         |                                                | DL1-23.00 dBm                           |              |
| 3                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                               | Next Pk Left   | -37.3             |                         |                             |                                        |                                         |                                                |                                         | Next Pk L    |
| 3                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                               |                | -47.3             |                         |                             | $\Diamond^2$                           | <b>3</b>                                |                                                |                                         |              |
|                                               | and a sufficient state of the s | at we chards and we chard the weather and          | and the second stand of the second state                      | Marker Delta   | -67.3             |                         |                             | Jul                                    |                                         |                                                |                                         | Marker De    |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                               |                | -77.3             |                         |                             |                                        |                                         |                                                |                                         |              |
| art 30 kHz<br>es BW 100 kHz                   | #VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sween 666                                          | Stop 30.00 MHz<br>7 ms (100001 pts)                           | Mkr→CF         | Start 3<br>#Res F |                         | (H7                         | #VBI                                   | V 300 kHz                               | Sween                                          | Stop 18.000 GHz<br>1.720 s (100001 pts) | Mkr-         |
| MODE TRC SCL X                                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FUNCTION FUNCTION WIDTH                            | FUNCTION VALUE                                                |                | MKR MOD           | DE TRC SCL              | x                           |                                        | Y F                                     | JNCTION FUNCTION W                             |                                         |              |
| N 1 f                                         | 286.24 kHz -64.234 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                                               |                | 1 N<br>2 N<br>3 N | 1 f                     | 4.8                         | 401 68 GHz<br>803 37 GHz<br>506 75 GHz | 0.683 dBm<br>-59.588 dBm<br>-54.513 dBm |                                                | _                                       |              |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | _                                                             | Mkr→RefLvl     | 4 5               |                         | 5.0                         | 500 7 5 GHZ                            | -04.013 UBIII                           |                                                |                                         | Mkr→Ref      |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                               |                | 6<br>7            |                         |                             |                                        |                                         |                                                |                                         |              |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                               | More<br>1 of 2 | 9<br>10           |                         |                             |                                        |                                         |                                                |                                         | M<br>1       |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | ×                                                             |                | 11<br><           |                         |                             |                                        |                                         |                                                | ×                                       |              |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                             | L DC Coupled                                                  |                | MSG               |                         |                             |                                        |                                         | SI                                             | ATUS                                    |              |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>K</b> 1110 1                                    |                                                               |                |                   |                         |                             |                                        |                                         |                                                |                                         |              |

| m Analyzer - Swept SA                                                                                                                       |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 5.956560000000 GHz Avg Type: Log-Pwr                                                                                                        | TRACE 1 2 3 4 5 6<br>TYPE M WWWWW        |
| IFGain:Low Atten: 12 dB                                                                                                                     | .956 56 GHz Select Trace                 |
|                                                                                                                                             | 41.641 dBm                               |
|                                                                                                                                             | Clear Writ                               |
|                                                                                                                                             |                                          |
|                                                                                                                                             | Trace Average                            |
|                                                                                                                                             | 10 11 10 10 10 10 10 10 10 10 10 10 10 1 |
|                                                                                                                                             |                                          |
|                                                                                                                                             | Max Ho                                   |
| GHz St                                                                                                                                      | op 26.000 GHz                            |
| 0 kHz #VBW 300 kHz Sweep 766.7 m                                                                                                            | ns (100001 pts) Min Ho                   |
| X         Y         FUNCTION         FUNCTION WIDTH           f         25.956 56 GHz         -41.641 dBm         FUNCTION         FUNCTION | FUNCTION VALUE                           |
|                                                                                                                                             | View Blank<br>Trace On                   |
|                                                                                                                                             | Mo                                       |
|                                                                                                                                             | 1 of                                     |
| STATUS                                                                                                                                      |                                          |

#### **MID Channel**




STATUS

| weysight Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                                                                                 |                                       | - 9 💌          | 🔤 Ke                             | eysight Spectri      | ım Analyzer - Sw             |             |                            |                                      |            |           |           |                                             |        |                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|----------------------------------|----------------------|------------------------------|-------------|----------------------------|--------------------------------------|------------|-----------|-----------|---------------------------------------------|--------|---------------------------------------------|
| ₩ RF 50 Ω ▲ DC<br>Marker 1 2.43798000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 GHz                                        | SE:INT ALIGN AUT<br>Avg Type: Log-Pv                                                                            | Vr TRACE 1 2 3 4 5 6                  | Marker         | wµ<br>Disp                       | play Lin             | e 1 -30.0                    | AC<br>0 dBm |                            |                                      | SE:INT     | Avg Type: | LIGN AUTO | 11:58:33 AM Jan 1<br>TRACE 1 2              | 3456   | Display                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PNO: Fast Trig: Free<br>IFGain:Low Atten: 10 | dB                                                                                                              | DET P NNNN                            | SelectMarker   |                                  |                      |                              | F           | NO: Fast Gain:Low          | Trig: Free<br>Atten: 10              |            | Avg Hold: |           | TYPE MW<br>DET PN                           |        | Annotation►                                 |
| 10 dB/div Ref Offset 10.5 dB<br>Ref 10.50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | Mk                                                                                                              | r1 2.437 980 GHz<br>dBm               | 1              |                                  |                      | Ref Offset 11<br>Ref 11.70 ( |             |                            |                                      |            |           | Mkr       | 3 9.752 85<br>-53.404 c                     |        | Annotation                                  |
| -19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                                                                 |                                       | Normal         | Log<br>1.70<br>-8.30<br>-18.3    |                      | ^1<br>                       |             |                            |                                      |            |           |           |                                             |        | Title►                                      |
| -19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                                                                                 | DL1 -30.00 dBm                        | Delta          | -18.3<br>-28.3<br>-38.3<br>-48.3 |                      |                              |             |                            |                                      | <b>▲</b> 3 |           |           | DI 1.3                                      |        | Graticule<br><u>On</u> Off                  |
| -59.5<br>-69.5<br>-79.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and a second and a second second             | man and the second s | Nellan provide the second of          | Fixed⊳         | -58.3<br>-68.3<br>-78.3          |                      |                              |             |                            |                                      |            |           |           |                                             | -      | Display Line<br>-30.00 dBm<br><u>On</u> Off |
| Start 30 kHz<br>#Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #VBW 300 kHz                                 | Sweep                                                                                                           | Stop 30.00 MHz<br>2.867 ms (1001 pts) |                | #Re                              | rt 30 MH<br>es BW 10 | 0 kHz                        | ×           | #VBV                       | / 300 kHz                            | PUNA       |           | weep 1.   | Stop 18.000<br>720 s (10000<br>FUNCTION VAL | l pts) | Display Lines ►                             |
| Image         N         1         F           2         3         4         5         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.438 GHz dB                                 |                                                                                                                 |                                       | Properties▶    |                                  | N 1<br>N 1           | f<br>f<br>f                  | 2.437       | 80 GHz<br>43 GHz<br>85 GHz | 0.775 dB<br>-59.701 dB<br>-53.404 dB | m<br>m     |           | GHOWWIDTH | FUNCTION VAL                                |        | System<br>Display▶<br>Settings              |
| 7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                                                                 |                                       | More<br>1 of 2 | 7<br>8<br>9<br>10<br>11          |                      |                              |             |                            |                                      |            |           |           |                                             | ```    |                                             |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | ST                                                                                                              | TUS 1 DC Coupled                      |                | MSG                              |                      |                              |             |                            |                                      |            |           | STATUS    |                                             | -      |                                             |
| Records to the second se |                                              | Kauright Spectrum Ar                                                                                            |                                       |                | -                                |                      |                              |             |                            |                                      |            |           |           |                                             |        |                                             |

| - 2 🖻          |                                                               |                                        |          |                   |           |                     | ctrum Analyzer -                       | Keysight Spec |
|----------------|---------------------------------------------------------------|----------------------------------------|----------|-------------------|-----------|---------------------|----------------------------------------|---------------|
| Trace/Detector | 12:31:38 PM Jan 15, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE M WWWWW | ALIGN AUTO<br>pe: Log-Pwr<br>ld:>10/10 | A        | SENSE:INT         |           | 0 Ω AC<br>40000000  | 25.37424                               | arker 1       |
| Select Trace   | DET P N N N N N                                               |                                        | ~~       | tten: 12 dB       |           |                     |                                        |               |
| 1              | 25.374 24 GHz<br>-41.879 dBm                                  | Mkr1                                   |          |                   |           |                     | Ref Offset<br>Ref 23.0                 | dB/div        |
|                |                                                               |                                        |          |                   |           |                     |                                        | <b>3</b> .0   |
| Clear Writ     |                                                               |                                        |          |                   |           |                     |                                        | .00           |
|                |                                                               |                                        |          |                   |           |                     |                                        | 7.0           |
| Trace Averag   | DL1 -30.00 dDm                                                |                                        |          |                   |           |                     |                                        | 7.0           |
|                | ↓ <sup>1</sup>                                                |                                        |          |                   |           |                     |                                        | 7.0           |
|                |                                                               |                                        |          | dallar or bood if |           | in a set of the set | an an ha thirte a fact the             | 7.0           |
| Max Hol        |                                                               |                                        |          |                   |           |                     | ************************************** | 7.0           |
|                | Stop 26.000 GHz                                               |                                        |          |                   |           |                     | 00 011-                                | art 18.00     |
| Min Hol        | .7 ms (100001 pts)                                            | weep 766                               |          | 0 kHz             | #VBW 3    |                     |                                        | Res BW        |
| ) Min Hol      | FUNCTION VALUE                                                | UNCTION WIDTH                          | FUNCTION | Y<br>.879 dBm     | 24 GHz -4 | X<br>25.27/         | f                                      | GRIMODE TRO   |
| View Blank     | _                                                             |                                        |          | .679 UBIII        | 24 GHZ -4 | 20.374              | -                                      | 2             |
| Trace On       |                                                               |                                        |          |                   |           |                     |                                        | 4             |
|                |                                                               |                                        |          |                   |           |                     |                                        | 6<br>7<br>8   |
| Mor<br>1 of    |                                                               |                                        |          |                   |           |                     |                                        | 9<br>0        |
|                | × .                                                           |                                        |          |                   |           |                     |                                        | ĭ             |
|                |                                                               | STATUS                                 |          |                   |           |                     |                                        | 3             |

## **High Channel**



STATUS

| Display Line 1-30.00 dBm<br>(Foint.cw)       Avg Type: Log-Pwr<br>Trig: Free Run<br>Bedint.cw       Avg Type: Log-Pwr<br>Avg/biol:>100       Trid: Free Run<br>Bedint.cw       Avg Type: Log-Pwr<br>Avg/biol:>100       Trid: Free Run<br>Bedint.cw       Avg Type: Log-Pwr<br>Trig: Free Run<br>Bedint.cw       Avg Type: Log-Pwr<br>Avg/biol:>100       Trid: Free Run<br>Bedint.cw       Avg Type: Log-Pwr<br>Avg/biol:>100       Mkr2 9:200                                                                                                                                                                                                                                                                                                                                                                                                              | Keysight Spectrum Analyzer - Swept SA |                   | u Keysight Spectrum Analyzer - Swept SA         |                     |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|-------------------------------------------------|---------------------|-------------------------------|
| Ref Offset 107.dB       Mkr1 280.85 kHz<br>-64.472 dBm       Annotation       Ref offset 117.dB       Mkr2 9.920 69 GHz<br>-53.965 dBm       Next Peak         10 dB(dv/ Ref 11.70 dBm       64.472 dBm       64.472 dBm       64.472 dBm       64.472 dBm       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td></td><td></td><td>Marker 2 9.920688000000 GHz</td><td>Avg Type: Log-Pwr</td><td>TRACE 1 2 3 4 5 6 Peak Search</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                   | Marker 2 9.920688000000 GHz                     | Avg Type: Log-Pwr   | TRACE 1 2 3 4 5 6 Peak Search |
| 10 dB(d)       Ref 11.70 dBm       -64.472 dBm       -53.965 dBm       -64.472 dBm       -53.965 dBm       Next Pk Right         10 dB(d)       Ref 12.70 dBm       -64.472 dBm       -64.472 dBm       -64.472 dBm       -64.472 dBm       -64.472 dBm       Next Pk Right         10 dB(d)       Ref 12.70 dBm       -64.472 dBm       -64.472 dBm       -64.472 dBm       Next Pk Right         233       -       -       -       -       -       -       -       -       -       Next Pk Right         333       -       -       -       -       -       -       -       -       -       -       Next Pk Right         333       -       -       -       -       -       -       -       -       -       -       Next Pk Right         333       -       -       -       -       -       -       -       -       -       -       Next Pk Left       Next Pk Left       Next Pk Left       Next Pk Right       Next Pk Right </th <th>IFGain:Low Atten: 12 dB</th> <th>Annotation</th> <th>IFGain:Low</th> <th>Atten: 12 dB Mkr2 S</th> <th>9.920 69 GHz NextPeak</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IFGain:Low Atten: 12 dB               | Annotation        | IFGain:Low                                      | Atten: 12 dB Mkr2 S | 9.920 69 GHz NextPeak         |
| 10       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 dB/div Ref 11.70 dBm               | -64.472 dBm       | 10 dB/div Ref 12.70 dBm                         |                     | -53.965 dBm                   |
| 33       Image: Control of the control of          | 1.70<br>                              | Title)            | •••••                                           |                     | Next Pk Right                 |
| Image: Control of the set of the se | -28.3                                 | Graticule         | -27.3                                           |                     |                               |
| Bis play Line       Display Line       Display Line       Function       Display Line       Function       Function       Marker Delta         Start 30 kHz       #VBW 300 kHz       Stop 30.00 MHz       Stop 30.00 MHz       Stop 30.00 MHz       Function       Funct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -48.3                                 |                   | -47.3                                           |                     |                               |
| #Res BW 100 kHz     #VBW 300 kHz     #VBW 300 kHz     Sweep 6.667 ms (100001 pts)     Display Lines     #Res BW 100 kHz     #VBW 300 kHz     Sweep 1.720 s (100001 pts)     Mkr—CF       1     1     f     280.85 kHz     -64.472 dBm     Function Motifier     Function Moti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | -30.00 dBn        | -67.3                                           |                     |                               |
| I       N       1       f       2.479 92 GHz       0.032 dBm         3       System       Display +       4       -53.965 dBm       -53.965 dBm         4       Settings       6       -64.472 dBm       -64.472 dBm       -64.472 dBm         5       Settings       6       -73.965 dBm       -53.965 dBm       -64.472 dBm         7       Settings       6       -73.965 dBm       -64.472 dBm       -64.472 dBm         7       Settings       7       -74.748       -74.748       -74.748       -74.748         8       Settings       7       -74.748       -74.748       -74.748       -74.748       -74.748         10       Settings       10       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748         10       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748         10       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748       -74.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                   | #Res BW 100 kHz #VBW 30                         |                     |                               |
| 9<br>10 10f2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | System<br>Display | 1 N 1 f 2.479 92 GHz<br>2 N 1 f 9.920 69 GHz -5 | 0.032 dBm           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3<br>8<br>9<br>10<br>11               | v                 | 7<br>8<br>9<br>10<br>11                         |                     |                               |
| MSG STATUS DC Coupled MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSG STATU                             | JS 1 DC Coupled   | J. *<br>MSG                                     | STATUS              |                               |

| - 8 -          |                                                               |                                          |          |                                |                           |                                                                                                                | ectrum Analyze | (eysight Sp |
|----------------|---------------------------------------------------------------|------------------------------------------|----------|--------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|----------------|-------------|
| Trace/Detector | 12:30:34 PM Jan 15, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE M WWWWW | ALIGN AUTO<br>/pe: Log-Pwr<br>old:>10/10 | Avg      | SENSE:INT                      |                           | 50 Ω AC<br>2640000000                                                                                          |                | rker 1      |
| Select Trace   | DET P NNNN                                                    |                                          | Avgi     | Trig: Free Run<br>Atten: 12 dB | PNO: Fast 🖵<br>IFGain:Low |                                                                                                                |                |             |
| 1              | 25.732 64 GHz<br>-42.207 dBm                                  | Mkr1                                     |          |                                |                           | fset 22 dB<br>3.00 dBm                                                                                         |                | dB/div      |
|                |                                                               |                                          |          |                                |                           |                                                                                                                | 1101 201       |             |
| Clear Writ     |                                                               |                                          |          |                                |                           |                                                                                                                |                | 0           |
| -              |                                                               |                                          |          |                                |                           |                                                                                                                |                | o ——        |
| Trace Avera    |                                                               |                                          |          |                                |                           |                                                                                                                |                | 0           |
| Trace Averag   | 0L1-30.00 dBm                                                 |                                          |          |                                |                           |                                                                                                                |                |             |
|                | and the second second second                                  |                                          |          |                                |                           |                                                                                                                |                | 0           |
| Max Hol        |                                                               |                                          |          |                                |                           | ale and a second se |                | 0           |
|                |                                                               |                                          |          |                                |                           |                                                                                                                |                |             |
|                | Stop 26.000 GHz                                               |                                          |          |                                |                           |                                                                                                                | 000 GHz        |             |
|                | .7 ms (100001 pts)                                            |                                          |          | 300 kHz                        | #VBW                      |                                                                                                                | 100 kHz        |             |
|                | FUNCTION VALUE                                                | FUNCTION WIDTH                           | FUNCTION | ¥<br>42.207 dBm                | 2 64 GHz                  | ×<br>25.73                                                                                                     | RC SCL         | NODE TI     |
| View Blank     |                                                               |                                          |          |                                |                           |                                                                                                                |                |             |
| Trace On       |                                                               |                                          |          |                                |                           |                                                                                                                |                |             |
| Мо             |                                                               |                                          |          |                                |                           |                                                                                                                |                |             |
| 1 of           |                                                               |                                          |          |                                |                           |                                                                                                                |                |             |
|                | ×                                                             |                                          |          |                                |                           |                                                                                                                |                |             |
|                | 3                                                             | STATUS                                   |          |                                |                           |                                                                                                                |                |             |

# 2.7 EUT Positioning Assessment

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Janet Mijares

Date: 2020-12-21/22 (20.1°C,16.3% RH)


EUT: BLE Sensor GEN2 Standard: FCC PART 15.247 Basic Standard: ANSI C63.4-2014

# X-Axis Found worse

Comments: EUT oriented in three axis's and X- axis found to be worse emission axis. .

## Specification: ANSI C63.4-2014, Clause 6.3.2.1

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a non-conducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, but it may be larger or smaller to accommodate various sized EUTs (see Figure 6, Figure 7, and Figure 9). For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.



Refer to Test Setup photo exhibit.

# 2.8 Radiated Spurious Emissions in restricted frequency bands (TX Mode)

#### Test Lab: Electronics Test Centre, Airdrie

EUT: BLE Sensor GEN2

Test Personnel:, Imran Akram, Janeth Mijares

Standard: FCC PART 15.247 Basic Standard: ANSI C63.10-2013

Date: 2020-12-22/23 (21.6°C,14 % RH)

EUT status: Compliant

# Specification: FCC PART 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

# 2.8.1 Test Guidance: ANSI C63.10-2013, Clause 11.12 / KDB 558074 D01 15.247 Measurement Guidance v05r02 Clause 8.6

From 9 kHz to 150 kHz (resolution bandwidth of 200 Hz) and from 150 kHz to 30 MHz (resolution bandwidth 9 kHz) measurements are performed with a loop antenna (as per KDB 460108).

From 30 MHz to 1000 MHz, measurements are performed with a broadband biconilog antenna and a resolution bandwidth of 120 kHz.

Above 1000 MHz, measurements are performed with a DRG Horn antenna or a Standard Gain horn, and a resolution bandwidth of 1 MHz. The EUT is raised to 150 cm above the ground plane, and the area between the EUT and the antenna mast is covered with RF absorbent material.

The scan is performed at discrete increments of turntable azimuth and antenna height, which are selected in accordance with the applicable standard in order to assure capture of frequencies of interest. Optimization is performed based on the scan data.

Frequencies having peak emissions within 10dB of the limits are optimized. The EUT is rotated in azimuth over 360 degrees and the direction of maximum emission is noted.

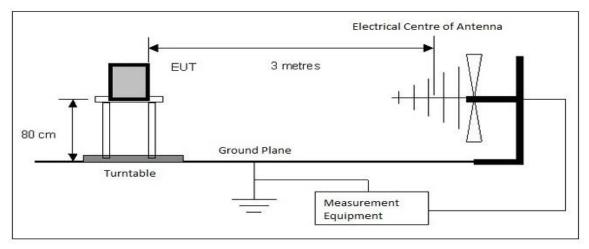
Antenna height is varied from 1 - 4 meters at this azimuth to obtain the maximum emission. Then the maximum level is measured with the appropriate detector and recorded. Up to 1 GHz, measurements are performed with a Quasi-Peak detector. Above 1 GHz, measurements are recorded with Peak and/or Average detectors, as applicable.

# 2.8.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

# 2.8.3 Test Equipment

Testing was performed with the following equipment:


| Equipment Manufacturer                 |                        | Model # Asset #                     |                | Cal. Date<br>(yyyy-mm-dd) | Cal. Due<br>(yyyy-mm-dd) |  |
|----------------------------------------|------------------------|-------------------------------------|----------------|---------------------------|--------------------------|--|
| EMC Software                           | UL                     | Ver. 9.5                            | ETC-SW-EMC 2.1 | N                         | /A                       |  |
| EMI receiver                           | Agilent                | N9038A<br>(FW A.25.05)              | 6130           | 2019-05-10                | 2020-05-10               |  |
| Loop Antenna                           | EMCO                   | 6502                                | 10868          | 2019-04-11                | 2021-04-11               |  |
| Biconilog<br>Antenna                   | ARA                    | LPB-2520/A                          | 4318           | 2018-09-19                | 2020-09-19               |  |
| DRG Horn                               | EMCO                   | 3115                                | 19357          | 2018-09-12                | 2020-09-12               |  |
| Humidity/Temp<br>Logger                | Extech Ins.<br>Corp.   | 42270                               | 5892           | 2019-04-05                | 2020-04-05               |  |
| Low Noise<br>Amplifier<br>(1 – 18 GHz) | MITEQ                  | JS43-01001800-<br>21-5P             | 4354           | 2020-01-03                | 2021-01-03               |  |
| Pre-Amplifier<br>(30 – 1300 MHz)       | HP                     | 8447D                               | 9291           | 2020-01-03                | 2021-01-03               |  |
| RE Cable below<br>1GHz                 | Insulated Wire<br>Inc. | KPS-1501A-<br>3600-KPA-<br>01102006 | 4419           | 2020-01-03                | 2021-01-03               |  |
| Re Cable Above<br>1 GHz                | A.H. System<br>Inc.    | SAC-26G-8.23                        | 6187           | 2020-01-03                | 2021-01-03               |  |
| Notch filter<br>2.45GHz                | Micro-Tronix           | BRM50702                            | s/n 088        | 2020-01-03                | 2021-01-03               |  |
| High Pass Filter                       | K&L                    | 4DH21                               | -              | 2020-01-03                | 2021-01-03               |  |

# 2.8.4 Test Sample Verification, Configuration & Modifications

The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT met the requirements without modification.

## Test setup diagram for Radiated Spurious Emissions testing (below 1GHz):



Above 1GHz, the EUT is raised using a low permittivity material (polystyrene) to a height of 1.5m.

| FCC Part 15.205 Restricted Bands of Operation: |
|------------------------------------------------|
|------------------------------------------------|

| MHz                        | MHz                                    | MHz             | GHz              |
|----------------------------|----------------------------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423                         | 399.9 - 410     | *4.5 - 5.15      |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525                    | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475                    | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67                           | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25                           | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6                              | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2                            | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | *108 - 121.94                          | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138                              | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05                         | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 - 156.52525                  | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.7 - 156.9                          | *2690 - 2900    | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 162.0125 - 167.17                      | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 167.72 - 173.2                         | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 240 - 285                              | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 322 - 335.4                            | *3600 - 4400    | ( <sup>2</sup> ) |
| 13.36 - 13.41              | patriated band aball ba 0,400,0,510 ML |                 |                  |

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz, <sup>2</sup> Above 38.6

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in 15.209 shall be demonstrated based on the average value of the measured emissions.

## Specification: FCC15.209 Radiated emission limits.

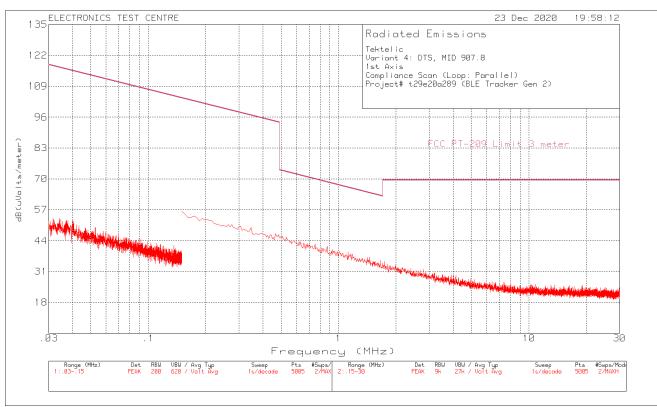
Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009 - 0.490   | 2400/F(kHz)                       | 300                           |
| 0.490 - 1.705   | 24000/F(kHz)                      | 30                            |
| 1.705 - 30.0    | 30                                | 30                            |
| 30 - 88         | 100                               | 3                             |
| 88 - 216        | 150                               | 3                             |
| 216 - 960       | 200                               | 3                             |
| Above 960       | 500                               | 3                             |

# 2.8.5 Radiated Emissions Data: LoRa DTS

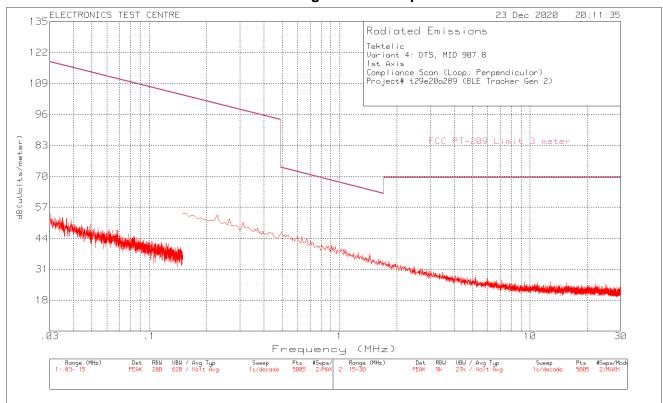
The emissions data are presented in tabular form, showing turntable azimuth, antenna height and polarization, the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value of the limit at the frequency investigated, and the Delta between the result and the limit.

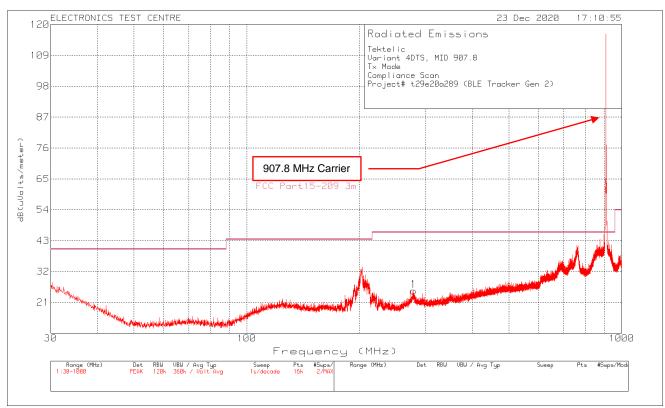
# Meter Reading in $dB_{\mu}V$ + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in $db_{\mu}V/m$ .


# Delta = Field Strength - Limit

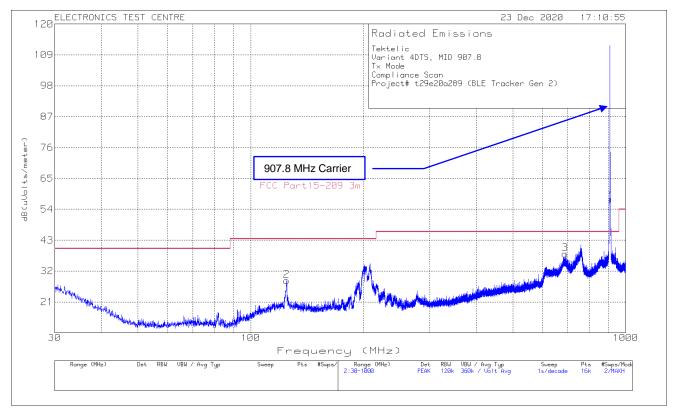
- **Notes:** When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
  - Measurements reported are the result of adjusting the turntable azimuth and antenna height to obtain the maximum EUT emission. This may produce a different reading than the plot trace. The plot is a Peak Hold function obtained at discrete increments of height and azimuth, while the reported measurement is obtained with the appropriate Quasi Peak or Average detector after the height and azimuth have been adjusted for maximum emission.
  - Preliminary scans were performed for all channels in Transmit modes. The MID band channel 907.8 MHz was selected as the worst-case condition for detailed examination.
    - In Transmit mode, the EUT was assessed up to 10.0 GHz.

|        | . <u>J</u> |                |     |                   |                 |                      |                     |        |         |                | r P          |
|--------|------------|----------------|-----|-------------------|-----------------|----------------------|---------------------|--------|---------|----------------|--------------|
| Freq.  | Freg.      | Raw<br>reading |     | Antenna<br>Factor | Pre amp<br>Gain | Corrected<br>Reading | FCC 15.209<br>Limit | Delta  | Azimuth | Hoight         |              |
| Marker | [MHz]      | (dBµv]         | Det | [dB/m]            | [dB]            | [dBµv/m]             | [dBµv/m]            | [dB]   | [Deg]   | Height<br>[cm] | Polarization |
| 1      | 278.88     | 22.62          | QP  | 17.4              | -21.9           | 18.12                | 46.02               | -27.9  | 18      | 103            | Horizontal   |
| -      |            | -              | -   |                   | _               | -                    |                     | -      | -       |                |              |
| 2      | 124.25     | 26.78          | QP  | 18.1              | -23.2           | 21.68                | 43.5                | -21.82 | 90      | 105            | Vertical     |
| 3      | 689.74     | 26.44          | QP  | 24.1              | -19.3           | 31.24                | 46.02               | -17.78 | 290     | 115            | Vertical     |
| 1      | *2723.8    | 50.07          | AV  | 29.7              | -33.8           | 45.97                | 54                  | -8.03  | 41      | 322            | Horizontal   |
| 1      | *2723.8    | 56.16          | PK  | 29.7              | -33.8           | 52.06                | 74                  | -21.94 | 41      | 322            | Horizontal   |
| 2      | *2723.8    | 47.57          | AV  | 29.7              | -33.8           | 43.47                | 54                  | -10.53 | 77      | 321            | Vertical     |
| 2      | *2723.8    | 54.03          | PK  | 29.7              | -33.8           | 49.93                | 74                  | -24.07 | 77      | 321            | Vertical     |
| 1      | *5464.4    | 29.86          | AV  | 34                | -30.4           | 33.46                | 54                  | -20.54 | 189     | 232            | Horizontal   |
| 1      | *5446.4    | 41.5           | PK  | 34                | -30.4           | 45.1                 | 74                  | -28.9  | 189     | 232            | Horizontal   |
| 2      | *7262.8    | 24.59          | AV  | 36.3              | -27.5           | 33.39                | 54                  | -20.61 | 320     | 296            | Horizontal   |
| 2      | *7262.8    | 37.26          | PK  | 36.3              | -27.5           | 46.06                | 74                  | -27.94 | 320     | 296            | Horizontal   |
| 3      | *8169.3    | 26.95          | AV  | 36.7              | -26.2           | 37.45                | 54                  | -16.55 | 11      | 207            | Horizontal   |
| 3      | *8169.3    | 40.54          | PK  | 36.7              | -26.2           | 51.04                | 74                  | -22.96 | 11      | 207            | Horizontal   |
| 4      | *9079.3    | 24.7           | AV  | 37.5              | -26.4           | 35.8                 | 54                  | -18.2  | 45      | 143            | Horizontal   |
| 4      | *9079.3    | 37.84          | PK  | 37.5              | -26.4           | 48.94                | 74                  | -25.06 | 45      | 143            | Horizontal   |
| 5      | *5446.4    | 31.66          | AV  | 34                | -30.4           | 35.26                | 54                  | -18.74 | 143     | 238            | Vertical     |
| 5      | *5446.4    | 42.83          | PK  | 34                | -30.4           | 46.43                | 74                  | -27.57 | 143     | 238            | Vertical     |
| 6      | *7261.4    | 27.45          | AV  | 36.3              | -27.5           | 36.25                | 54                  | -17.75 | 206     | 111            | Vertical     |
| 6      | *7261.4    | 40.18          | PK  | 36.3              | -27.5           | 48.98                | 74                  | -25.02 | 206     | 111            | Vertical     |
| 7      | *8172.3    | 25.75          | AV  | 36.7              | -26.2           | 36.25                | 54                  | -17.75 | 318     | 156            | Vertical     |
| 7      | *8172.3    | 40.67          | PK  | 36.7              | -26.2           | 51.17                | 74                  | -22.83 | 318     | 156            | Vertical     |
| 8      | *9079.7    | 23.69          | AV  | 37.5              | -26.4           | 34.79                | 54                  | -19.21 | 306     | 154            | Vertical     |
| 8      | *9079.7    | 36.87          | PK  | 37.5              | -26.4           | 47.97                | 74                  | -26.03 | 306     | 154            | Vertical     |


# Negative values for Delta indicate compliance.


AV: Average Detector, PK: Peak Detector, \* Restricted Band (RB) Non Restricted Band (NRB)



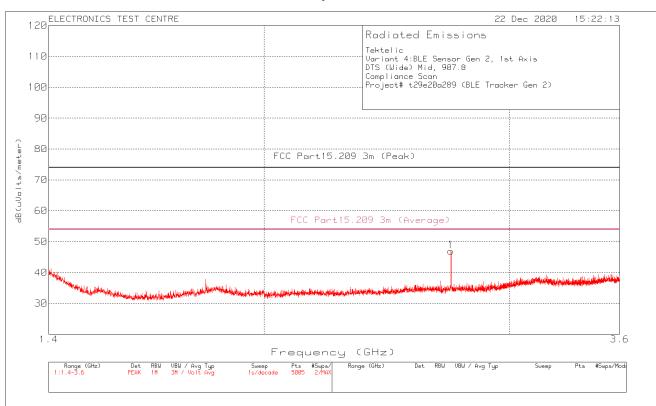

## Plot of Radiated Emissions LoRa: Measuring Antenna Parallel



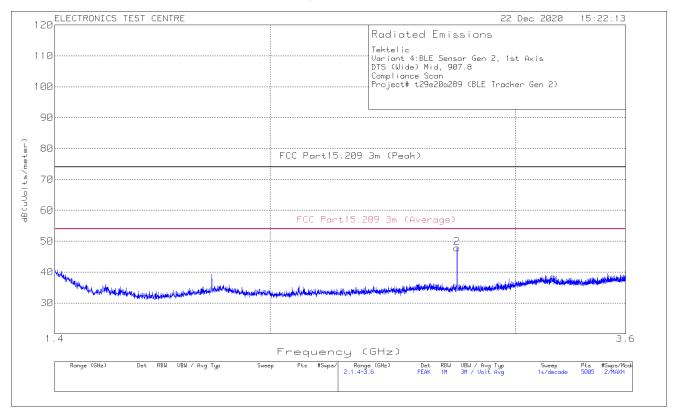


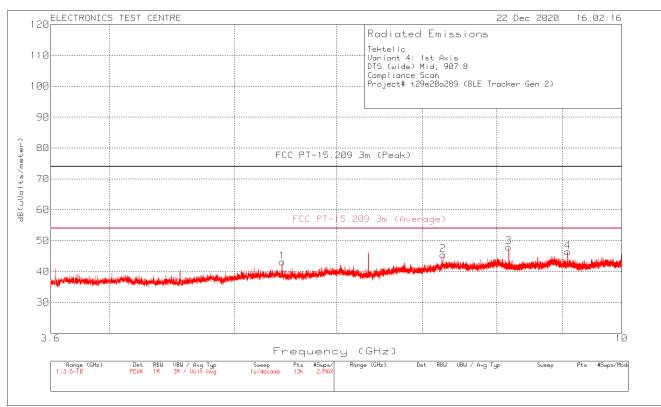


# Plot of Radiated Emissions LoRa: Vertical polarization

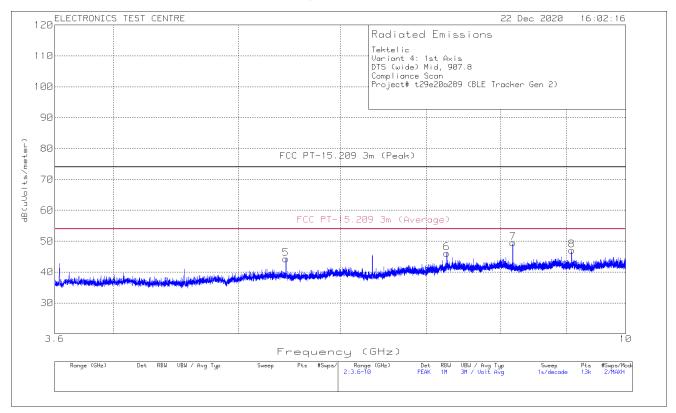



This report shall not be reproduced, except in full, without prior written approval of Page 44 of 57 MPB Technologies


| 30 ELECTRONICS TEST CENTRE   | 22 Dec 2020 15:13:22                                                        |
|------------------------------|-----------------------------------------------------------------------------|
| 120                          | lst Axis<br>Compliance Scan                                                 |
| 88                           |                                                                             |
| 98                           |                                                                             |
| 80<br>FCC Part15-209 Peak 3m |                                                                             |
| 70                           |                                                                             |
| 68                           | FCC Part15-289 3m Average                                                   |
| 58                           |                                                                             |
| 48                           | ensulatoruntentenariatika, etaisunkilleisirendukunteisiaikatus, asudasiaiki |
| Freque                       | ncy (GHz)                                                                   |
|                              | iups/ Range (SHz) Det RBU UBU / Avg Typ Sweep Pts #Sups/Mod                 |


# Plot of Radiated Emissions LoRa: Vertical polarization






# Plot of Radiated Emissions LoRa: Vertical polarization





# Plot of Radiated Emissions LoRa: Vertical polarization



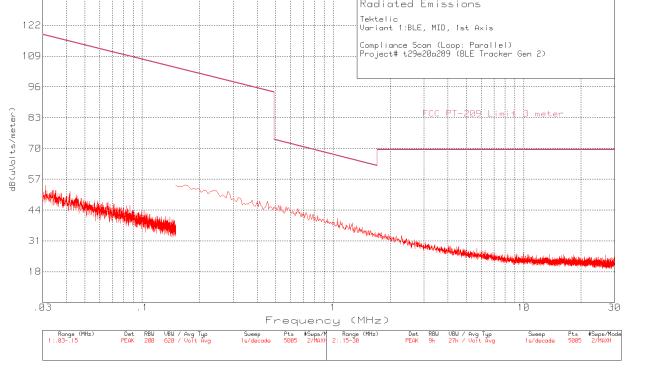
# 2.8.6 Radiated Emissions Data: BLE

The emissions data are presented in tabular form, showing turntable azimuth, antenna height and polarization, the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value of the limit at the frequency investigated, and the Delta between the result and the limit.

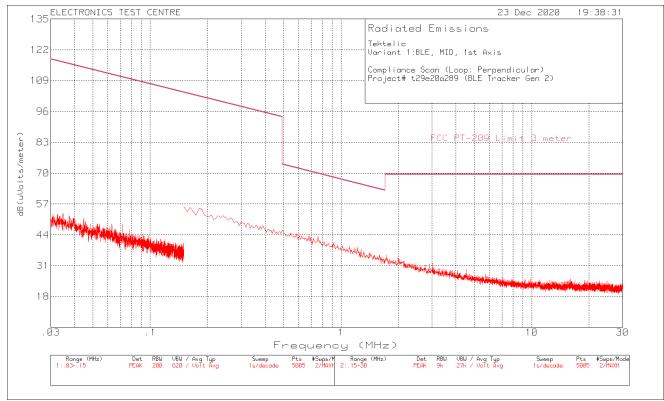
# Meter Reading in $dB_{\mu}V$ + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in $db_{\mu}V/m$ .

# Delta = Field Strength - Limit

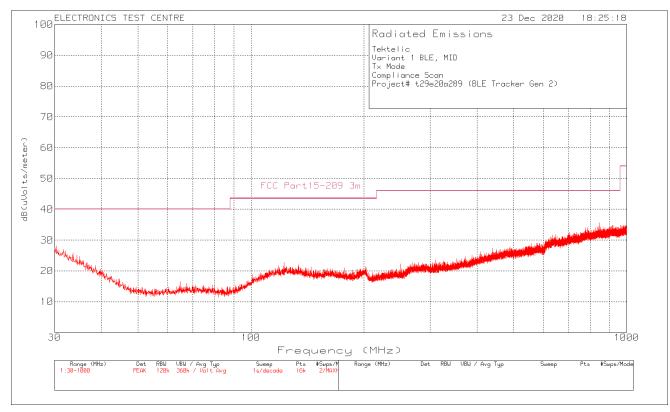
- **Notes:** When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
  - Measurements reported are the result of adjusting the turntable azimuth and antenna height to obtain the maximum EUT emission. This may produce a different reading than the plot trace. The plot is a Peak Hold function obtained at discrete increments of height and azimuth, while the reported measurement is obtained with the appropriate Quasi Peak or Average detector after the height and azimuth have been adjusted for maximum emission.
  - Preliminary scans were performed for all channels in Transmit modes. The MID band channel 2438 MHz was selected as the worst-case condition for detailed examination.
    - In Transmit mode, the EUT was assessed up to 26.5 GHz.


| Freq.<br>Marker | Freq.<br>[GHz] | Raw<br>reading<br>[dBµv] | Det | Antenna<br>Factor<br>[dB/m] | Pre amp<br>Gain<br>[dB] | Corrected<br>Reading<br>[dBµv/m] | FCC 15.209<br>Limit<br>[dBµv/m] | Delta<br>[dB] | Azimuth<br>[Deg] | Height<br>[cm] | Polarization |
|-----------------|----------------|--------------------------|-----|-----------------------------|-------------------------|----------------------------------|---------------------------------|---------------|------------------|----------------|--------------|
| 1               | *4.876         | 39.41                    | AV  | 33                          | -31.9                   | 40.51                            | 54                              | -13.49        | 202              | 121            | Horizontal   |
| 1               | *4.876         | 44.1                     | PK  | 33                          | -31.9                   | 45.28                            | 74                              | -28.74        | 202              | 121            | Horizontal   |
| 4               | *17.86         | 19.8                     | AV  | 46.2                        | -20                     | 46                               | 54                              | -8.0          | 39               | 103            | Horizontal   |
| 4               | *17.86         | 31.16                    | PK  | 46.2                        | -20                     | 57.36                            | 74                              | -16.64        | 39               | 103            | Horizontal   |
| 2               | *4.876         | 39.26                    | AV  | 33                          | -31.9                   | 40.36                            | 54                              | -13.64        | 132              | 107            | Vertical     |
| 2               | *4.876         | 43.76                    | PK  | 33                          | -31.9                   | 44.86                            | 74                              | -29.14        | 132              | 107            | Vertical     |
| 3               | *17.86         | 19.81                    | AV  | 46.2                        | -19.9                   | 46.11                            | 54                              | -7.89         | 17               | 102            | Vertical     |
| 3               | *17.86         | 31.59                    | PK  | 46.2                        | 19.9                    | 57.89                            | 74                              | -16.11        | 17               | 102            | Vertical     |

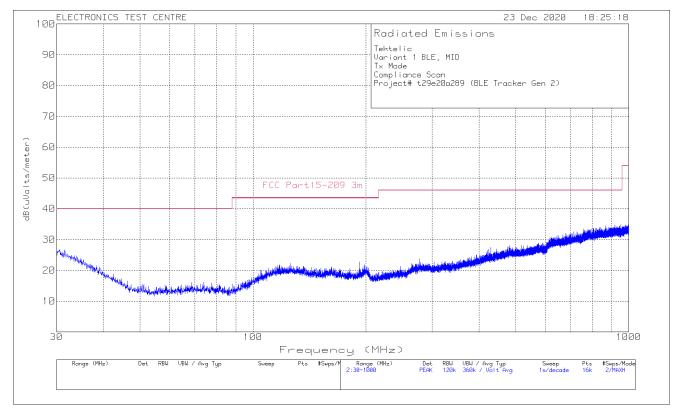
# Negative values for Delta indicate compliance.


AV: Average Detector, PK: Peak Detector, \* Restricted Band (RB) Non Restricted Band (NRB)

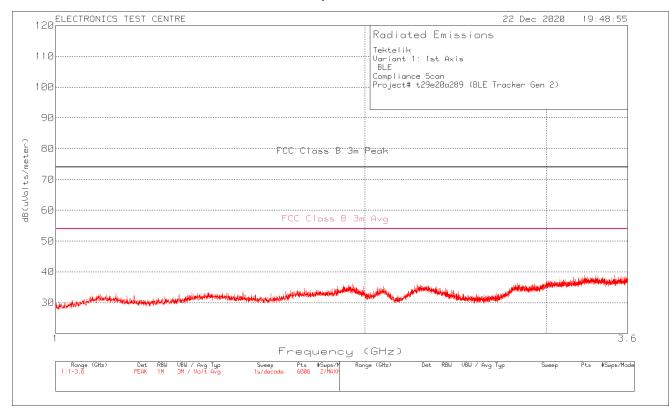
19:24:01


# Plot of Radiated Emissions BLE: Measuring Antenna Parallel

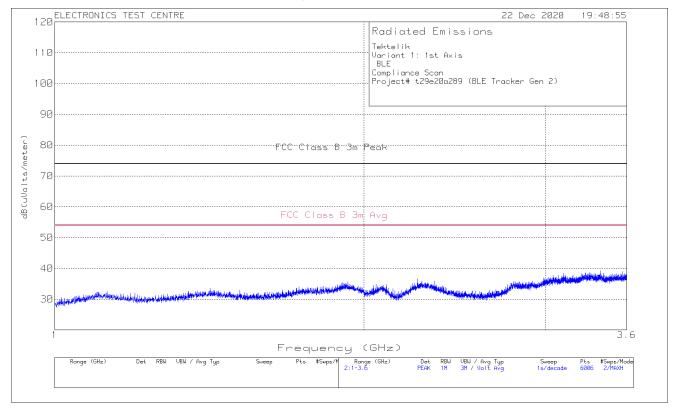


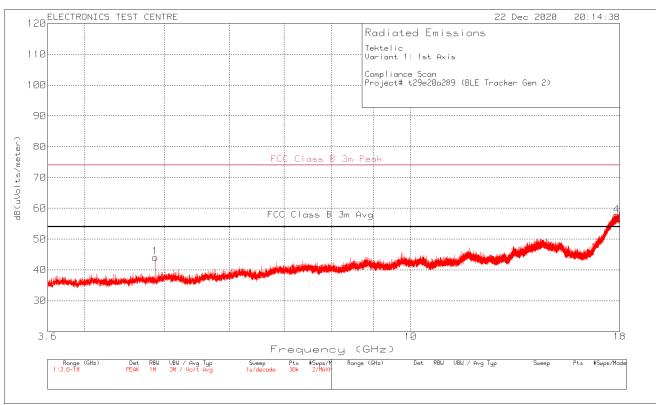

# Plot of Radiated Emissions BLE: Measuring Antenna Perpendicular



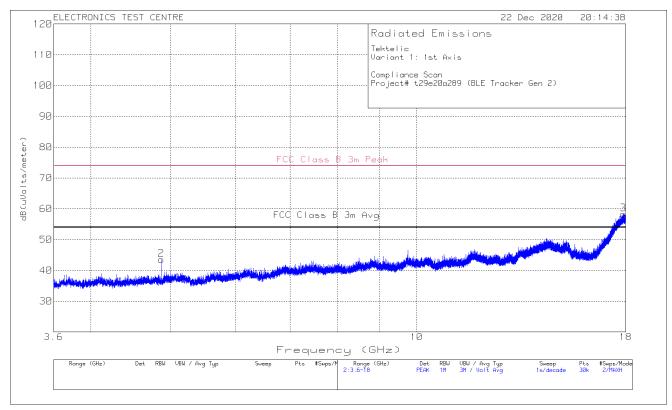

This report shall not be reproduced, except in full, without prior written approval of Page 49 of 57 MPB Technologies




# Plot of Radiated Emissions BLE: Vertical polarization

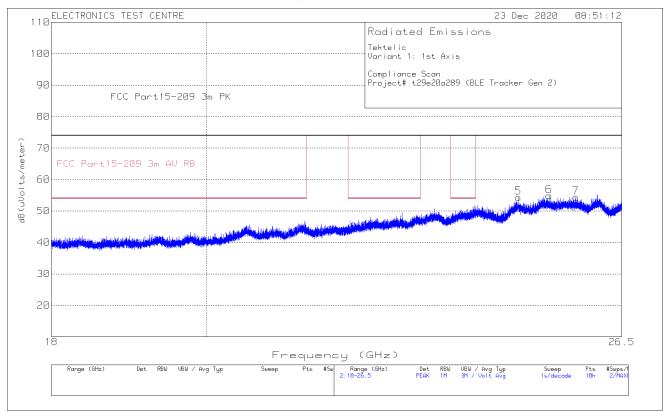



This report shall not be reproduced, except in full, without prior written approval of Page 50 of 57 MPB Technologies




# Plot of Radiated Emissions BLE: Vertical polarization






# Plot of Radiated Emissions BLE: Vertical polarization



| 110 | ELECTRONICS TEST CENTRE                                                                                                                                                                                              | 23 Dec 2020 08:51:12                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 100 |                                                                                                                                                                                                                      | Radiated Emissions<br>Tektelic<br>Variant 1: 1st Axis      |
| 90  | FCC Part15-209 3m PK                                                                                                                                                                                                 | Compliance Scan<br>Project# t29e20a289 (BLE Tracker Gen 2) |
| 80  |                                                                                                                                                                                                                      |                                                            |
| 70  | FCC Part15-209 3m AV RB                                                                                                                                                                                              |                                                            |
| 60  |                                                                                                                                                                                                                      | - 1                                                        |
| 50  |                                                                                                                                                                                                                      |                                                            |
| 40  |                                                                                                                                                                                                                      | NY 2012 AND            |
| 30  |                                                                                                                                                                                                                      |                                                            |
| 20  |                                                                                                                                                                                                                      |                                                            |
| 1   | 8<br>Frequency                                                                                                                                                                                                       |                                                            |
|     | Range (GHz)         Det         R6M         UBM / Avg         Typ         Sweep         Pts         \$\$w           1:18-25.5         PEAK         1M         3M / Uoit Avg         1s/decade         18k         18 | Range (GHz) Det RBW UBW / Avg Typ Sweep Pts #Swps/t        |

#### Plot of Radiated Emissions BLE: Vertical polarization



**Test Personnel:** 

## 2.9 RF Exposure

Test Lab: Electronics Test Centre, Airdrie

Standard: FCC PART 15.247

**EUT: BLE Sensor GEN2** 

Date:

EUT status: Exempt

**Compliant:** RF exposure assessment to be provided in a separate Exhibit.

# 3.0 TEST FACILITY

# 3.1 Location

The BLE Sensor GEN2 was tested for emissions at the Electronics Test Centre laboratory located in Airdrie, Alberta, Canada. The Radio Frequency Anechoic Chamber (RFAC), identified as Chamber 1, has a usable working space measuring 10.6 m long x 7.3 m wide x 6.5 m high.

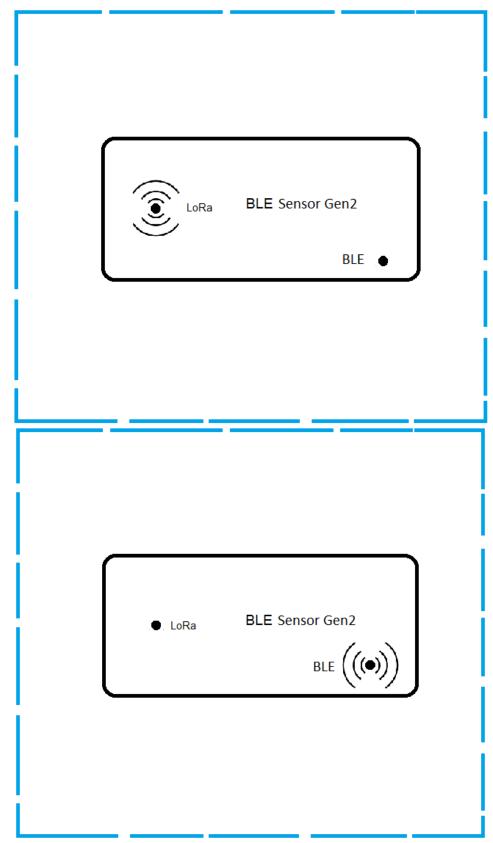
Measurements taken at this site are accepted by Industry Canada as evidence of conformity per registration file # 2046A. This site is also listed with the FCC under Registration Number CA2046.

The floor, walls and ceiling consist of annealed steel panels. The walls and ceiling are covered with ferrite tile, augmented by RF absorbant foam material on the end wall nearest the turntable, and on the adjacent walls and the ceiling. The chamber floor supports a 15 cm high internal floor, constructed of annealed steel panels, that forms the ground plane, and is bonded to the chamber walls.

The 3-m diameter turntable is flush-mounted with the floor. A sub-floor cable-way is provided to route cables between the turntable pit and EUT support equipment located in the Control Room. Cables reach the EUT through an opening in the centre of the turntable.

Test instrumentation and EUT support equipment is located in the Control Room, consisting of two shielded vestibules joined together at the side of the main room. Cables are routed through bulkhead panels between the rooms and the test chamber as required. Power feeds are routed into the main room and vestibules through line filters providing at least 100 dB of attenuation between 10 kHz and 10 GHz.

Either floor mounted or table-top equipment can be tested at this facility.


# 3.2 Grounding Plan

The BLE Sensor GEN2 was placed at the center of the test chamber turntable on top of polystyrene foam table. No provision is made within the BLE Sensor GEN2 for an earth ground connection.

# 3.3 Power Supply

All EUT power was supplied by a DC power supply (3.6 V).

# Appendix A (Worse Emission test Setup Block Diagram)



# **End of Document**