The Device is a **mobile** BLE Asset Tracker for IoT applications. BLE Tracker is suitable for commercial indoor application.

BLE Tracker evaluated for RF radiation exposure according to the provisions of FCC §2.1091, MPE guidelines identified in FCC §1.1310 and FCC KDB 447498:2015.

Limits for General Population/Uncontrolled Exposure: 47 CFR 1.1310 Table 1 (B)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1.500-100.000			1.0	30

Where f is in MHz

The worst-case scenario is provided at 902 MHz.

The maximum power density exposure is f/1500:

S = 0.60133 mW/cm², for uncontrolled exposure

LoRa RF conducted power measurement and antenna gain as per ETC test reports t29e20a152-DTS_FCC and t29e20a152-DSS_FCC section 2.3.5 are reported below. The maximum duty cycle of the radio is stated in the Operation Description exhibit to be 33%. The worst-case value is in bold below

тх	Frequency (MHz)	Conducted RF Output 100% Duty Cycle (dBm)	Max. antenna gain (dBi)	Conducted EIRP 100% duty Cycle(dBm)	EIRP 100% Duty Cycle (mW)	EIRP 33% Duty Cycle (mW)
LoRa 500 KHz	903	15.27	2	17.27	53.3335	17.600055
	907.8	15.18	2	17.18	52.2396	17.239068
	914.2	15.20	2	17.20	52.4807	17.318631
LoRa 125 KHz	902.3	15.31	2	17.31	53.827	17.76291
	908.5	15.17	2	17.17	52.1195	17.199435
	914.9	15.38	2	17.38	54.7016	18.051528

1

Using worst case scenario, the highest measured EIRP or [P*G(numeric gain)] value for the LoRa transmitter was rounded up to **18.1 mW**.

Using the highest transmitted power at a distance of 20 cm in the equation below:

$$S = EIRP / (4 \pi R^2)$$

Where: S, power density in 'mW/cm²' (we use the value for the LoRa band of 0.60153 W/m²) EIRP, Effective Isotropic Radiated Power in 'mW' R, distance to the center of the radiation of the antenna in 'cm'

The RF exposure from the radio is less than the limit specified as shown below and meets the exemption criteria.

$$S (mW/cm^2) = (18.1 \text{ mW}) / (4 \text{ x } \pi \text{ x } 20^2)$$

$$S = 0.003601 \text{ mW/cm}^2 < << 0.60133 \text{ mW/cm}^2 \text{ (max limit)}$$

The manufacturer manual specified a minimum safe distance of 20 cm.