

Page 1 of 98

TEST REPORT

Product Name	:	Smart Body Fat Scale
Brand Mark	:	PICOOC
Model No.	:	S3 V2.0, Big Plus 2, Big Pro V2.0
FCC ID	:	2ALE7-S3
Report Number	:	BLA-EMC-202006-A8302
Date of Sample Receipt	:	2020/6/30
Date of Test	:	2020/6/30 to 2020/7/27
Date of Issue	:	2020/7/27
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

PICOOC Technology Co.,Ltd Room 507, F/5, Wanwei Building,No.5 Industrial Road, NanShan District Shenzhen, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. IOT Test Centre of BlueAsia No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen,China TEL: +86-755-28682673

FAX: +86-755-28682673

Compiled by:

Approved by:

weet. Linng Review by: c.es Date 2020 Vania

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com

REPORT REVISE RECORD

Version No.	Date	Description
00	2020/7/27	Original

TABLE OF CONTENTS

1	TEST SUMMARY	6
2	GENERAL INFORMATION	7
3	GENERAL DESCRIPTION OF E.U.T.	7
4	TEST ENVIRONMENT	8
5	TEST MODE	8
6	MEASUREMENT UNCERTAINTY	
_	DESCRIPTION OF SUPPORT UNIT	
7	LABORATORY LOCATION	
8		
9	TEST INSTRUMENTS LIST	
	ONDUCTED SPURIOUS EMISSIONS	
	LIMITS	
	BLOCK DIAGRAM OF TEST SETUP	
	TEST DATA	15
СС	ONDUCTED BAND EDGES MEASUREMENT	16
	LIMITS	16
	BLOCK DIAGRAM OF TEST SETUP	
	TEST DATA	
РС	OWER SPECTRUM DENSITY	18
	LIMITS	
	BLOCK DIAGRAM OF TEST SETUP	18
	TEST DATA	18
СС	ONDUCTED PEAK OUTPUT POWER	19
	LIMITS	
	BLOCK DIAGRAM OF TEST SETUP	
	TEST DATA	20
МІ	INIMUM 6DB BANDWIDTH	21
	LIMITS	21
	BLOCK DIAGRAM OF TEST SETUP	21
	ТЕЅТ DATA	21

CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	22
LIMITS	22
BLOCK DIAGRAM OF TEST SETUP	22
PROCEDURE	22
ТЕЅТ DATA	24
ANTENNA REQUIREMENT	26
Conclusion	26
RADIATED SPURIOUS EMISSIONS	27
LIMITS	27
BLOCK DIAGRAM OF TEST SETUP	28
PROCEDURE	28
TEST DATA	30
RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	38
LIMITS	
BLOCK DIAGRAM OF TEST SETUP	
PROCEDURE	
TEST DATA	
10.1 AppendixA: DTS Bandwidth	
Test Result	
Test Graphs	
10.2 AppendixB: Occupied Channel Bandwidth	
Test Result	
Test Graphs	
10.3 APPENDIXC: MAXIMUM CONDUCTED OUTPUT POWER	
Test Result	
Test Graphs	
10.4 APPENDIXD: MAXIMUM POWER SPECTRAL DENSITY	
Test Result	
10.5 AppendixE:Band edge measurements	
Test Result	
Test Graphs	
10.6 APPENDIXF:CONDUCTED SPURIOUSEMISSION	

	Test Result	. 83
	Test Graphs	. 84
	PENDIX A: PHOTOGRAPHS OF TEST SETUP	06
АГГ	ENDIX A. PHOTOGRAPHS OF TEST SETUP	90
APF	ENDIX B: PHOTOGRAPHS OF EUT	98

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass

GENERAL INFORMATION 2

Applicant	PICOOC Technology Co.,Ltd	
Address	Room 507, F/5, Wanwei Building,No.5 Industrial Road, NanShan District, shenzhen, China	
Manufacturer	PICOOC Technology Co.,Ltd	
Address	Room 507, F/5, Wanwei Building,No.5 Industrial Road, NanShan District, shenzhen, China	
Factory	PICOOC Technology Co.,Ltd	
Address	Address Room 507, F/5, Wanwei Building,No.5 Industrial Road, NanShan District, shenzhen, China	
Product Name Smart Body Fat Scale		
Test Model No. S3 V2.0		
3 GENERAL DESCRIPTION OF E.U.T.		

GENERAL DESCRIPTION OF E.U.T. 3

Hardware Version	V1.0	
Software Version	1.0	
Operation Frequency:	02.11b/g/n(HT20): 2412MHz to 2462MHz 02.11n(HT40):2422MHz to 2452MHz	
Modulation Type:	302.11b: DSSS (CCK, DQPSK, DBPSK) 302.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK)	
Channel Spacing:	5MHz	
Number of Channels:	802.11b/g/n(HT20):11 802.11n(HT40):7	
Antenna Type:	PCB antenna	
Antenna Gain:	-1dBi(declared by the manufacturer)	

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	+25°C	3.3Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
TX mode with modulation	Keep the EUT in continuously transmitting with modulation mode. (Dutycycle>98%)
Remark:Only the data of the worst mode would be recorded in this report.	

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission	±4.34dB
Radiated Emission	±4.24dB
Radiated Emission	±4.68dB
AC Power Line Conducted Emission	±3.45dB

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A
AC Adapter	PISEN	TS-C051	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at: BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen,China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Spurious Emissions								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	7/4/2020	7/3/2021			
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020			
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020			
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021			

Test Equipment Of Conducted Band Edges Measurement									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	7/4/2020	7/3/2021				
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020				
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020				
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021				

Test Equipment Of Power Spectrum Density									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	7/4/2020	7/3/2021				
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020				
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020				
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021				

Test Equipment Of Conducted Peak Output Power						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	

Spectrum	R&S	FSP40	100817	7/4/2020	7/3/2021
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021

Test Equipment Of Minimum 6dB Bandwidth								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	7/4/2020	7/3/2021			
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020			
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020			
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021			

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Shield room	SKET	833	N/A	6/10/2018	6/9/2021				
Receiver	R&S	ESPI3	101082	4/20/2020	4/19/2021				
LISN	R&S	ENV216	3560.6550.15	7/4/2020	7/3/2021				
LISN	AT	AT166-2	AKK1806000003	12/17/2019	12/16/2020				
EMI software	EZ	EZ-EMC	N/A	N/A	N/A				

Test Equipment Of Radiated Spurious Emissions							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Chamber	SKET	966	N/A	5/8/2018	5/7/2021		

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com

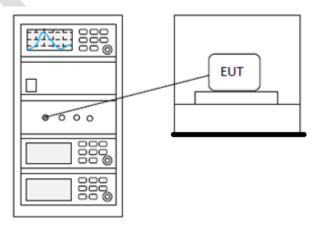
Spectrum Receiver	R&S R&S	FSP40 ESR7	100817	7/4/2020	7/3/2021
Receiver	R&S	ESR7			
			101199	4/20/2020	4/19/2021
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	7/14/2019	7/13/2021
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	7/14/2019	7/13/2021
Amplifier	SKET	LNPA-0118-45	N/A	7/4/2020	7/3/2021
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2/14/2019	2/13/2022
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment O	est Equipment Of Radiated Emissions which fall in the restricted bands							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber	SKET	966	N/A	5/8/2018	5/7/2021			
Spectrum	R&S	FSP40	100817	7/4/2020	7/3/2021			
Receiver	R&S	ESR7	101199	4/20/2020	4/19/2021			
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	7/14/2019	7/13/2021			
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	7/14/2019	7/13/2021			
Amplifier	SKET	LNPA-0118-45	N/A	7/4/2020	7/3/2021			
EMI software	EZ	EZ-EMC	N/A	N/A	N/A			
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2/14/2019	2/13/2022			
Controller	SKET	N/A	N/A	N/A	N/A			

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com

Report No.: BLA-EMC-202006-A8302 Page 13 of98

Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A


CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8
Test Mode (Pre-Scan)	TX mode with modulation
Test Mode (Final Test)	TX mode with modulation
Tester	Eason
Temperature	24 °C
Humidity	25%

LIMITS

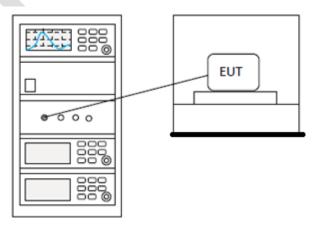
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.209(a) (see \$15.205(c)).

BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202006-A8302 Page 15 of98

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6
Test Mode (Pre-Scan)	TX mode with modulation
Test Mode (Final Test)	TX mode with modulation
Tester	Eason
Temperature	24°C
Humidity	55%

CONDUCTED BAND EDGES MEASUREMENT

LIMITS

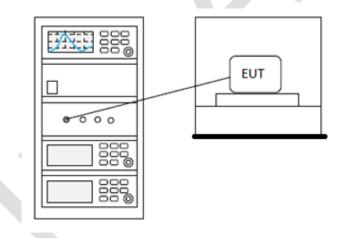
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202006-A8302 Page 17 of98

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	TX mode with modulation
Test Mode (Final Test)	TX mode with modulation
Tester	Eason
Temperature	24°C
Humidity	55%

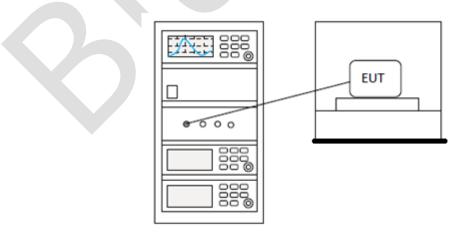
LIMITS

Limit: \leq 8dBm in any 3 kHz band during any time interval of continuous transmission

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	TX mode with modulation
Test Mode (Final Test)	TX mode with modulation
Tester	Eason
Temperature	24°C
Humidity	55%

LIMITS

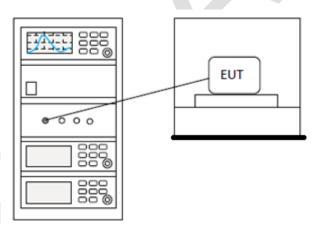
LIMITS					
Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for $25 \le \text{hopping channels} < 50$				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5725-5850	1 for frequency hopping systems and digital modulation				

BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202006-A8302 Page 20 of98

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	TX mode with modulation
Test Mode (Final Test)	TX mode with modulation
Tester	Eason
Temperature	24°C
Humidity	55%

LIMITS

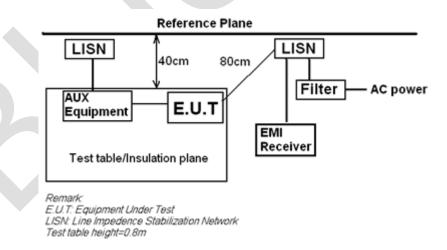
Limit: \geq 500 kHz

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX mode with modulation
Test Mode (Final Test)	TX mode with modulation
Tester	Eason
Temperature	25 ℃
Humidity	56%

LIMITS

Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*D	6.4.6	·				

*Decreases with the logarithm of the frequency.

BLOCK DIAGRAM OF TEST SETUP

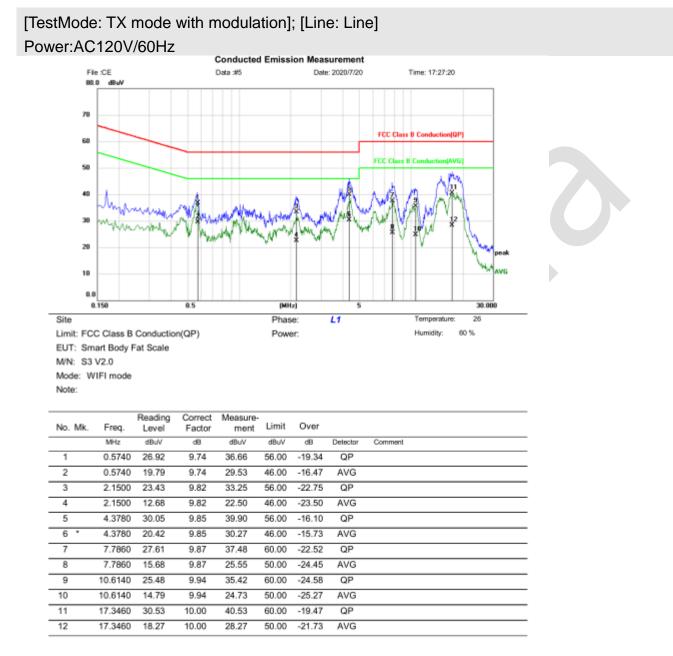
PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50?H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

TEST DATA

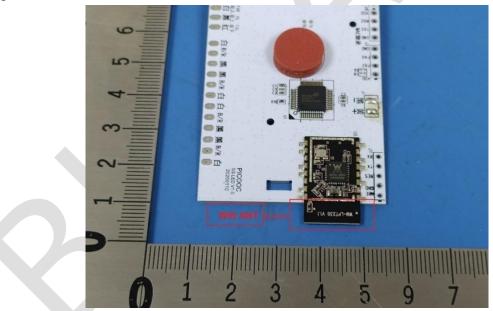
Test Result: Pass

[TestMode: TX mode with modulation]; [Line: Nutral] Power:AC120V/60Hz Conducted Emission Measurement File :CE Data :#6 Date: 2020/7/20 Time: 17:29:32 dBuV 80.0 70 FCC Class B Cond 60 50 40 30 20 10 0.0 0.150 0.5 30.00 (MHz) Site Phase: Ν Temperature: 28 Limit: FCC Class B Conduction(QP) Humidity: 60 % Power: EUT: Smart Body Fat Scale M/N: S3 V2.0 Mode: WIFI mode Note: Reading Correct Measure No. Mk. Limit Over Freq. Level Factor ment MHz dBuV dB dBuV dB dBuV Detector Comment 0.5740 27.90 9.73 37.63 56.00 -18.37 QP 1 2 0.5740 24.48 9.73 34.21 46.00 -11.79 AVG 3 2.1619 18.82 9.86 28.68 56.00 -27.32 QP 4 2.1619 12.81 9.86 22.67 46.00 -23.33 AVG 5 4.4180 25.80 9.86 35.66 56.00 -20.34 QP 6 4.4180 16.88 9.86 26.74 46.00 -19.26 AVG 7.9580 7 24.21 9.87 34.08 60.00 -25.92 QP 8 7.9580 12.48 9.87 22.35 50.00 -27.65 AVG QP 9 10.3780 9.98 60.00 22.28 32.26 -27.74 10 10.3780 10.64 9.98 20.62 50.00 -29.38AVG 11 16.8020 27.66 10.03 37.69 60.00 -22.31QP 12 16.8020 13.30 10.03 23.33 50.00 -26.67 AVG

Test Result: Pass

ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


CONCLUSION

Standard Requirement:

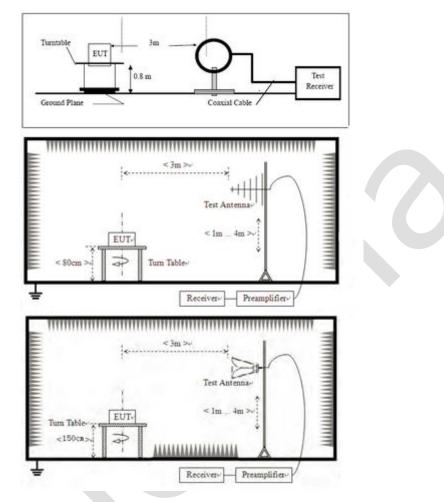
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.0dBi.

RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6				
Test Mode (Pre-Scan)	TX mode (SE) below 1GHz;TX mode (SE) Above 1GHz				
Test Mode (Final Test)	TX mode (SE) below 1GHz;TX mode (SE) Above 1GHz				
Tester	Eason				
Temperature	24°C				
Humidity	55%				


LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

BLOCK DIAGRAM OF TEST SETUP

PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

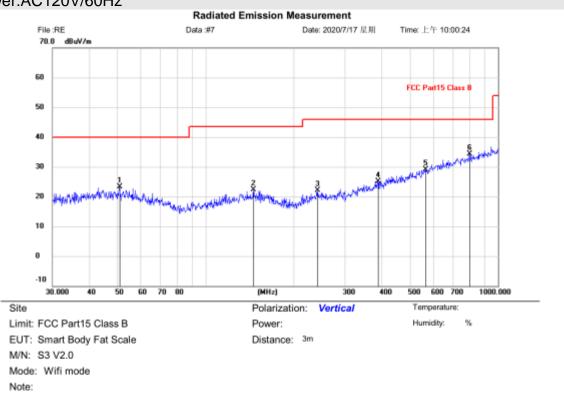
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor C Preamplifier Factor


3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

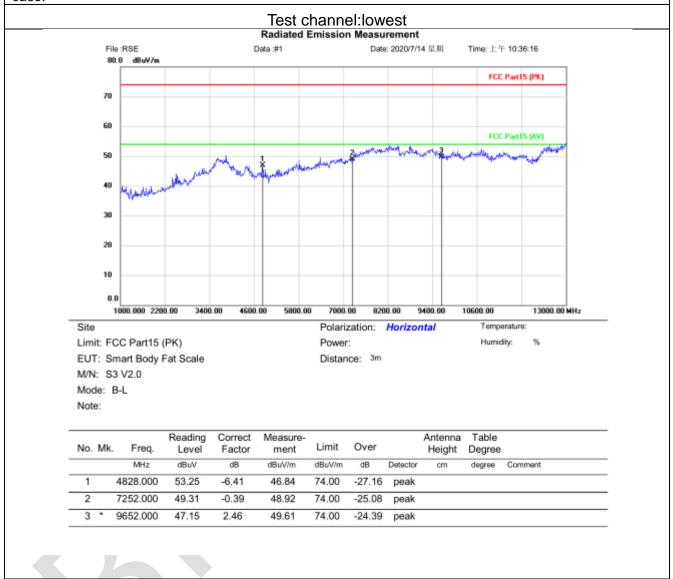
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

TEST DATA

[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical] Power:AC120V/60Hz

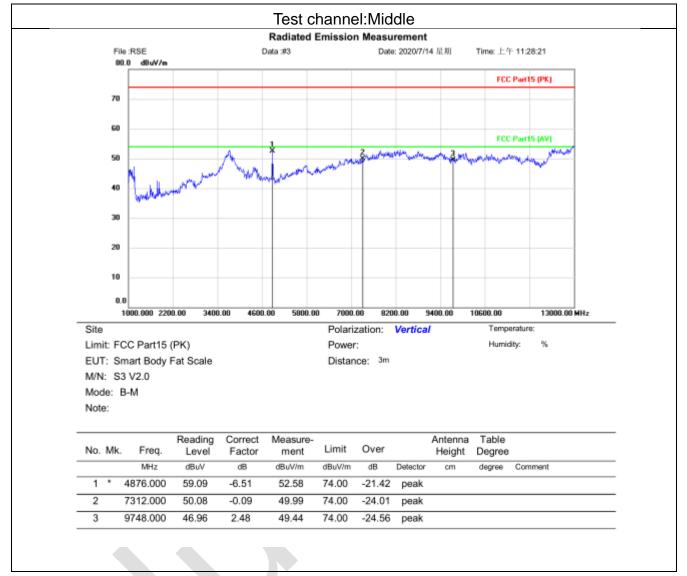
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		50.7637	9.20	14.06	23.26	40.00	-16.74	QP			
2		145.8611	9.31	12.94	22.25	43.50	-21.25	QP			
3		241.6763	9.33	12.79	22.12	46.00	-23.88	QP			
4		387.9920	8.69	16.45	25.14	46.00	-20.86	QP			
5		564.6389	8.88	20.24	29.12	46.00	-16.88	QP			
6	*	796.1830	10.08	24.22	34.30	46.00	-11.70	QP			

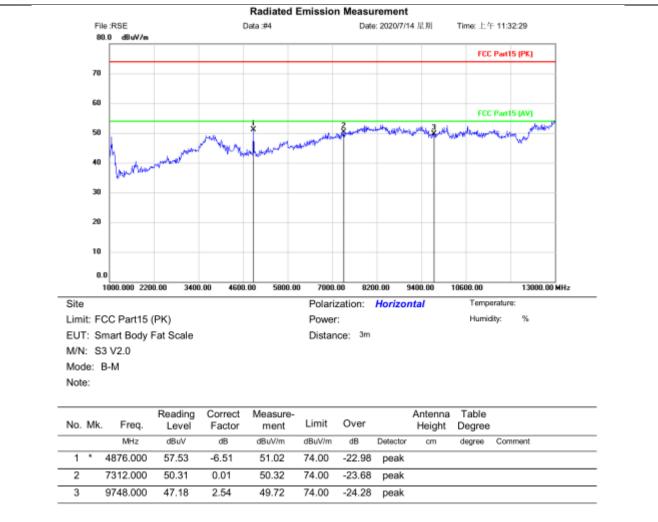
Test Result: Pass

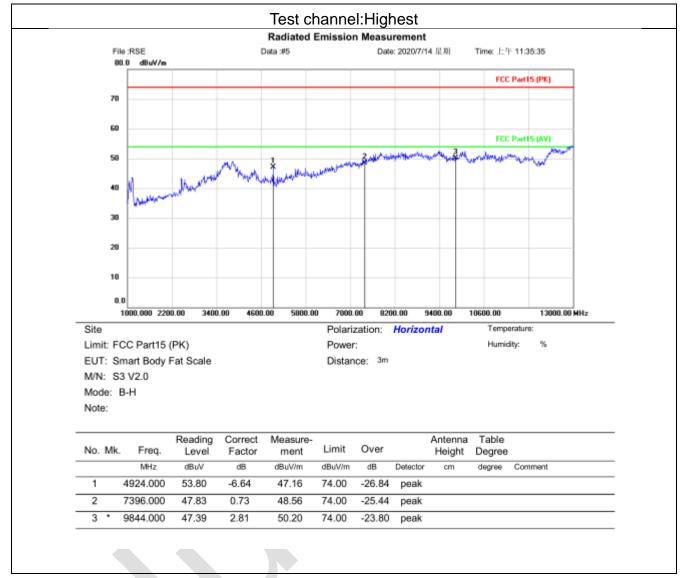


[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal] Power:AC120V/60Hz Radiated Emission Measurement File :RE Data :#8 Date: 2020/7/17 星期 Time: 上午 10:01:15 70.0 dBuV/m 60 FCC Part15 Class B 50 40 30 3 X 20 10 0 -10 30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000 Site Polarization: Horizontal Temperature: Humidity: Limit: FCC Part15 Class B % Power: EUT: Smart Body Fat Scale Distance: 3m M/N: S3 V2.0 Mode: Wifi mode Note: Reading Correct Measure-Antenna Table Limit Over No. Mk. Freq. Level Factor ment Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 42.8998 QP 1 9.15 13.98 23.13 40.00 -16.872 139.8508 9.06 12.96 22.02 43.50 -21.48 QP 3 241.6763 10.67 12.79 23.46 46.00 -22.54 QP 394.8545 9.23 25.89 46.00 QP 4 16.66 -20.11 5 547.0977 9.19 19.84 29.03 46.00 -16.97 QP 807.4291 QP 9.77 24.38 34.15 46.00 -11.85 6 **Test Result: Pass**

[TestMode: 802.11b]; [Above 1GHz]

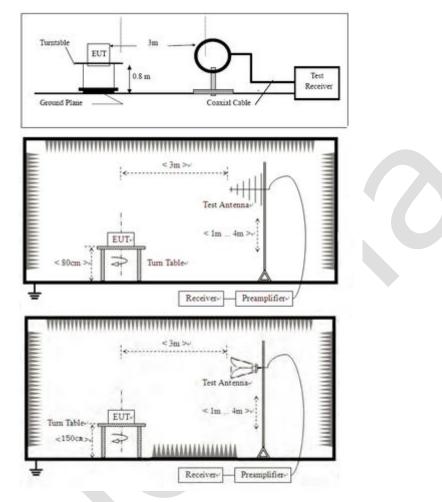

Remark: During the test, pre-scan the 802.11b/g/n mode, and found the 802.11b modewhich it is worse case.





RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX mode with modulation
Test Mode (Final Test)	TX mode with modulation
Tester	Eason
Temperature	23 °C
Humidity	56%
LIMITS	


LIMITS

LIMITS		
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

BLOCK DIAGRAM OF TEST SETUP

PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

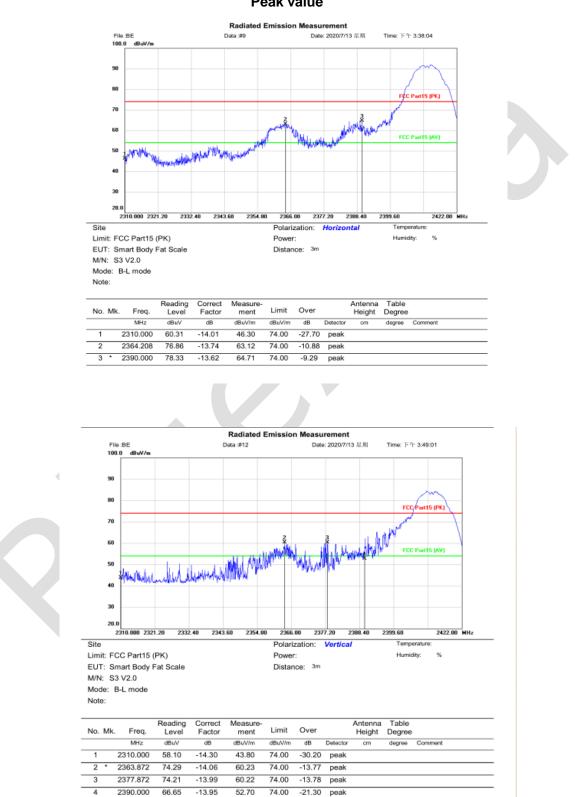
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

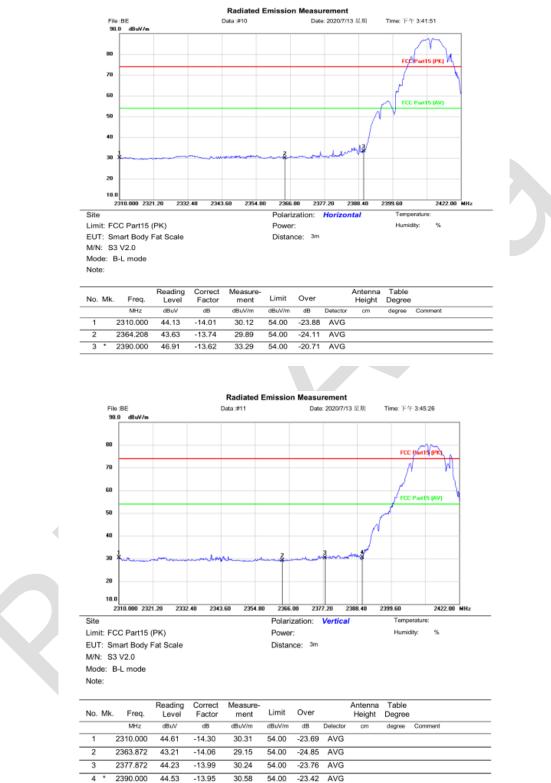
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

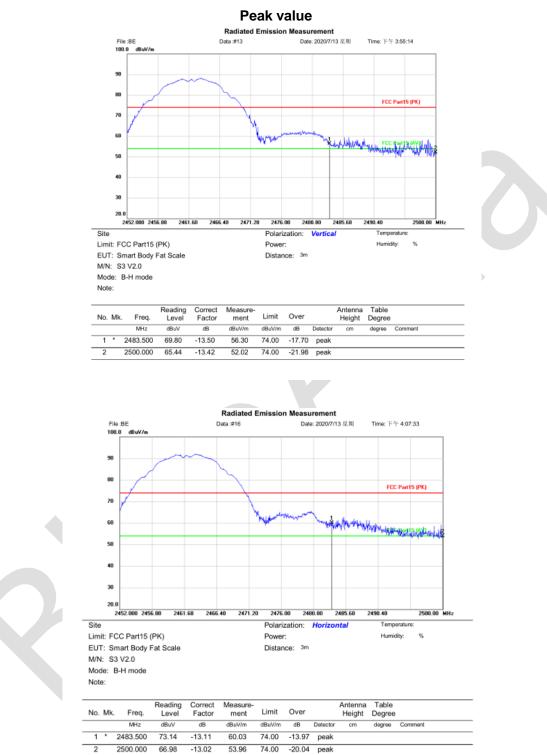
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

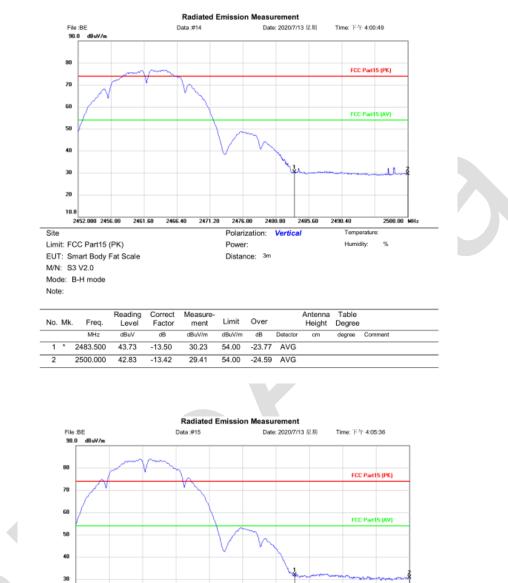
TEST DATA


802.11b:Lowest channel

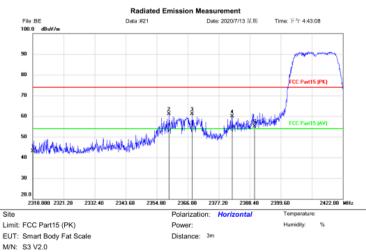
Peak value

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

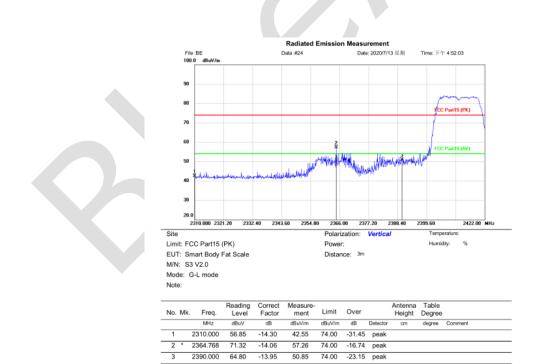

IOT Test Centre of BlueAsia, No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com



802.11b:Highest channel



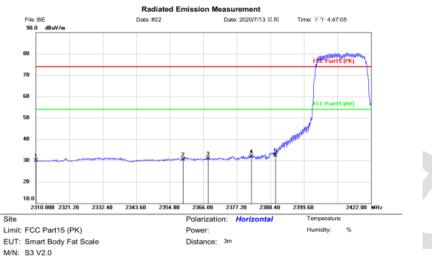
20 10.0 2452.000 2456.80 2461.60 2466.40 2471.20 2476.00 2480.80 2485.60 2490.40 2500.00 MHz Site Polarization: Horizontal Temperature Limit: FCC Part15 (PK) Power: Humidity: % EUT: Smart Body Fat Scale Distance: 3m M/N: S3 V2.0 Mode: B-H mode Note Reading Table Correct Measure Antenna Limit Over No. Mk Freq. Level Factor ment Height Degree MHz dBuW dB dBuM/m dBu\//m dB. Detecto degree Comment cm ٠ 2483.500 45.02 -13.11 31.91 54.00 -22.09 AVG 2500.000 43.74 -13.02 30.72 54.00 -23.28 AVG 2


802.11g:Lowest channel

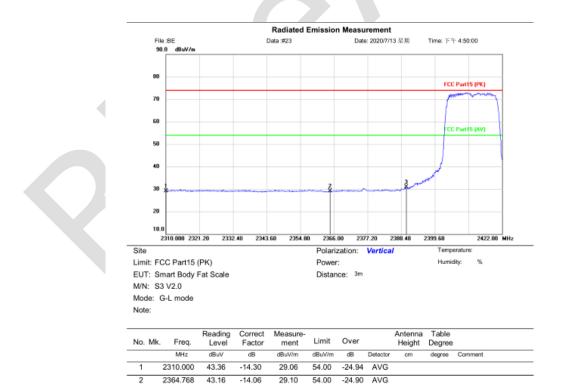
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	57.07	-14.01	43.06	74.00	-30.94	peak			
2	•	2359.168	74.93	-13.77	61.16	74.00	-12.84	peak			
3		2367.568	74.84	-13.72	61.12	74.00	-12.88	peak			
4		2382.016	73.62	-13.66	59.96	74.00	-14.04	peak			
5		2390.000	68.80	-13.62	55.18	74.00	-18.82	peak			

Mode: G-L mode Note:

Mode: G-L mode Note:


2390.000

3


44.81

-13.95

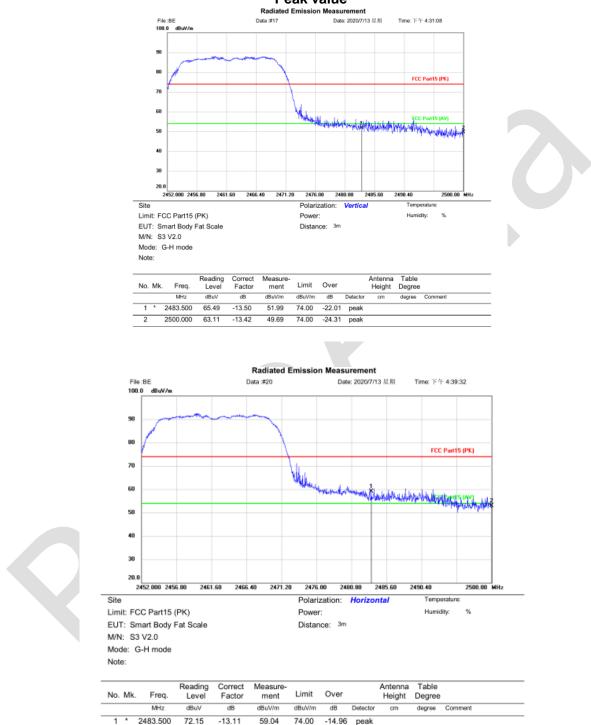
AVG value

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	43.85	-14.01	29.84	54.00	-24.16	AVG			
2		2359.168	44.27	-13.77	30.50	54.00	-23.50	AVG			
3		2367.568	44.66	-13.72	30.94	54.00	-23.06	AVG			
4		2382.016	45.65	-13.66	31.99	54.00	-22.01	AVG			
5	*	2390.000	45.97	-13.62	32.35	54.00	-21.65	AVG			

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com

30.86

54.00


-23.14 AVG

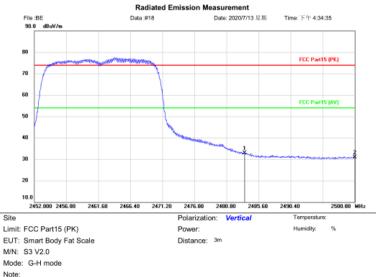
802.11g:Highest channel

Peak value

52.96

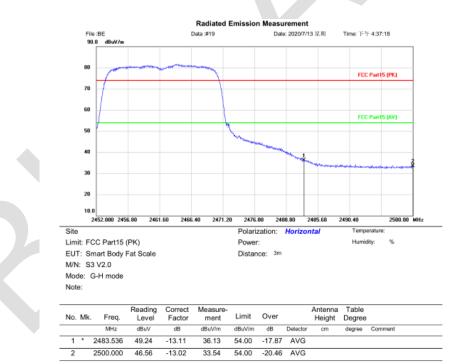
74.00

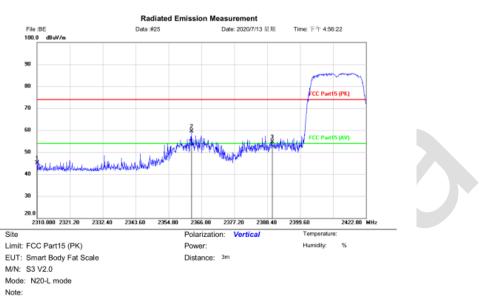
-21.04 peak

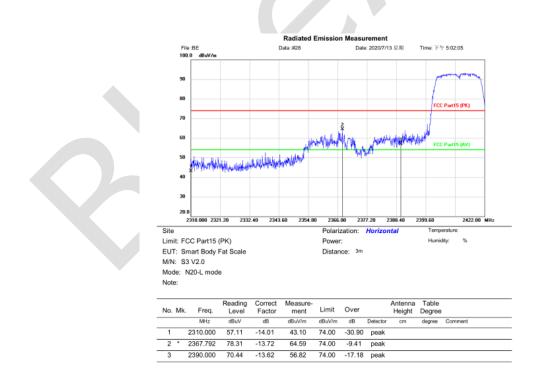

2

2500.000

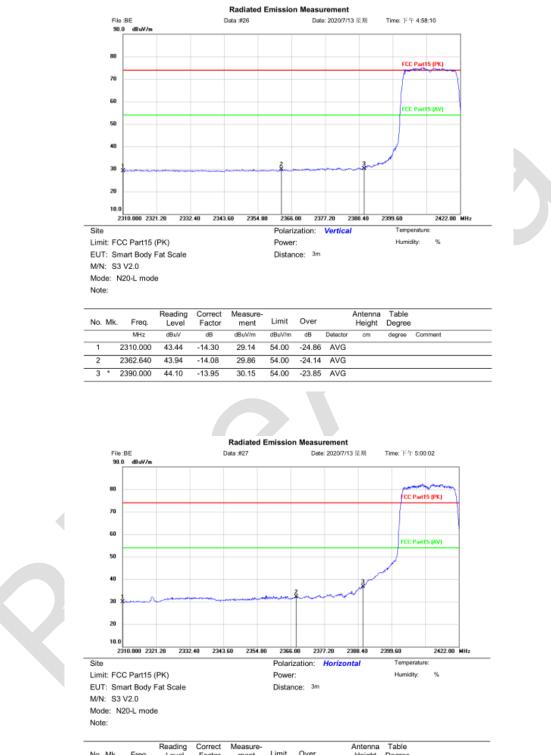
65.98


-13.02


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2483.500	46.48	-13.50	32.98	54.00	-21.02	AVG			
2		2500.000	44.23	-13.42	30.81	54.00	-23.19	AVG			



802.11n20:Lowest channel


Peak value

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	59.40	-14.30	45.10	74.00	-28.90	peak			
2	*	2362.640	73.49	-14.08	59.41	74.00	-14.59	peak			
3		2390.000	68.61	-13.95	54.66	74.00	-19.34	peak			

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	43.83	-14.01	29.82	54.00	-24.18	AVG			
2		2367.792	45.88	-13.72	32.16	54.00	-21.84	AVG			
3	*	2390.000	50.25	-13.62	36.63	54.00	-17.37	AVG			