RF Exposure Evaluation Statement

Product Name: Smart Body Fat Scale

Model No.: Mini Pro-2, Mini-2, Mini-Genie-2, S1 Pro-2

FCC ID: 2ALE7-MINIPRO-2

1.1 RF Exposure Compliance Requirement

1.1.1 Standard Requirement

According to KDB447498D01 General RF Exposure Guidance v06

Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

1.1.2 Limits

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

 $[(\max, power \ of \ channel, \ including \ tune-up \ tolerance, \ mW)/(min. \ test \ separation \ distance, \ mm)] \cdot$

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation 17

☐ The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

1.1.3 EUT RF Exposure

Mode: BLE (wors	t case)				
,	Tune up tolerance (dB)	Maximum tune-up Power			
Channel Peak Conducted Output Power (dBm)		(dBm)	(mW)	Calculated value	Exclusion threshold
3.45	±1	4.45	2.79	0.86	
3.77	±1	4.77	3.00	0.94	3.0
3.69	±1	4.69	2.94	0.93	
	Conducted Output Power (dBm) 3.45 3.77	Peak Conducted Output Power Tune tolerance (dB) .45 ±1 3.77 ±1	Tune up tolerance (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm	Naximum Peak Conducted Output Power (dBm) (dBm) (mW)	Maximum Peak Conducted Output Power (dBm) (dBm) (mW) Calculated value

Conclusion: the calculated value ≤3.0, SAR is exempted.