

LF Beauty Limited

TEST REPORT

SCOPE OF WORK EMC TESTING-2041167

REPORT NUMBER

180208102GZU-001

ISSUE DATE [REVISED DATE]

14-April-2018

[-----]

PAGES

40

DOCUMENT CONTROL NUMBER FCC Part 15.249-c © 2017 INTERTEK

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

 Telephone:
 86-20-8213 9688

 Facsimile:
 86-20-3205 7538

 www.intertek.com

Applicant Name &	:	LF Beauty Limited
Address		2/F, HK Spinners Industrial Building Phases I & II, 800 Cheung Sha
		Wan Road, Kowloon, Hong Kong
Manufacturing Site	:	DOWIN Electronics Manufacture Ltd.
		Building A, No.21, 2nd Road Da Ban Di,Xia Bian Village, Chang An
		Town , Dong Guan City, Guang Dong province , China
Intertek Report No:		180208102GZU-001
FCC ID:		2ALCP2041167

Test standards

47 CFR PART 15 Subpart C: 2017 section 15.249

Sample Description

Product Model No. Electrical Rating	: : :	MC Board Parade Night 2018 C1 2041167 Adaptor input: 100-240V,50/60Hz Output: DC 5V/1A
Serial No. Date Received Date Test Conducted	:	Not Labeled 08 February 2018 08 February 2018-13 April 2018

Prepared and Checked By

Approved By:

Sky Zhu Project Engineer Intertek Guangzhou

Helen

Helen Ma Team Leader Intertek Guangzhou

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TEST REPORT

CONTENT

TEST REPORT		
CONTE	ENT	
1.0	TEST RESULT SUMMARY4	
2.0	GENERAL DESCRIPTION	
2.1	PRODUCT DESCRIPTION	
2.2	Related Submittal(s) Grants6	
2.3	Test Methodology	
2.4	TEST FACILITY	
3.0	SYSTEM TEST CONFIGURATION	
3.1	JUSTIFICATION	
3.2	EUT Exercising Software7	
3.3	SPECIAL ACCESSORIES	
3.4	Measurement Uncertainty7	
3.5	Equipment Modification8	
3.6	SUPPORT EQUIPMENT LIST AND DESCRIPTION	
4.0	MEASUREMENT RESULTS9	
4.1	ANTENNA REQUIREMENT9	
4.2	Occupied Bandwidth	
4.3	RADIATED EMISSION	
4.4	BAND EDGES REQUIREMENT	
4.5	Conducted Emissions at Mains Terminals	
5.0	TEST EQUIPMENT LIST	

TEST RESULT SUMMARY 1.0

Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC PART 15 C Section 15.203	FCC PART 15 C Section 15.203	PASS
Occupied Bandwidth	FCC PART 15 C section 15.215(c)	ANSI C63.10: Clause 6.9	PASS
Radiated Emission	FCC PART 15 C section 15.249 (a), (d)	ANSI C63.10: Clause 6.4, 6.5 & 6.6	PASS
Band Edges Measurement	FCC PART 15 C section 15.249 (d)	ANSI C63.10: Clause 6.10	PASS
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS

Remark:

N/A: not applicable. Refer to the relative section for the details. EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report **RF** means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report.

2.0 General Description

2.1 **Product Description**

Operating Frequency:	2402 MHz – 2480MHz
Type of Modulation:	GFSK
Number of Channels:	40 Channels
Channel Separation:	2 MHz
Antenna Type:	Integral
Antenna Gain:	2 dBi
Speciality:	Bluetooth 4.0 with BLE (Bluetooth Low Energy)
Function:	Receive information from APP and control the
	LED lighting display
Power Supply:	120V/60Hz

EUT modulation and data packet during test:

The EUT has been tested on the Modulation of GFSK with 1 Mbps data rate.

EUT channels and frequencies list:

Test frequencies are lowest channel 0: 2402 MHz, middle channel 19: 2440 MHz and highest channel 39: 2480 MHz.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454	/	/
13	2428	27	2456	/	/

TEST REPORT

2.2 Related Submittal(s) Grants

This is an application for certification of: DXX - Part 15 Low Power Communication Device Transmitter

Remaining portions are subject to the following procedures: 1. Receiver portion of BLE: exempt from technical requirement of this Part.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans and final tests were performed in the semi-anechoic chamber to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise.

2.4 Test Facility

All tests were performed at: Room102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China Except Conducted Emissions was performed at: Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters

unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. The spurious emissions more than 20 dB below the permissible value are not reported.

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

3.2 EUT Exercising Software

None

3.3 Special Accessories

No special accessories used.

3.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	20 dB Bandwidth	2.3%

2	Carrier Frequencies Separated	2.3%
3	Maximum Peak Conducted Output Power	1.5
4	Out of Band Conducted Emissions	1.5
	Radiated Emissions	4.7 dB (25 MHz-1 GHz)
5		4.8 dB (1 GHz-18 GHz)
6	Conducted Emissions at Mains Terminals	2.58
7	Temperature	0.5 °C
8	Humidity	0.4 %
9	Time	1.2%

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with ETSI TR 100 028-2001. The measurement uncertainty is given with a confidence of 95%, k=2.

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance – Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value

3.5 Equipment Modification

Any modifications installed previous to testing by "LF Beauty Limited" will be incorporated in each production model sold / leased in the United States. No modifications were installed by Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

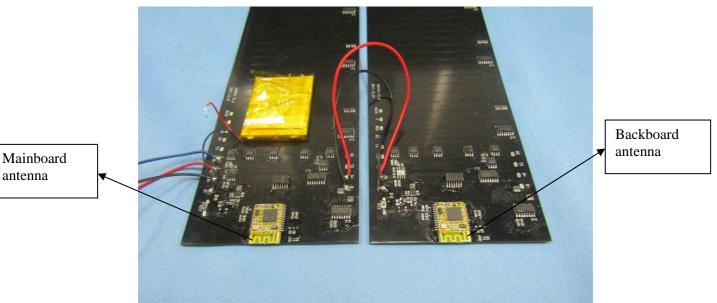
3.6 Support Equipment List and Description

The applicant make a special engineer sample can adjust the lowest, middle; the highest frequency used the key on the sample.

TEST REPORT

4.0 **Measurement Results**

4.1 Antenna Requirement


Standard requirement:

15.203 requirement:

For intentional device. According to 15.203 an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

EUT Antenna

The antenna is an integral antenna and no consideration of replacement. The best gain of the antenna is 2 dBi.

antenna

4.2 Occupied Bandwidth

Test Requirement:	FCC PART 15 C section 15.215(c)
	(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure
	that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated
Test Method:	ANSI C63.10: Clause 6.9
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). The highest, middle and the lowest channels were selected for the final test as listed below.
Test Configuration:	

Spectrum Analyzer EUT Non-Coducted Table Ground Reference Plane

Test Procedure:

The transmitter was operated at its maximum carrier power measured under normal test conditions.

- a) The instrument center frequency was set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer was between 1.5 times and 5.0 times the OBW(20 dB Bandwidth).
- b) The nominal IF filter bandwidth (3 dB RBW) was in the range of 1% to 5% of the OBW, and VBW was approximately three times the RBW.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope was more than [10 log (OBW/RBW)] below the reference level.

TEST REPORT

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) The dynamic range of the instrument at the selected RBW was more than 10 dB below the target "-20 dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW was at least 30 dB below the reference value.
- f) Peak detection and max hold mode (until the trace stabilizes) was used.
- g) Used the 20dB bandwidth function of the instrument and reported the measured bandwidth.
- h) The occupied bandwidth was reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division was clearly labeled. Tabular data was reported in addition to the plot(s).

Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

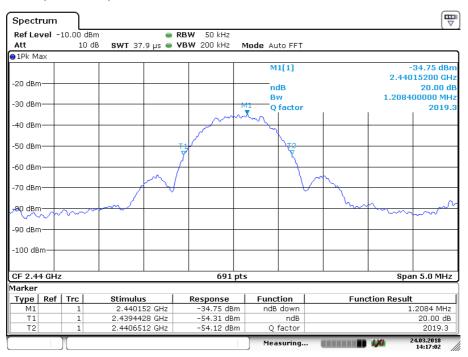
Mainboard 20 d	B bandwidth:
----------------	--------------

Channel No.	Frequency (MHz)	Measured 20dB bandwidth (MHz)	Limit (MHz)	Result
0	2402	1.23	2400	Pass
19	2440	1.21	to	Pass
39	2480	1.23	2483.5	Pass

Backboard 20 dB bandwidth:


Channel No.	Frequency (MHz)	Measured 20dB bandwidth (MHz)	Limit (MHz)	Result
0	2402	1.21	2400	Pass
19	2440	1.22	to	Pass
39	2480	1.23	2483.5	Pass

Result plot as follows:


Mainboard:

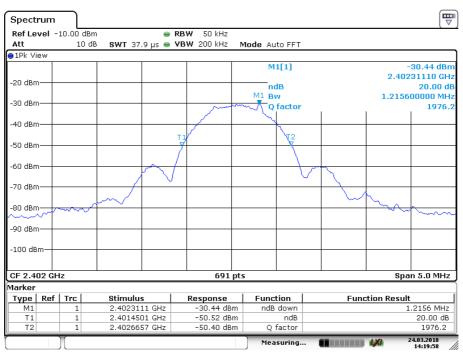
Lowest Channel(2.402 GHz):

Date: 24.MAR.2018 14:15:51

Middle Channel(2.440 GHz):

Date: 24.MAR.2018 14:17:02

TEST REPORT


Highest Channel(2.480 GHz):

Spectru	um												ſ	∀
Ref Lev	el -	10.00 dBi	n		RB۱	₩ 50 kHz								
Att		10 d	в зыт 37	.9 µs 👄	٧B١	W 200 kHz	Мо	de Au	ito FFT					
⊖1Pk Vie	W													
-20 dBm-									1[1]			2.	-45.77 dE 48005070 G	Hz
								B	dB			1.0	20.00 30100000 M	
-30 dBm-	+				_				factor			1.2	2010 2010	
-40 dBm-	+				_		м1							
-50 dBm-	+				_		×.	\sim						
-60 dBm-	+				74	/			V2					
-70 dBm-	+			~~~~					\rightarrow	~	<u>л</u>			
/€0 dBm ⁴	ψ	mit	har	$ \sim$							- <u>_</u>			5
-90 dBm-	+				_									
-100 dBm	<u>۱</u>													
CF 2.48	GHz	:				691	pts						Span 5.0 M⊦	Ηz
Marker														
	Ref		Stimulu			Response		Func			Fun	ction Re		_
M1 T1		1	2.48005			-45.77 dB		ndB	down ndB				1.2301 MH	
T2		1	2.47944			-65.43 dB -65.57 dB		Q	factor				20.00 d 2016.3	
][]						Mea	suring	. (4,70	24.03.2018 14:18:49	

Date: 24.MAR.2018 14:18:49

Backboard:

Lowest Channel(2.402 GHz):

Date: 24.MAR.2018 14:19:58


TEST REPORT

Middle Channel(2.440 GHz):

Spectru	um												
Ref Lev	el -1	LO.OO dB	m	•	RBW	50 kHz							
Att		10 d	в выт 37.	.9 µs 👄	VBW	200 kHz	Мо	de Au	to FFT				
●1Pk Vie	W												
								M	1[1]				-30.39 dBm
-20 dBm-												2.43	3981190 GHz
						M1		no Bi				1.000	20.00 dB 2900000 MHz
-30 dBm-	_				_	× 1			n factor			1.227	1900000 MH2 1995.2
						,		کارد		1		1	
-40 dBm-	_				_			۳ ۲	<u> </u>				
					T1				∂ τ2				
-50 dBm-	-				<u> </u>				7	-			_
-60 dBm-					+								
70 - 10				V						1	٦		
-70 dBm-			(~~~/	m	/~~
-80 dBm-	$\sim \sim$	m	$\tau \sim $									m	mm -
-ар арт													
-90 dBm-													
-100 dBm	η <u> </u>												
CF 2.44	GHz					691	nts					Si	an 5.0 MHz
Marker						0.71	2					-	
	Ref	Trc	Stimulus	5	R	esponse	1	Func	tion		Fun	ction Resu	ult l
M1		1	2.43981:			-30.39 dB	m		down				1.2229 MHz
Τ1		1	2.439450			-49.90 dB			ndB				20.00 dB
Т2		1	2.440672	29 GHz		-50.52 dB	m	Q	factor				1995.2
								Mea	suring	-			24.03.2018 14:20:43

Date: 24.MAR.2018 14:20:43

Highest Channel(2.480 GHz):

Date: 24.MAR.2018 14:21:26

4.3 Radiated Emission

Test Requirement:	
-------------------	--

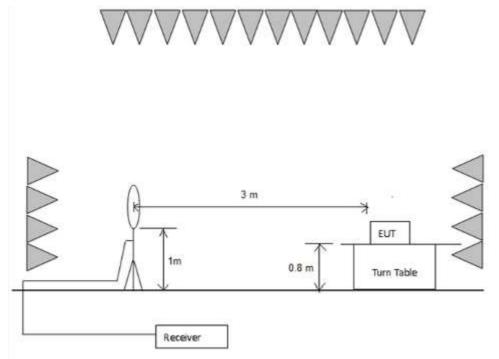
FCC PART 15 C section 15.249 (a), (d)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

	Fundamental	Field Strength of	Field Strength of				
	Frequency	Fundamental	Harmonics				
	(MHz)	(dBµV/m @ 3m)	(dBµV/m @ 3m)				
	902 to 928	94.0	54.0				
	2400 to 2483.5	94.0	54.0				
	5725 to 5875	94.0	54.0				
	Note: The limits shown in the above table are based on measurements using an average detector, except for the fundamental emission in the frequency band 902-928 MHz which is based on measurements using a CISPR quasi-peak detector.						
	except for harmon the level of the fur	ics, shall be attenuate	cified frequency bands, d by at least 50 dB below neral radiated emission attenuation.				
Test Method:	ANSI C63.10: Claus	e 6.4, 6.5 and 6.6					
Test Status:	from all possible co data rates and anto architecture). The	ombinations between enna ports (if EUT with	e lowest channels were				
Test site:		ance: 3m (Semi-Anech					
Limit:			-				
Limit:			utside of the specified				
		e following values:	t a distance of 3 meters				
	Frequency (MHz		d Strength				
		-	//m @ 3m)				
		(ubμ					
	30-88		40.0				
	88-216		43.5				
	216-960		46.0				
	Above 960		54.0				
Detector:	For Peak and Quas	i-Peak value:					
	200 Hz for 9 kHz to	o 150 kHz					
	9 kHz for 150 kHz t	o 30 MHz					
	120 kHz for 30 MH	z to 1GHz					
	RBW = 1 MHz for f	≥1 GHz					

 $\mathsf{VBW} \geq \mathsf{RBW}$

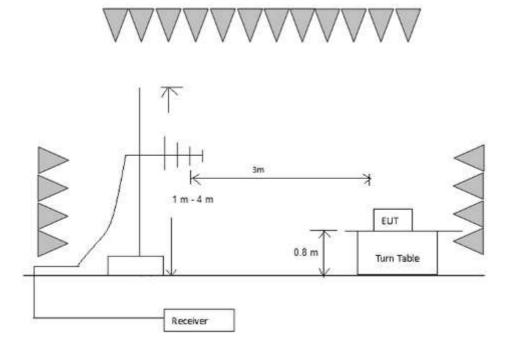
TEST REPORT	
	Sweep = auto Detector function = peak for $f \ge 1$ GHz, QP for $f < 1$ GHz Trace = max hold
	For AV value: RBW = 1 MHz for f ≥ 1 GHz VBW=10 Hz Detector function: peak Sweep = auto Trace = max hold.
Field Strength Calculation:	The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below: FS = RA + AF + CF - AG + PD + AV FS = RA + Correct Factor + AV $FS = Field Strength in dB\muV/m$ RA = Receiver Amplitude (including preamplifier) in dBµV
Where:	AF = Antenna Factor in dB CF = Cable Attenuation Factor in dB AG = Amplifier Gain in dB PD = Pulse Desensitization in dB AV = Average Factor in –dB Correct Factor = AF + CF – AG + PD
	In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows: FS = RA + AF + CF - AG + PD + AV Assume a receiver reading of 62.0 dBµV is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dBµV/m. RA = 62.0 dBµV AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB Correct Factor = 7.4 + 1.6 - 29.0 + 0 = -20 dB
	FS = 62 + (-20) + (-10) = 32 dBµV/m

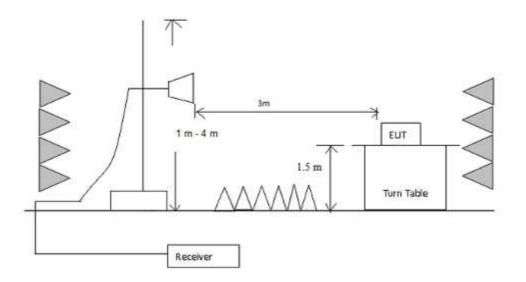

TEST REPORT

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

Section 15.205 Restricted bands of operation.

Test Configuration:


1) 9 kHz to 30 MHz emissions:


TEST REPORT

2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 40 GHz emissions:

TEST REPORT

Test Procedure:

1) 9 kHz to 30 MHz emissions:

For testing performed with the loop antenna. The centre of the loop was positioned 1 m above the ground and positioned with its plane vertical at the special distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

2) 30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna. The measurement is performed with the EUT rotated 360^o, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

3) 1 GHz to 25 GHz emissions:

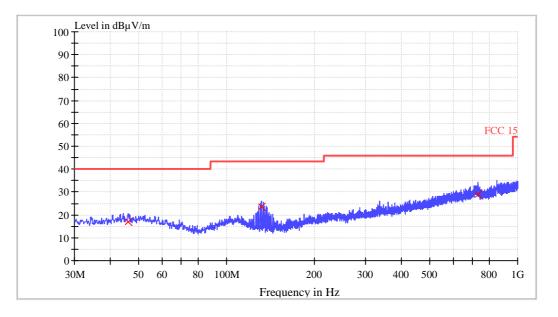
Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2007 was used to perform radiated emission test above 1 GHz.

For testing performed with the horn antenna. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

4) The receiver was scanned from 9 kHz to 25 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

Used Test Equipment List:

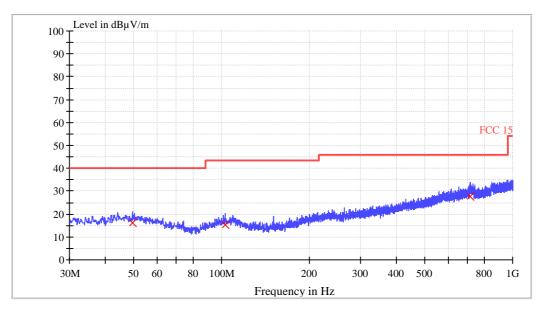
3m Semi-Anechoic Chamber, EMI Test Receiver (9 kHz~7 GHz), Signal and Spectrum Analyzer (10 Hz~40 GHz), Loop antenna (9 kHz-30 MHz). TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX), Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX) and High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX). Refer to Clause 5 Test Equipment List for details.


9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

TEST REPORT

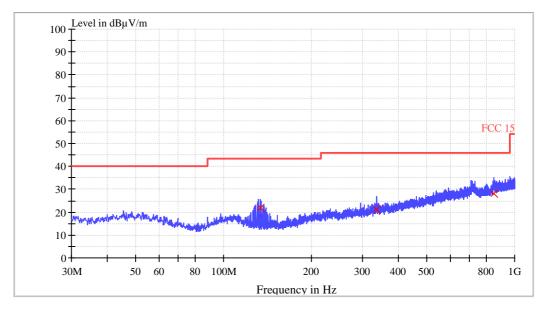
Radiated Emissions (Below 1GHz)

Report the worst case mode (Mainboard continues transmit mode) Operation Frequency: 2402MHz Horizontal



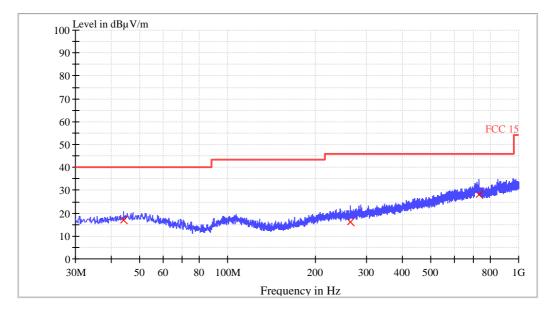
Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
45.880000	16.8	120.000	н	14.3	23.3	40.0
131.960000	23.7	120.000	н	9.1	19.8	43.5
729.000000	28.9	120.000	н	23.3	17.1	46.0

TEST REPORT



Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
49.400000	16.0	120.000	v	14.2	24.0	40.0
103.000000	15.1	120.000	v	12.4	28.4	43.5
711.800000	27.6	120.000	۷	23.0	18.5	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

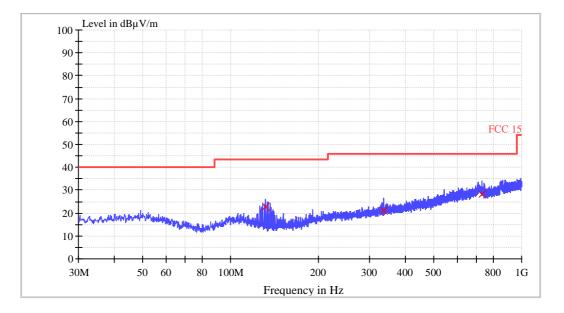

Operation Frequency: 2440MHz

••• ••						
Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
133.440000	21.8	120.000	н	9.0	21.7	43.5
336.040000	21.0	120.000	н	15.9	25.0	46.0
846.600000	28.3	120.000	н	25.0	17.7	46.0

Vertical

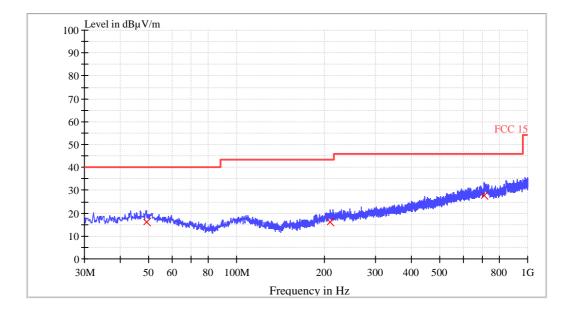
QP

<u></u>						
Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
43.960000	16.8	120.000	۷	13.9	23.3	40.0
263.880000	16.3	120.000	V	14.0	29.7	46.0
729.240000	27.9	120.000	V	23.3	18.1	46.0


1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

TEST REPORT


Operation Frequency: 2480MHz Horizontal

Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
131.960000	22.8	120.000	н	9.1	20.7	43.5
336.040000	21.2	120.000	н	15.9	24.8	46.0
728.520000	28.0	120.000	Н	23.3	18.1	46.0

Vertical

QP

Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
49.040000	16.1	120.000	V	14.2	23.9	40.0
210.160000	16.3	120.000	V	12.6	27.2	43.5
711.560000	27.5	120.000	V	23.0	18.5	46.0

1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Radiated Emissions (Above 1GHz)

Report the worst case mode (Mainboard continues transmit mode) Operation Frequency: 2402MHz:

Polarization	Frequency (MHz)	PK Net at 3m (dBµV/m)	AV Net at 3m (dBµV/m)	Correction Factor (dB)	PK Limit at 3m (dBµV/m)	PK Margin (dB)	AV Limit at 3m (dBµV/m)	AV Margin (dB)
Horizontal	2402.100	90.1		-8.9	114.0	-23.9	94.0	
Horizontal	1773.500	33.5		-11.2	74.0	-40.5	54.0	
Horizontal	4804.600	40.1		-2.9	74.0	-33.9	54.0	
Horizontal	7206.700	49.2		5.5	74.0	-24.8	54.0	
Vertical	2402.113	83.4		-8.9	114.0	-30.6	94.0	
Vertical	1678.400	33.7		-11.5	74.0	-40.3	54.0	
Vertical	5765.200	43.6		1.1	74.0	-30.4	54.0	
Vertical	7206.800	53.1		5.5	74.0	-20.9	54.0	

Operation Frequency: 2440MHz:

Polarization	Frequency (MHz)	PK Net at 3m (dBµV/m)	AV Net at 3m (dBµV/m)	Correction Factor (dB)	PK Limit at 3m (dBµV/m)	PK Margin (dB)	AV Limit at 3m (dBµV/m)	AV Margin (dB)
Horizontal	2440.137	88.1	-	-8.7	114.0	-25.9	94.0	
Horizontal	1556.900	33.4		-11.9	74.0	-40.6	54.0	
Horizontal	4879.200	40.5		-2.7	74.0	-33.5	54.0	
Horizontal	7318.800	50.1		6.1	74.0	-23.9	54.0	
Vertical	2440.112	80.4		-8.7	114.0	-33.6	94.0	
Vertical	1931.600	33.4		-10.8	74.0	-40.6	54.0	
Vertical	7318.900	51.1		6.1	74.0	-22.9	54.0	
Vertical	10890.400	49.6		10.0	74.0	-24.4	54.0	

Operation Frequency: 2480MHz:

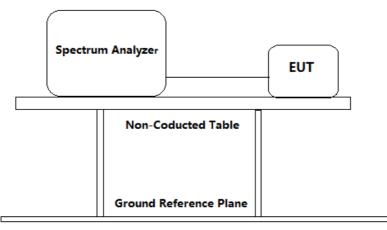
	requerie; i =							
Polarization	Frequency	PK Net	AV Net	Correction	PK Limit	PK	AV Limit	AV Margin
	(MHz)	at 3m	at 3m	Factor	at 3m	Margin	at 3m	(dB)
		(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dB)	(dBµV/m)	
		· · /	、 · <i>,</i>	. ,	· · /	. ,	、 · <i>· /</i>	
Horizontal	2480.191	87.5		-8.6	114.0	-26.5	94.0	
Horizontal	1658.000	32.5		-11.6	74.0	-41.5	54.0	
Horizontal	5056.200	40.2		-2.1	74.0	-33.8	54.0	
Horizontal	7439.600	46.5		6.8	74.0	-27.5	54.0	
Vertical	2480.021	78.3		-8.6	114.0	-35.7	94.0	
Vertical	1795.600	32.7	-	-11.2	74.0	-41.3	54.0	-
Vertical	5290.800	40.8		-0.9	74.0	-33.2	54.0	
Vertical	7439.600	47.8		6.8	74.0	-26.2	54.0	

TEST REPORT

Notes:

1. At frequencies equal to or less than 1000MHz, quasi-peak detector was used, above 1000MHz, Peak detector was used.

- 2. All measurements were made at 3 meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. When Peak emission level was below AV limit, the AV emission level did not be recorded.

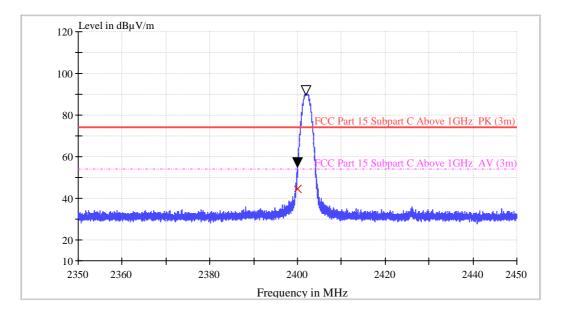


TEST REPORT

4.4 Band Edges Requirement

Test Requirement:	FCC PART 15 C section 15.249 (d) (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in§ 15.209, whichever is the lesser attenuation.
Frequency Band:	2400 MHz to 2483.5 MHz
Test Method:	ANSI C63.10: Clause 6.10
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). The lowest, middle and the highest channels were selected for the final test as listed below.

Test Configuration:

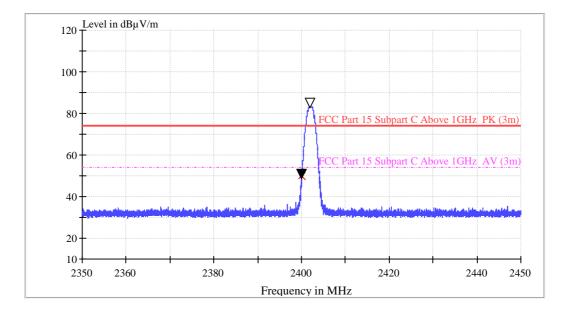

Used Test Equipment List:

3m Semi-Anechoic Chamber, EMI Test Receiver (9 kHz~7 GHz), Signal and Spectrum Analyzer (10 Hz~40 GHz), Loop antenna (9 kHz-30 MHz). TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX), Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX) and High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX). Refer to Clause 5 Test Equipment List for details.

TEST REPORT

Test result with plots as follows: Mainboard continues transmit Lowest channel (2.402 GHz): Horizontal

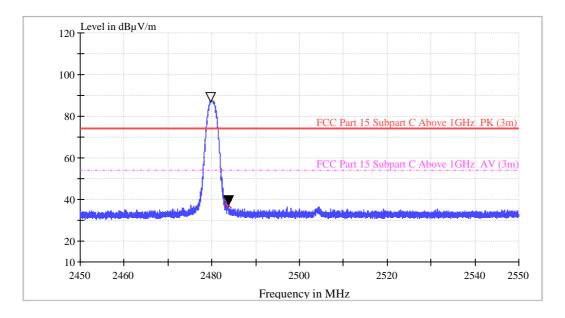
ΡK


Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin PK (dB)	Limit - PK (dBµV/m)
2400.000000	55.7	1000.0	1000.000	150.0	Н	1.0	-8.9	-20.9	74.0

AV

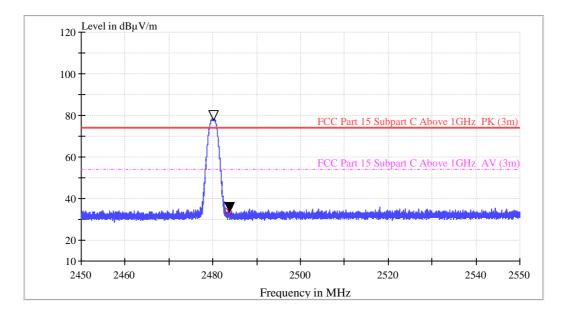
Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - AVG (dB)	Limit - AVG (dBµV/m)
2400.000000	44.8	1000.0	1000.000	150.0	Н	1.0	-8.9	-9.2	54.0

Vertical



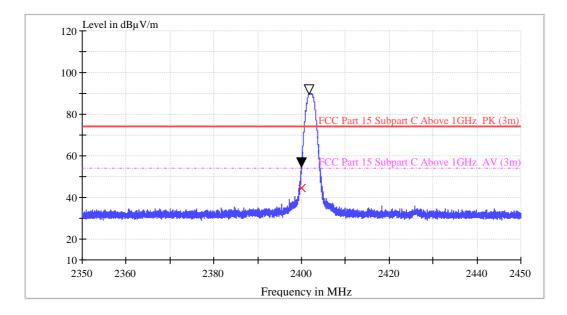
Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - PK (dB)	Limit - PK (dBµV/m)
2400.000000	49.2	1000.0	1000.000	150.0	V	1.0	-8.9	-24.8	74.0

Highest Channel (2.480 GHz):


Horizontal

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - PK (dB)	Limit - PK (dBµV/m)
2483.790000	37.5	1000.0	1000.000	150.0	Н	1.0	-8.5	-36.5	74.0

Vertical

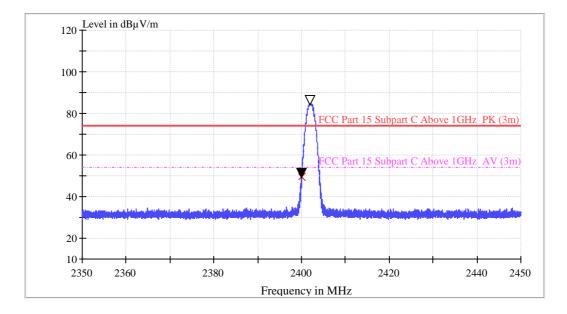


Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - PK (dB)	Limit - PK (dBµV/m)
2484.00000) 34.7	1000.0	1000.000	150.0	V	359.0	-8.4	-39.3	74.0

Backboard continues transmit Lowest channel (2.402 GHz):

Horizontal

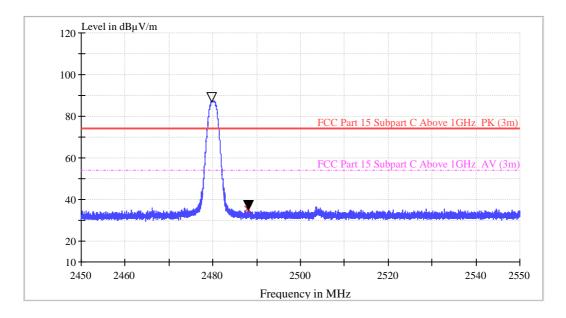
ΡK


• •									
Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - PK (dB)	Limit - PK (dBµV/m)
2400.000000	54.8	1000.0	1000.000	150.0	н	359.0	-8.9	-19.2	74.0

AV

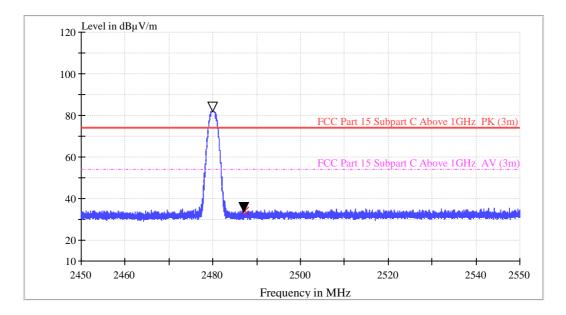
Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - AVG (dB)	Limit - AVG (dBµV/m)
2400.000000	44.7	1000.0	1000.000	150.0	Н	359.0	-8.9	-9.3	54.0

Vertical



Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - PK (dB)	Limit - PK (dBµV/m)
2400.000000	49.8	1000.0	1000.000	150.0	V	359.0	-8.9	-24.2	74.0

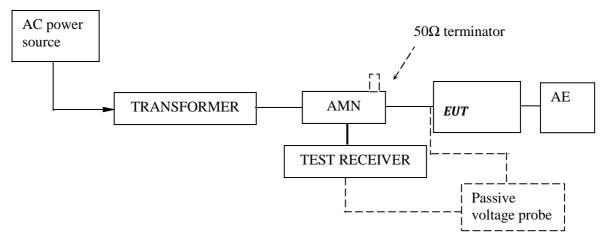
Highest Channel (2.480 GHz):


Horizontal

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - PK (dB)	Limit - PK (dBµV/m)
2488.800000	35.5	1000.0	1000.000	150.0	Н	359.0	-8.6	-38.5	74.0

Vertical

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - PK (dB)	Limit - PK (dBµV/m)
2487.500000	34.2	1000.0	1000.000	150.0	V	1.0	-8.6	-39.8	74.0



TEST REPORT

4.5 Conducted Emissions at Mains Terminals

Test result: Pass

Test Configuration:

Test Setup and Procedure:

Test was performed according to ANSI C63.10 Clause 6.2. The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane (Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

Pre-test in the master mode and slave mode with three channels: 2402MHz, 2440MHz and 2480MHz and found the conducted emission on slave mode 2440MHz was the worst case, so below test data was for 2440MHz.

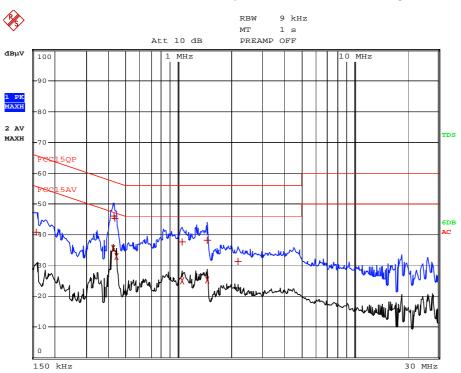
TEST REPORT

Test Data and Curve

At main terminal: Pass

Tested Wire: Live

\$ RBW 9 kHz МT 1 s Att 10 dB PREAMP OFF dBµV 100 MHz 10 MHz 1 -90-1 PK MAXH -80 2 AV MAXH TDS -70-5QP FG -60-5AV M 6DB AC 7 A١ -10 0 150 kHz 30 MHz


Operation Mode: transmittir	g on mainboard at 2440MHz
-----------------------------	---------------------------

	EDI	T PEAK LIST (Final	Measurement Resul	lts)				
Tra	.cel:	FCC15QP						
Tra	.ce2:	FCC15AV						
Tra	.ce3:							
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT de				
1	Quasi Peak	150 kHz	45.05 L1	-20.94				
2	Average	418 kHz	31.39 L1	-16.09				
1	Quasi Peak	422 kHz	44.12 L1	-13.28				
1	Quasi Peak	434 kHz	42.53 L1	-14.64				
2	Average	434 kHz	30.27 L1	-16.90				
1	Quasi Peak	1.078 MHz	35.99 L1	-20.00				
1	Quasi Peak	1.454 MHz	37.17 L1	-18.82				

TEST REPORT

Tested Wire: Neutral

Operation Mode: transmitting on mainboard at 2440MHz

	EDI	T PEAK LIST (Final	Measurement Resu	lts)
Tra	.cel:	FCC15QP		
Tra	.ce2:	FCC15AV		
Tra	.ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	430 kHz	46.10 L1	-11.15
1	Quasi Peak	434 kHz	45.39 L1	-11.78
2	Average	426 kHz	35.49 L1	-11.83
2	Average	442 kHz	33.02 L1	-14.00
1	Quasi Peak	1.462 MHz	38.18 L1	-17.82
1	Quasi Peak	1.046 MHz	37.70 L1	-18.29
2	Average	1.466 MHz	25.27 L1	-20.72
2	Average	1.05 MHz	25.10 L1	-20.89
1	Quasi Peak	158 kHz	40.93 L1	-24.63
1	Quasi Peak	2.186 MHz	31.25 L1	-24.74

TEST REPORT

5.0 Test Equipment List

Radiated Emission/Radio

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date (YYYY-MM-DD)	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m ³	ETS• LINDGRE N	2018/5/1	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	2019/3/11	1Y
EM031-03	Signal and Spectrum Analyzer (10 Hz~40 GHz)	R&S FSV40	R&S	2018/5/18	1Y
EM011-04	Loop antenna (9 kHz-30 MHz)	HFH2-Z2	R&S	2018/6/14	1Y
EM061-03	TRILOG Super Broadband test Antenna (30 MHz-1.5 GHz) (TX)	VULB 9161	SCHWARZBECK	2018/6/7	1Y
EM033-01	TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX)	VULB 9163	SCHWARZBECK	2018/9/19	1 Y
EM033-02	Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX)	R&S HF907	R&S	2018/6/7	1Y
EM033-03	High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX)	R&S SCU-26	R&S	2018/5/4	1Y
EM033-04	High Frequency Antenna & preamplifier (26 GHz-40 GHz)	R&S SCU-40	R&S	2018/5/4	1 Y
EM031-02-01	Coaxial cable(9 kHz-1 GHz)	N/A	R&S	2018/5/18	1Y
EM033-02-02	Coaxial cable(1 GHz-18 GHz)	N/A	R&S	2018/5/18	1Y
EM033-04-02	Coaxial cable(18 GHz~40 GHz)	N/A	R&S	2018/5/25	1Y
EM031-01	Signal Generator (9 kHz~6 GHz)	SMB100A	R&S	2018/8/1	1Y
EM085-02	Signal Generator (10MHz-40GHz)	68369B	Wiltron	2018/5/31	1Y
EM040-01	Band Reject/Notch Filter	WRHFV	Wainwright	N/A	1Y
EM040-02	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM040-03	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM022-03	2.45 GHz Filter	BRM50702	Micro-Tronics	2018/5/9	1Y
SA016-16	Programmable Temperature & Humidity Test Chamber	MHU-800LJ	TERCHY	2018/10/15	1Y
SA016-22	Climatic Test Chamber	C7-1500	Vötsch	2018/10/27	1Y
SA012-74	Digital Multimeter	FLUKE175	FLUKE	2018/10/15	1Y
EM010-01	Regulated DC Power supply	PAB-3003A	GUANHUA	N/A	1Y
SA040-22	Regulated DC Power supply	IT6721	ITECH	2018/9/14	1Y
EM084-06	Audio Analyzer	8903B	HP	2018/4/3	1Y
EM084-07	Modulation Analyzer	8901B	HP	2018/6/15	1Y
EM045-01-01	EMC32 software (RE/RS)	V10.01.00	R&S	N/A	N/A
EM045-01-09	EMC32 software (328/893)	V9.26.01	R&S	N/A	N/A
Conducted emis	sion at the mains terminals				

Equipment No. Equipment Model Manufacturer

Equipment i tor		1110401		(YYYY-MM-DD)	Interval
EM080-05	EMI receiver	ESCI	R&S	2018/7/24	1Y
EM006-05	LISN	ENV216	R&S	2018/6/4	1Y
EM006-06	LISN	ENV216	R&S	2018/9/14	1Y
EM006-06-01	Coaxial cable	/	R&S	2018/4/6	1Y
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	2019/1/7	1Y
also de also de also de also de also de also de	a de ale ale ale ale ale ale ale ale ale al	0.1	and the standard standards at a standard standard	a standa standa standa standa standa standa	to the standards should also

Cal. Due date Calibration