

REPORT No.: SZ19030444S01

Annex E DASY Calibration Certificate

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Client

Morlab

Certificate No: Z18-60438

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3823

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

November 12, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19	
101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19	
101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19	
18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20	
18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20	
SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19	
SN 777	15-Dec-17(SPEAG, No.DAE4-777_Dec17)	Dec -18	
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
6201052605	21-Jun-18 (CTTL, No.J18X05033)	Jun-19	
MY46110673	14-Jan-18 (CTTL, No.J18X00561)	Jan -19	
Name	Function	Signature	
Yu Zongying	SAR Test Engineer	June	
Lin Hao	SAR Test Engineer	A 3/2-	
	of the lost Engineer	IN SO	
Qi Dianyuan	SAR Project Leader	308	
	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 777 ID # 6201052605 MY46110673 Name Yu Zongying	101919 20-Jun-18 (CTTL, No.J18X05032) 101547 20-Jun-18 (CTTL, No.J18X05032) 101548 20-Jun-18 (CTTL, No.J18X05032) 18N50W-10dB 09-Feb-18(CTTL, No.J18X01133) 18N50W-20dB 09-Feb-18(CTTL, No.J18X01132) SN 3846 25-Jan-18(SPEAG,No.EX3-3846_Jan18) SN 777 15-Dec-17(SPEAG, No.DAE4-777_Dec17) ID # Cal Date(Calibrated by, Certificate No.) 6201052605 21-Jun-18 (CTTL, No.J18X05033) MY46110673 14-Jan-18 (CTTL, No.J18X00561) Name Function Yu Zongying SAR Test Engineer Lin Hao SAR Test Engineer	

Issued: November 14, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-60438 Page 2 of 11

Probe EX3DV4

SN: 3823

Calibrated: November 12, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3823

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.38	0.38	0.47	±10.0%
DCP(mV) ^B	101.7	105.8	101.1	210.070

Modulation Calibration Parameters

UID	Communication		Λ	D			1	
			Α	В	C	D	VR	Unc ^E
	System Name		dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	138.4	±2.7%
		Υ	0.0	0.0	1.0		137.8	
		Z	0.0	0.0	1.0		160.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E^2 -field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3823

Calibration Parameter Determined in Head Tissue Simulating Media

D 1 41								
Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G	Unct. (k=2)	
41.5	0.97	9.32	9.32	9.32	0.13		±12.1%	
40.1	1.37	7.98	7.98	7.98	0.20		±12.1%	
40.0	1.40	7.68	7.68	7.68	0.27	1 40. 10 17	±12.1%	
40.0	1.40	7.75	7.75	7.75	300000000000000000000000000000000000000		±12.1%	
39.5	1.67	7.55	7.55	7.55		2000	±12.1%	
39.2	1.80	7.34	7.34	7.34			±12.1%	
39.0	1.96	6.98	6.98	6.98			±12.1%	
35.9	4.71	5.28	5.28	ALLEN TOWNS			±13.3%	
35.5	5.07	4.50	4.50				±13.3%	
35.4	5.22	4.60	4.60			9-49 197-100	$\pm 13.3\%$	
	Permittivity F 41.5 40.1 40.0 40.0 39.5 39.2 39.0 35.9 35.5	Permittivity F (S/m) F 41.5 0.97 40.1 1.37 40.0 1.40 40.0 1.40 39.5 1.67 39.2 1.80 39.0 1.96 35.9 4.71 35.5 5.07	Permittivity F (S/m) F ConvF X 41.5 0.97 9.32 40.1 1.37 7.98 40.0 1.40 7.68 40.0 1.40 7.75 39.5 1.67 7.55 39.2 1.80 7.34 39.0 1.96 6.98 35.9 4.71 5.28 35.5 5.07 4.50	Permittivity F (S/m) F ConvF X ConvF Y 41.5 0.97 9.32 9.32 40.1 1.37 7.98 7.98 40.0 1.40 7.68 7.68 40.0 1.40 7.75 7.75 39.5 1.67 7.55 7.55 39.2 1.80 7.34 7.34 39.0 1.96 6.98 6.98 35.9 4.71 5.28 5.28 35.5 5.07 4.50 4.50	Permittivity F (S/m) F ConvF X ConvF Y ConvF Z 41.5 0.97 9.32 9.32 9.32 40.1 1.37 7.98 7.98 7.98 40.0 1.40 7.68 7.68 7.68 40.0 1.40 7.75 7.75 7.75 39.5 1.67 7.55 7.55 7.55 39.2 1.80 7.34 7.34 7.34 39.0 1.96 6.98 6.98 6.98 35.9 4.71 5.28 5.28 5.28 35.5 5.07 4.50 4.50 4.50	Permittivity F (S/m) F ConvF X ConvF Y ConvF Z Alpha ^G 41.5 0.97 9.32 9.32 9.32 0.13 40.1 1.37 7.98 7.98 7.98 0.20 40.0 1.40 7.68 7.68 7.68 0.27 40.0 1.40 7.75 7.75 7.75 0.23 39.5 1.67 7.55 7.55 7.55 0.47 39.2 1.80 7.34 7.34 7.34 0.52 39.0 1.96 6.98 6.98 6.98 0.44 35.9 4.71 5.28 5.28 5.28 0.40 35.5 5.07 4.50 4.50 4.50 0.40	Permittivity F (S/m) F ConvF X ConvF Y ConvF Z Alpha ^G (mm) 41.5 0.97 9.32 9.32 9.32 0.13 1.44 40.1 1.37 7.98 7.98 7.98 0.20 1.11 40.0 1.40 7.68 7.68 7.68 0.27 0.92 40.0 1.40 7.75 7.75 7.75 0.23 0.99 39.5 1.67 7.55 7.55 7.55 0.47 0.75 39.2 1.80 7.34 7.34 7.34 0.52 0.75 39.0 1.96 6.98 6.98 6.98 0.44 0.84 35.9 4.71 5.28 5.28 5.28 0.40 1.30 35.4 5.07 4.50 4.50 4.50 0.40 1.45	

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

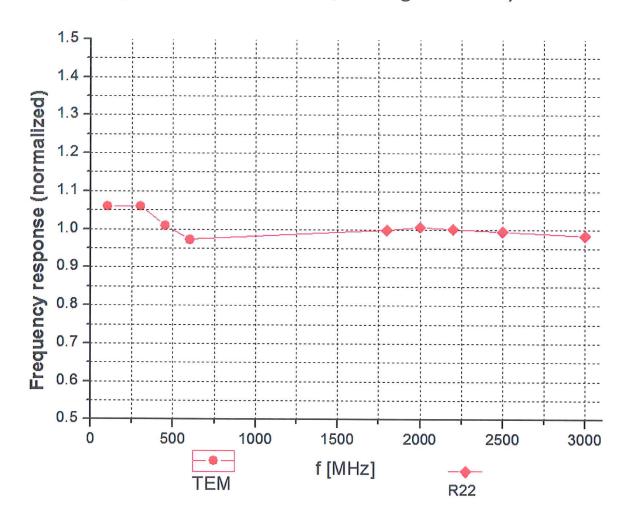
F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3823

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
900	55.0	1.05	9.24	9.24	9.24	0.19	1.22	±12.1%
1750	53.4	1.49	7.65	7.65	7.65	0.19	1.20	±12.1%
1900	53.3	1.52	7.40	7.40	7.40	0.21	1.15	±12.1%
2000	53.3	1.52	7.61	7.61	7.61	0.20	1.17	±12.1%
2300	52.9	1.81	7.38	7.38	7.38	0.47	0.87	±12.1%
2450	52.7	1.95	7.15	7.15	7.15	0.56	0.77	±12.1%
2600	52.5	2.16	7.01	7.01	7.01	0.67	0.68	±12.1%
5250	48.9	5.36	4.73	4.73	4.73	0.51	1.22	±13.3%
5600	48.5	5.77	3.96	3.96	3.96	0.52	1.39	±13.3%
5750	48.3	5.94	3.98	3.98	3.98	0.54	1.62	±13.3%

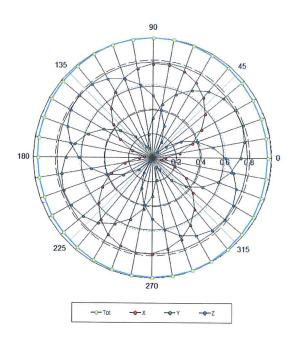

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

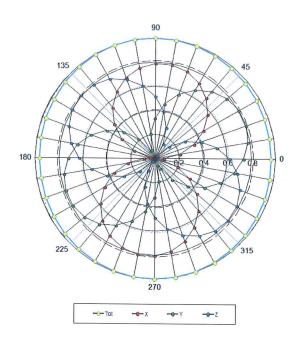
F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

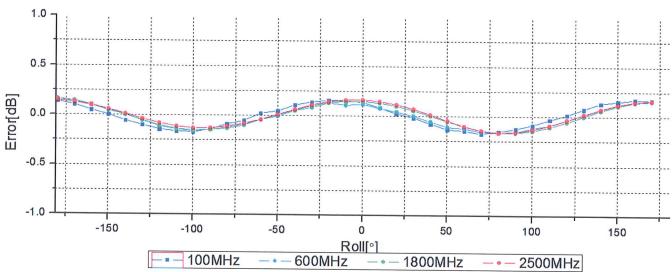
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

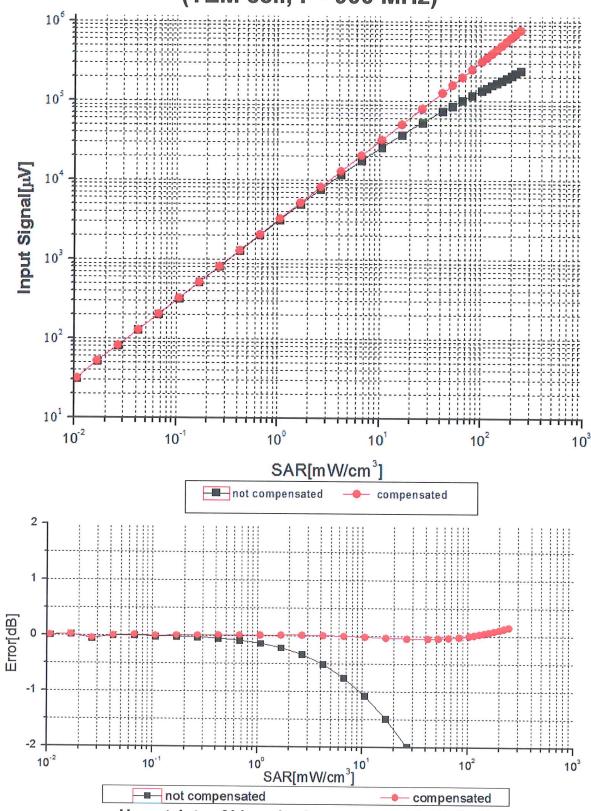

Certificate No: Z18-60438 Page 7 of 11




Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

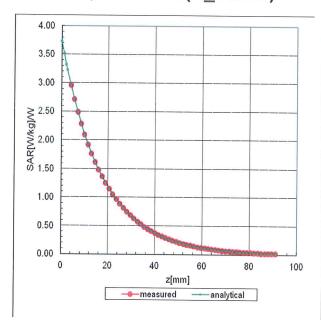
f=1800 MHz, R22

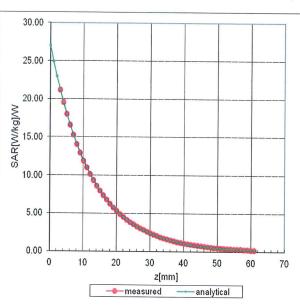


Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

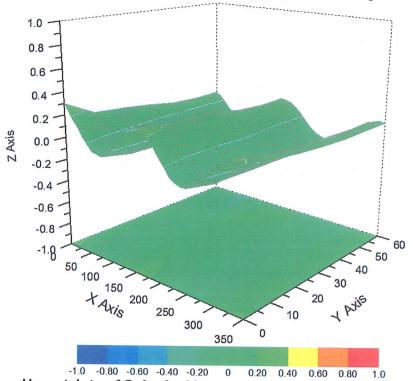
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)


Page 9 of 11



Conversion Factor Assessment


f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3823

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	169.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm