

Product

FCC ID

Trade mark

Serial Number

Report Number

Date of Issue Test Standards

Test result

Model/Type reference

TEST REPORT

- : EMEET StreamCam One

 - E7004, E700401, E700402, E700403, E700405
 - : N/A
 - : EED32O81229004
 - : 2ALCN-E7004
 - Oct. 18, 2022
 - : 47 CFR Part 15 Subpart E

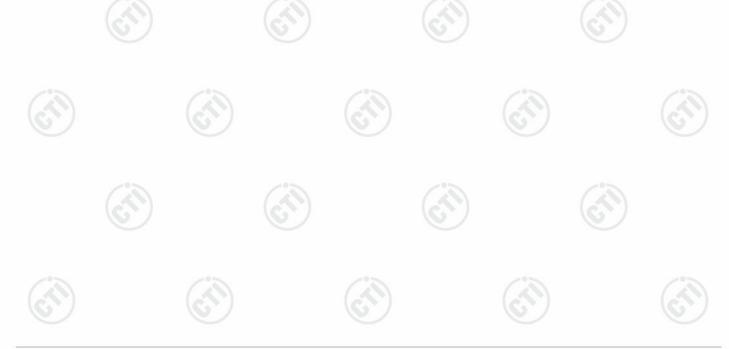
(^<u>)</u>

PASS

Prepared for:

SHENZHEN EMEET TECHNOLOGY CO., LTD. Unit 2C, Building A6, Guangming Science Park, Guanguang Road 3009, Guangming District, Shenzhen, China

2 Content			
1 COVER PAGE	•••••		•••••
2 CONTENT			
3 VERSION			
4 TEST SUMMARY	<u> </u>	<u> </u>	<u> </u>
5 GENERAL INFORMATION			
 5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 DEVIATION FROM STANDARDS 5.8 ABNORMALITIES FROM STANDARD CONDI 5.9 OTHER INFORMATION REQUESTED BY TH 5.10 MEASUREMENT UNCERTAINTY (95% CC) 	TIONS		
6 EQUIPMENT LIST			1
RADIO TECHNICAL REQUIREMENTS SPE	CIFICATION		
 6.1 ANTENNA REQUIREMENT 6.2 AC POWER LINE CONDUCTED EMISSIONS 6.3 MAXIMUM CONDUCTED OUTPUT POWER. 6.4 6DB EMISSION BANDWIDTH 6.5 26DB EMISSION BANDWIDTH AND 99% C 6.6 MAXIMUM POWER SPECTRAL DENSITY 6.7 FREQUENCY STABILITY 6.8 RADIATED EMISSION WHICH FALL IN THE F 	S OCCUPIED BANDWIDT	н	1 1 1 1 2 2 2 2
7 APPENDIX A			5
PHOTOGRAPHS OF TEST SETUP			


Page 2 of 57

Page 3 of 57

Version No.	Date	Description
00	Oct. 18, 2022	Original
(6	(3)	

ant Currence and

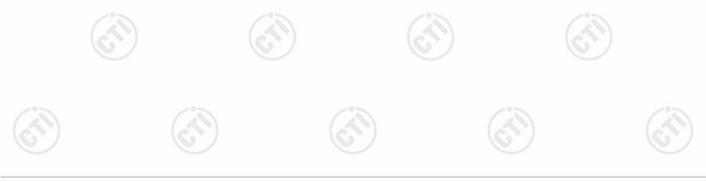

4 Test Summary		
Test Item Test Requirement		Result
Antenna Requirement	ment 47 CFR Part 15 Subpart C Section 15.203	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth		PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Dama and a state		

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: E7004, E700401, E700402, E700403, E700405

Only the model E7004 was tested. E7004, E700401, E700402, E700403, E700405 have the same hardware,software,electrical circuit design, layout, components used and internal wiring. These models are mainly used for the division of sales areas, so only different in model name.


5 General Information

5.1 Client Information

Applicant:	SHENZHEN EMEET TECHNOLOGY CO., LTD.
Address of Applicant:	Unit 2C, Building A6, Guangming Science Park, Guanguang Road 3009, Guangming District, Shenzhen, China
Manufacturer:	SHENZHEN EMEET TECHNOLOGY CO., LTD.
Address of Manufacturer:	Unit 2C, Building A6, Guangming Science Park, Guanguang Road 3009, Guangming District, Shenzhen, China
Factory:	SHENZHEN EMEET INTELLIGENT TECHNOLOGY CO., LTD
Address of Factory:	A401、B401, Building B5, Guangming Science Park, Guanguang Road, Fenghuang community, Fenghuang Street, Guangming District, Shenzhen, China

5.2 General Description of EUT

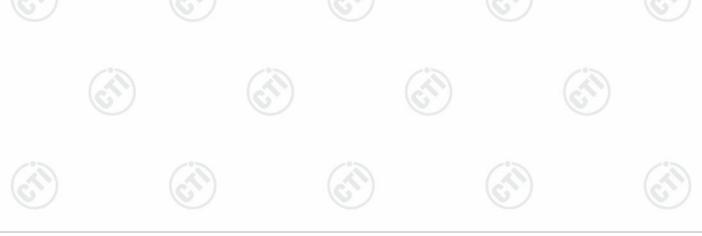
Product Name:	EMEET StreamCam One
Model No.(EUT):	E7004, E700401, E700402, E700403, E700405
Test Model No.:	E7004
Trade mark:	
Product Type:	Mobile Portable Fix Location
Type of Modulation:	IEEE for 802.11n(HT20/HT40): OFDM (64QAM, 16QAM,QPSK,BPSK) IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(HT20/HT40/HT80): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Operating Frequency	U-NII-1: 5180-5240MHz U-NII-3: 5745-5825MHz
Operating Temperature:`	0℃ to +45℃
Antenna Type:	FPC Antenna
Antenna Gain:	Ant1:3.5dBi, Ant2: 3.43dBi
Function	SISO 2x2 MIMO Beamforming TPC
Power Supply:	DC 3.65V
Test voltage:	DC 3.65V
Sample Received Date:	Aug. 11, 2022
Sample tested Date:	Aug. 11, 2022 to Sep. 27, 2022

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

1	U-NII-1	U-NII-3		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
36	5180	149	5745	
40	5200	153	5765	
44	5220	157	5785	
48	5240	161	5805	
- (6) -	165	5825	

802.11n/802.11ac (40MHz) Frequency/Channel Operations:


U-NII-1		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3	
13	Channel	Frequency(MHz)	Channel	Frequency(MHz)
6	42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 6 of 57

5

Page 7 of 57

5.3 Test Configuration

EUT Test Software Settings:			
Software:	SSCOM	~	12
EUT Power Grade:	Default	(25)	6
Use test software to set the low transmitting of the EUT.	est frequency, the middle frequ	ency and the highest frequency keep	(U)
Test Mode:			
e .	on, which was shown in this test in lowest channel, and found	-	
Mode		Data rate	
Mode 802.11a		Data rate 6 Mbps	
802.11a	20)	6 Mbps	A
802.11a 802.11n(HT	20) 40)	6 Mbps MCS0	Ì
802.11a 802.11n(HT 802.11n(HT	20) 40) T20)	6 Mbps MCS0 MCS0	¢

5.4 Test Environment

Operating Environment:			
Radiated Spurious Emission	s:		
Temperature:	22~25.0 °C		
Humidity:	50~56 % RH	(C)	(C)
Atmospheric Pressure:	1010mbar		
Conducted Emissions:			
Temperature:	22~26.0 °C	n and a start	
Humidity:	50~56 % RH	SN)	(3)
Atmospheric Pressure:	1010mbar		
RF Conducted:			
Humidity:	50~55 % RH	(*)	23
Atmospheric Pressure:	1010mbar		
	NT (Normal Temperature)	22~25.0 °C	U
Temperature:	LT (Low Temperature)	0 °C	
	HT (High Temperature)	45.0 °C	
	NV (Normal Voltage)	DC 3.65V	
Working Voltage of the EUT:	LV (Low Voltage)	DC 2.80V	6
	HV (High Voltage)	DC 4.20V	

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by	
Netbook	DELL	Latitude 3490	FCC&CE	СТІ	
	8)	(637)	(3)	(6)	

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

5.7 **Deviation from Standards**

None.

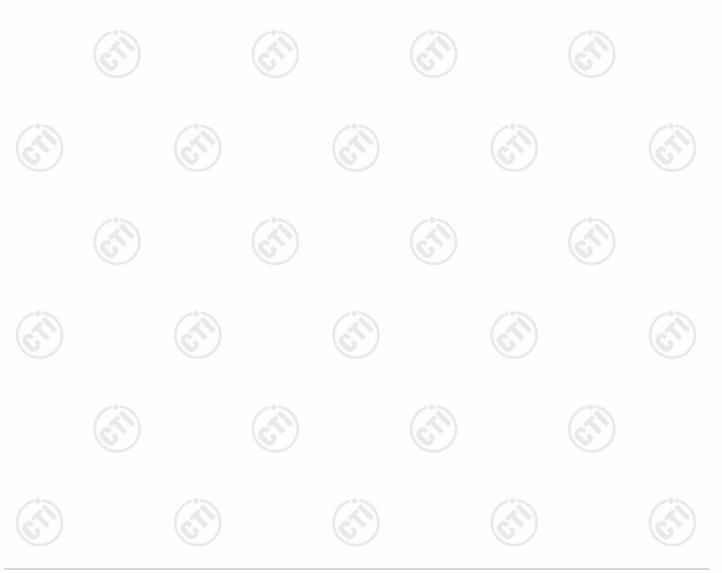
5.8 **Abnormalities from Standard Conditions**

None.

Other Information Requested by the Customer 5.9

None.

Hotline:400-6788-333



Page 9 of 57

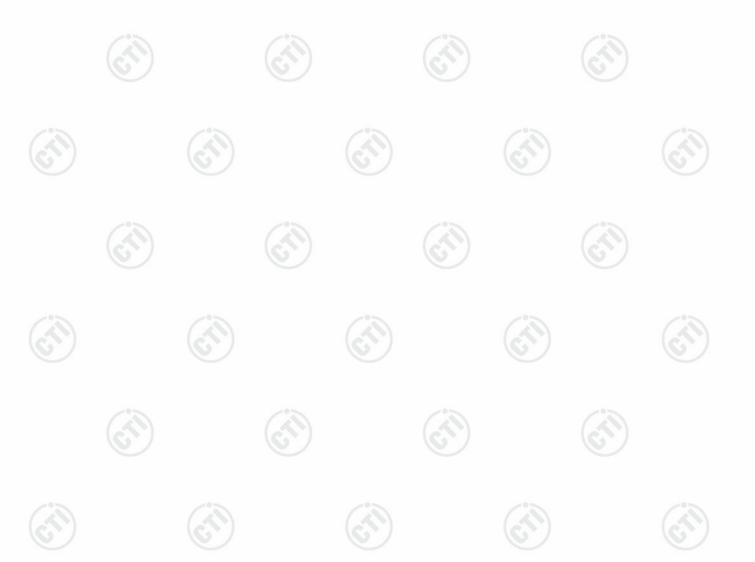
5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Source emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
a		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	6	9

		Conducted dist	urbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023
Temperature/ Humidity Indicator	Defu	TH128	/		
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023
Barometer	changchun	DYM3	1188		G)



(SI)

Page 11 of 57

	6	<n)< th=""><th>(4)</th><th>(</th><th>6</th></n)<>	(4)	(6
	3M Semi-an	echoic Chamber (2)	- Radiated distu	Irbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	ТДК	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023
Multi device Controller	maturo	NCD/070/10711112		(2	S
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 12 of 57

		3M full-anechoic	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	трк	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	<u>-</u>	-
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u> </u>	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	(2	9
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u> </u>	-(3)
Cable line	Times	HF160-KMKM-3.00M	393493-0001	S	

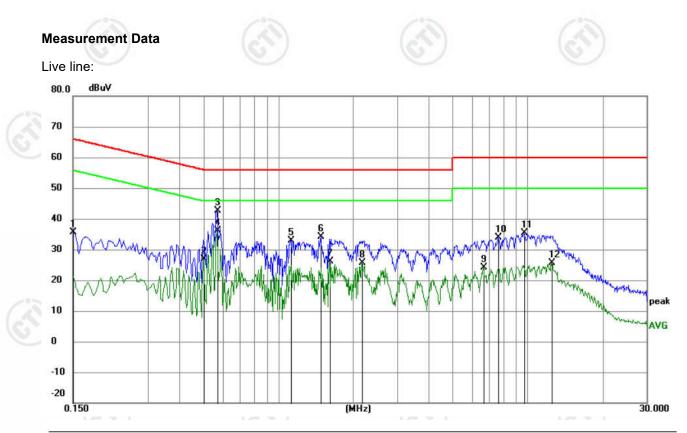
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 13 of 57

Radio Technical Requirements Specification

6.1 Antenna Requirement

	Standard req	-	47 CFR	Part 15C Sec	tion 15.203			
	15.203 require An intentional responsible pa antenna that u so that a brok electrical conr	ement: radiator sha arty shall be uses a uniqu en antenna	used with th le coupling to can be repla hibited.	the device. The othe intention ced by the us	e use of a per al radiator, th er, but the us	manently atta e manufactur	ached antenna er may desigr	a or of an n the unit
	EUT Antenna The antenna i	s FPC anter		ee Internal ph t case gain of		1 is 3.5dBi, T	he best case	gain of
Ì	the antenna 2	is 3.43dBi.						(A)

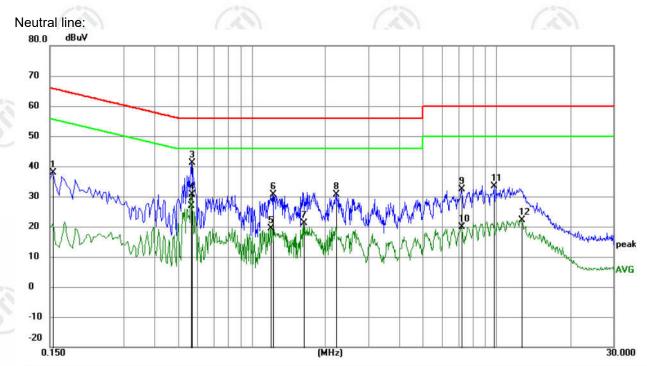

Page 14 of 57

6.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.2	207		
	Test Method:	ANSI C63.10: 2013			
	Test Frequency Range:	150kHz to 30MHz			
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	weep time=auto	15	in the second
	Limit:	Frequency range (MHz)	Limit (c	dBuV)	
		Trequency range (initz)	Quasi-peak	Average	
-		0.15-0.5	66 to 56*	56 to 46*	
		0.5-5	56	46	
		5-30	60	50	
		* Decreases with the logarithm	of the frequency.	6	
	Test Setup:	Shielding Room	AE	Test Receiver	
	Test Procedure:	 The mains terminal disturbation. The EUT was connected to Impedance Stabilization Netwith impedance. The power cate connected to a second LIS plane in the same way as to multiple socket outlet stripted single LISN provided the reasonal termination of the second reference plane. Any placed on the horizontal ground reference plane. Any placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the grout the closest points of the LIS and associated equipment In order to find the maximute the formation of the grout of the maximum second sec	AC power source thro etwork) which provides oles of all other units of N 2, which was bonded he LISN 1 for the unit was used to connect m ating of the LISN was r ed upon a non-metallion of for floor-standing ar ound reference plane. In a vertical ground reference on the vertical ground reference ind reference plane. T SN 1 and the EUT. All was at least 0.8 m fro m emission, the relative	pugh a LISN 1 (Line s a $50\Omega/50\mu$ H + 5Ω lin f the EUT were d to the ground refere being measured. A nultiple power cables f not exceeded. table 0.8m above the trangement, the EUT v erence plane. The rea reference plane. The rea reference plane. The rea be horizontal ground om the boundary of the plane for LISNs his distance was betw other units of the EUT m the LISN 2.	nea enc to e wa ne vee T
	Test Mode:	and all of the interface cab ANSI C63.10: 2013 on con All modes were tested, only th 802.11a was recorded in the re	ducted measurement. e worst case lowest ch		
	Test Results:	Pass			-
0	(4)			6	0

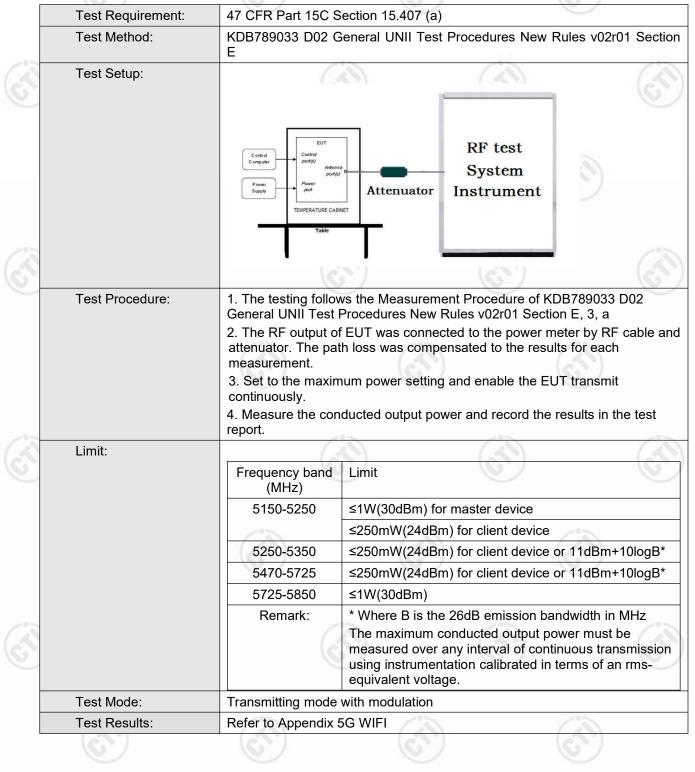
Page 15 of 57

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	25.87	9.87	35.74	66.00	-30.26	QP	
2		0.5010	16.90	9.95	26.85	46.00	-19.15	AVG	
3		0.5685	32.72	10.03	42.75	56.00	-13.25	QP	
4	*	0.5685	26.01	10.03	36.04	46.00	-9.96	AVG	
5		1.1220	23.04	9.83	32.87	56.00	-23.13	QP	
6		1.4865	24.21	9.81	34.02	56.00	-21.98	QP	
7		1.6080	16.24	9.81	26.05	46.00	-19.95	AVG	
8		2.1570	15.95	9.79	25.74	46.00	-20.26	AVG	
9		6.6480	14.39	9.79	24.18	50.00	-25.82	AVG	
10		7.6335	24.21	9.79	34.00	60.00	-26.00	QP	
11		9.6765	25.51	9.78	35.29	60.00	-24.71	QP	
12		12.4980	15.66	9.85	25.51	50.00	-24.49	AVG	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 57


No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1545	27.91	9.87	37.78	65.75	-27.97	QP	
2	0.5641	16.95	10.03	26.98	46.00	-19.02	AVG	
3 *	0.5685	31.01	10.03	41.04	56.00	-14.96	QP	
4	0.5685	20.54	10.03	30.57	46.00	-15.43	AVG	
5	1.1985	9.57	9.82	19.39	46.00	-26.61	AVG	
6	1.2210	20.90	9.82	30.72	56.00	-25.28	QP	
7	1.6350	11.43	9.80	21.23	46.00	-24.77	AVG	
8	2.2200	20.95	9.79	30.74	56.00	-25.26	QP	
9	7.1835	22.55	9.79	32.34	60.00	-27.66	QP	
10	7.1835	10.01	9.79	19.80	50.00	-30.20	AVG	
11	9.7620	23.67	9.78	33.45	60.00	-26.55	QP	
12	12.6825	12.36	9.86	22.22	50.00	-27.78	AVG	

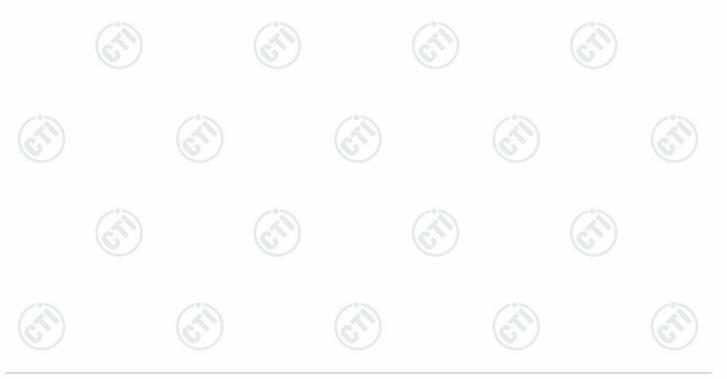
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

6.4 6dB Emisson Bandwidth

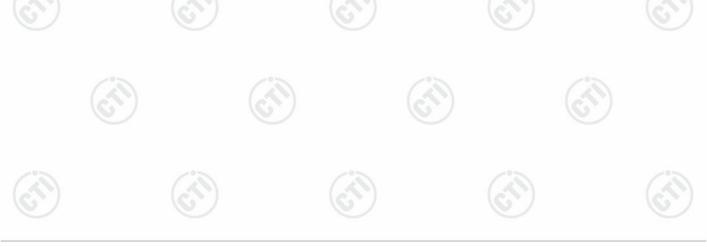
	Test Requirement:	47 CFR Part 15C Section 15.407 (e)
	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
(A)	Test Setup:	
		Congular Congul
(A		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
13	Limit:	≥ 500 kHz
(2)	Test Mode:	Transmitting mode with modulation
	Test Results:	Refer to Appendix 5G WIFI



Page 19 of 57

6.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.407 (a)
	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Ś	Test Setup:	
		Control Computer Computer Computer Computer Computer Computer Computer Computer Power Supply TemPERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
S.	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report.
	Limit:	No restriction limits
	Test Mode:	Transmitting mode with modulation
the state of the s		



S)

Page 20 of 57

6.6 Maximum Power Spectral Density

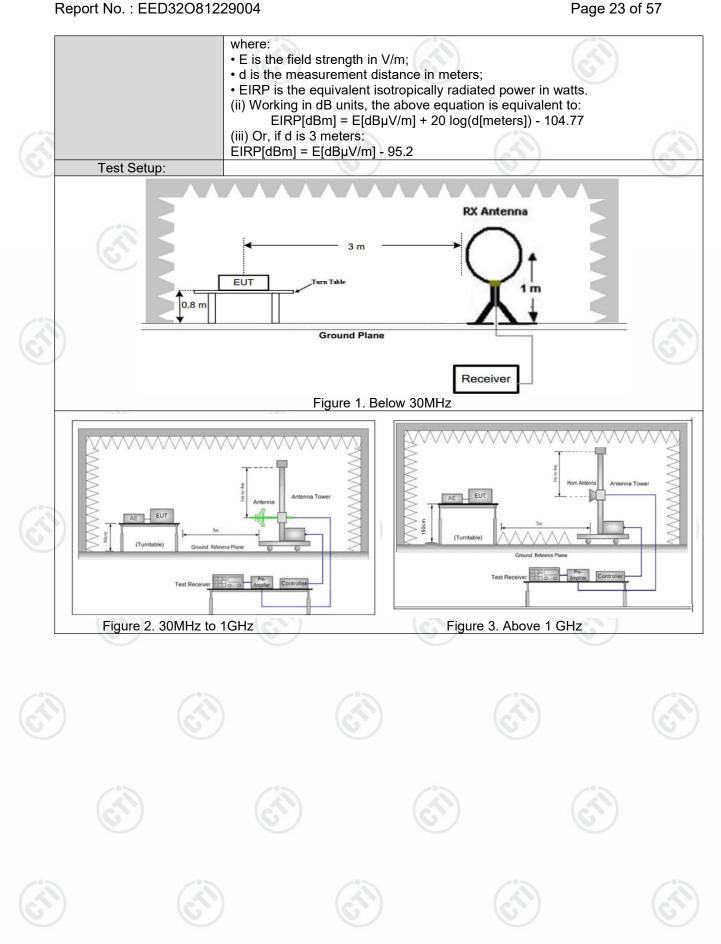
Test Requirement:	47 CFR Part 15C S	ection 15.407 (a)		
Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New F	Rules v02r01 Sectior
Test Setup:	~	~	~~	1 6
	Control Computer Power Supply TEMPERATURE CASP	Attenuator	RF test - System Instrument	Ð
	Remark: Offset=Ca			6
Test Procedure:				
	bandwidth. 1. Set R Auto, Detector = R 2. Allow the sweeps	BW = 510 kHz/1 MS. s to continue until	MHz, VBW \geq 3*RI the trace stabilize	•
Limit:	bandwidth. 1. Set R Auto, Detector = R 2. Allow the sweeps 3. Use the peak ma	BW = 510 kHz/1 MS. s to continue until rker function to d	MHz, VBW \geq 3*RI the trace stabilize	BW, Sweep time =
	bandwidth. 1. Set R Auto, Detector = R 2. Allow the sweeps	BW = 510 kHz/1 MS. s to continue until	MHz, VBW \geq 3*RI the trace stabilize	BW, Sweep time =
	bandwidth. 1. Set R Auto, Detector = R 2. Allow the sweeps 3. Use the peak ma	BW = 510 kHz/1 MS. s to continue until rker function to d Limit	MHz, VBW \geq 3*RI the trace stabilize	BW, Sweep time = es. mum amplitude leve
	bandwidth. 1. Set R Auto, Detector = RM 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz)	BW = 510 kHz/1 MS. s to continue until rker function to d Limit ≤17dBm in 1MH	MHz, ∨BW ≥ 3*R the trace stabilize letermine the maxi	BW, Sweep time = es. mum amplitude leve
	bandwidth. 1. Set R Auto, Detector = RM 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz)	BW = 510 kHz/1 MS. s to continue until rker function to d Limit ≤17dBm in 1MH ≤11dBm in 1MH	MHz, ∨BW ≥ 3*R the trace stabilize letermine the maxi	BW, Sweep time = es. mum amplitude leve
	bandwidth. 1. Set R Auto, Detector = RM 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250	BW = 510 kHz/1 MS. s to continue until inker function to d Limit ≤17dBm in 1MH ≤11dBm in 1MH	MHz, ∨BW ≥ 3*R the trace stabilize letermine the maxi 1z for master device 1z for client device	BW, Sweep time = es. imum amplitude leve
	bandwidth. 1. Set R Auto, Detector = RM 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250 5250-5350	BW = 510 kHz/1 MS. s to continue until inker function to d Limit ≤17dBm in 1MH ≤11dBm in 1MH	MHz, VBW ≥ 3*R the trace stabilize letermine the maxi 1z for master device 1z for client device 1z for client device 1z for client device	BW, Sweep time = es. imum amplitude leve
	bandwidth. 1. Set R Auto, Detector = RM 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250 5250-5350 5470-5725	BW = 510 kHz/1 MS. s to continue until rker function to d Limit \leq 17dBm in 1MH \leq 11dBm in 1MH \leq 11dBm in 1MH \leq 11dBm in 1MH \leq 30dBm in 5001 The maximum p a conducted em	MHz, VBW ≥ 3*R the trace stabilize letermine the maxi dz for master device dz for client device dz for client device dz for client device kHz power spectral der hission by direct co	BW, Sweep time = es. mum amplitude leve ce
	bandwidth. 1. Set R Auto, Detector = RM 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250 5250-5350 5470-5725 5725-5850	BW = 510 kHz/1 MS. s to continue until irker function to d Limit ≤17dBm in 1MH ≤11dBm in 1MH ≤11dBm in 1MH ≤30dBm in 5000 The maximum p a conducted em calibrated test in	MHz, VBW ≥ 3*R the trace stabilize letermine the maxi dz for master device dz for client device dz for client device dz for client device kHz power spectral der hission by direct co	BW, Sweep time = es. mum amplitude leve ce nsity is measured as onnection of a



Page 21 of 57

6.7 Frequency Stability

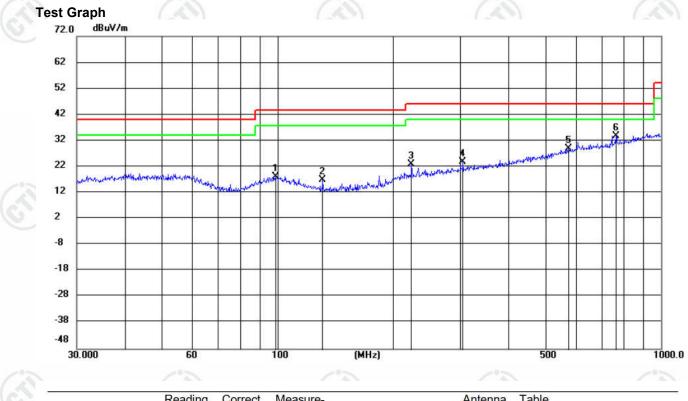
Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	
	Control Computer Power Supply TeMPERATURE CABRIET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI
G	



Page 22 of 57

6.8 Radiated Emission

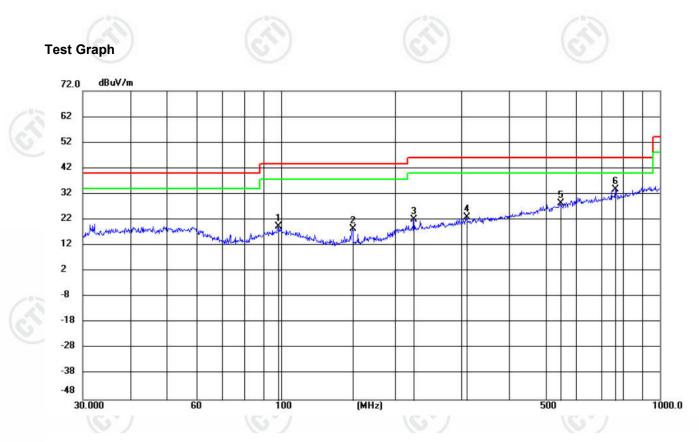
Test Requirement:	47 CFR Part 15C Section	n 15.209 and Pa	art 15E Se	ectio	n 15.407 ((b)
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance:	3m (Semi-Anec	hoic Char	mber	-)	
Receiver Setup:	Frequency	Detector	RBV	N	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kH	Ηz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kH	Ηz	30kHz	Average
	0.090MHz-0.110MHz				30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kH		30kHz	Peak
	0.110MHz-0.490MHz	•	10kH		30kHz	Average
	0.490MHz -30MHz	Quasi-peal			30kHz	Quasi-peak
	30MHz-1GHz	Quasi-pea			300kHz	Quasi-peak
	Above 1GHz	Peak	1M⊢		3MHz	Peak
		Peak	1M⊢	lz	10kHz	Average
Limit:						
		-ield strength hicrovolt/meter)	Limit (dBuV/m)	R	emark	Measuremer distance (m
	0.009MHz-0.490MHz	2400/F(kHz)	6	7	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		-	30
	1.705MHz-30MHz	30	-		-	30
	30MHz-88MHz	100	40.0	Qua	asi-peak	3
	88MHz-216MHz	150	43.5	Qua	asi-peak	3
	216MHz-960MHz	200	46.0	Qua	asi-peak	3
	960MHz-1GHz	500	54.0	Qua	asi-peak	3
	Above 1GHz	500	54.0	A١	verage	3
	outside of the 5.15-5.35 dBm/MHz. (2) For transmitters oper of the 5.15-5.35 GHz bar (3) For transmitters oper outside of the 5.47-5.725 dBm/MHz. (4) For transmitters oper	ating in the 5.25 nd shall not exc ating in the 5.47 5 GHz band sha	5-5.35 GH eed an e.i 7-5.725 G Ill not exce	lz ba i.r.p. Hz b eed a	nd: All em of −27 dB and: All ei an e.i.r.p.	nissions outsid 3m/MHz. missions
	(i) All emissions shall be above or below the band above or below the band edge increasing linearly the band edge, and from linearly to a level of 27 d Remark: The emission linearly	limited to a level edge increasin edge, and fron to a level of 15. 5 MHz above of Bm/MHz at the	el of –27 c ig linearly n 25 MHz 6 dBm/MH or below th band edg	dBm/ to 10 abov Hz at he ba e. table	MHz at 75 0 dBm/MH ve or belov 5 MHz at and edge are base	Iz at 25 MHz w the band pove or below increasing
	measurements employin frequency bands 9-90kH emission limits in these t an average detector, the the maximum permitted a under any condition of m	g a CISPR qua lz, 110-490kHz hree bands are peak field strer average limits s	and above based on ngth of any	e 100 i mea y em	00 MHz. F asurement ission sha	for the Radiated ts employing all not exceed


 Test Procedure: a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 13: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at the specified measurement adistance, while keeping the measurement antenna aimed at the source of emissions at the specified measurement distance, while keeping the measurement antenna elvation oriented for maximum response. The measurement antenna elvation oriented for maximum response. The measurement antenna elvation for maximum signal. The final measurement antenna elvation for maximum signal. The final measurement antenna elvation for maximum signal. The final measurement antenna elvation for maximum signal antenia, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to heights 1 meter) and the rotatable table was tuned to heights 1 meter) and the rotatable table was tuned to heights 1 meter) and the rotatable table was tuned to a signed divert the the starte (for the test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified				
worst case. i. Repeat above procedures until all frequencies measured was complete.	Test Procedure:	 meters above the group was rotated 360 degree radiation. 2) Above 1G: The EUT meters above the group was rotated 360 degree radiation. Note: For the radiated Place the measurement determined to be a sour distance, while keeping of emissions at each fron oriented for maximum to be higher or lower the the emission and stayi maximum signal. The first which maximizes the effor maximum emission 1 m to 4 m above the get. b. The EUT was set 3 meantenna, which was m tower. c. The antenna height is ground to determine the horizontal and vertical measurement. d. For each suspected er and then the antenna withe test frequency of b meter) and the rotatab degrees to find the maximum find the emission level of limit specified, then test EUT would be reported margin would be re-test average method as sping. Test the EUT in the low channel h. The radiation measurement 	and at a 3 meter sem bes to determine the T was placed on the and at a 3 meter sem bes to determine the emission test above nt antenna away from urce of emissions at g the measurement requency of significa- response. The meas han the EUT, depen- ing aimed at the emi final measurement a emissions. The meas han the EUT, depen- ing aimed at the emi final measurement a emissions. The meas han the EUT, depen- ing aimed at the emi final measurement a emissions. The meas han the EUT, depen- ing aimed at the emi final measurement a emission, the EUT depen- tion on the top of varied from one methe maximum value of polarizations of the mission, the EUT was was tuned to heights below 30MHz, the an le table was turned to aximum reading. em was set to Peak I fum Hold Mode. If the EUT in peak me sting could be stopped d. Otherwise the emi sted one by one using west channel, the mi	ni-anechoic camber. The table position of the highest top of a rotating table 1.5 ni-anechoic camber. The table position of the highest a 1GHz: m each area of the EUT the specified measurement antenna aimed at the source ant emissions, with polarization surement antenna may have ding on the radiation pattern of ssion source for receiving the antenna elevation shall be that surement antenna elevation to a range of heights of from ground plane. interference-receiving f a variable-height antenna ter to four meters above the of the field strength. Both antenna are set to make the as arranged to its worst case is from 1 meter to 4 meters (for tenna was tuned to heights 1 from 0 degrees to 360 Detect Function and Specified ode was 10dB lower than the ed and the peak values of the issions that did not have 10dB ng peak, quasi-peak or orted in a data sheet. iddle channel and the highest
i. Repeat above procedures until all frequencies measured was complete.				
			ures until all frequen	cies measured was complete
	Tost Mada:			des measured was complete.
Test Results: Pass		Transmitting made with me	adulation	

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lower channel of 6Mbps antenna 1 of 802.11a was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		98.8324	4.41	13.89	18.30	43.50	-25.20	peak	200	356	
2		131.2965	7.29	9.54	16.83	43.50	-26.67	peak	200	356	
3		223.7333	8.23	14.60	22.83	46.00	-23.17	peak	100	140	
4		304.6099	6.43	17.35	23.78	46.00	-22.22	peak	100	100	
5		574.6258	5.43	23.40	28.83	46.00	-17.17	peak	100	4	
6	*	763.3757	8.07	25.78	33.85	46.00	-12.15	peak	200	356	



Page 26 of 57

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		98.1419	5.63	13.80	19.43	43.50	-24.07	peak	100	356	
2		154.2786	8.40	9.97	18.37	43.50	-25.13	peak	100	0	
3		223.7334	7.52	14.60	22.12	46.00	-23.88	peak	100	356	
4		308.9126	5.58	17.44	23.02	46.00	-22.98	peak	200	4	
5		545.1826	5.66	22.67	28.33	46.00	-17.67	peak	200	29	
6	*	763.3757	8.12	25.78	33.90	46.00	-12.10	peak	200	4	

Page 27 of 57

Transmitter Emission above 1GHz

Remark: Through Pre-scan,

for 20MHz Occupied Bandwidth, MIMO mode of 802.11 n(HT20) mode was the worst case; for 40MHz Occupied Bandwidth, MIMO mode of 802.11 n(HT40) mode was the worst case; for 80MHz Occupied Bandwidth, MIMO mode of 802.11 ac(VHT80) mode was the worst case; only the worst case was in the report.

	Mode	:		802.11 n(HT	20) Transmitti	ng	Channe	el:	5180MH	z
	NO	Freq. [MHz]	Facto [dB]	[dBu]/1	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
[1	1429.5930	1.48	40.83	42.31	68.20	25.89	PASS	Н	PK
	2	2560.5061	5.16	39.24	44.40	68.20	23.80	PASS	Н	PK
	3	3998.3498	9.43	37.27	46.70	68.20	21.50	PASS	н	PK
12	4	8398.1699	-10.6	7 53.42	42.75	68.20	25.45	PASS	Н	PK
	5	10290.0145	-6.33	3 53.26	46.93	68.20	21.27	PASS	Н	PK
2	6	14391.6946	0.55	48.81	49.36	68.20	18.84	PASS	Н	PK
	7	1483.4984	1.56	40.19	41.75	68.20	26.45	PASS	V	PK
	8	2566.0066	5.15	39.78	44.93	68.20	23.27	PASS	V	PK
Ī	9	3437.8438	7.59	37.86	45.45	68.20	22.75	PASS	V	PK
Ī	10	8989.2995	-8.49	56.25	47.76	68.20	20.44	PASS	V	PK
Ī	11	11254.9127	-6.19	52.46	46.27	68.20	21.93	PASS	V	PK
	12	16588.3044	1.24	51.60	52.84	68.20	15.36	PASS	V	PK

:		802.11 n(HT2	0) Transmitti	ing	Channe	el:	5200MH	z
Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1223.8724	0.90	41.17	42.07	68.20	26.13	PASS	Н	PK
2127.6128	4.74	39.40	44.14	68.20	24.06	PASS	Н	PK
3085.2585	6.78	39.11	45.89	68.20	22.31	PASS	Н	PK
8333.1917	-10.90	54.34	43.44	68.20	24.76	PASS	Н	PK
10488.9744	-6.47	52.44	45.97	68.20	22.23	PASS	Н	PK
13897.1699	-0.88	49.98	49.10	68.20	19.10	PASS	Н	PK
1514.8515	1.71	40.54	42.25	68.20	25.95	PASS	V	PK
2284.9285	4.03	39.97	44.00	68.20	24.20	PASS	V	PK
4247.5248	10.51	39.46	49.97	68.20	18.23	PASS	V	PK
8549.4025	-10.55	57.17	46.62	68.20	21.58	PASS	V	PK
11804.0652	-6.17	52.84	46.67	68.20	21.53	PASS	V	PK
15438.2469	-0.35	50.05	49.70	68.20	18.50	PASS	V	PK
	Freq. [MHz] 1223.8724 2127.6128 3085.2585 8333.1917 10488.9744 13897.1699 1514.8515 2284.9285 4247.5248 8549.4025 11804.0652	Freq. [MHz] Factor [dB] 1223.8724 0.90 2127.6128 4.74 3085.2585 6.78 8333.1917 -10.90 10488.9744 -6.47 13897.1699 -0.88 1514.8515 1.71 2284.9285 4.03 4247.5248 10.51 8549.4025 -10.55 11804.0652 -6.17	Freq. [MHz] Factor [dB] Reading [dBµV] 1223.8724 0.90 41.17 2127.6128 4.74 39.40 3085.2585 6.78 39.11 8333.1917 -10.90 54.34 10488.9744 -6.47 52.44 13897.1699 -0.88 49.98 1514.8515 1.71 40.54 2284.9285 4.03 39.97 4247.5248 10.51 39.46 8549.4025 -10.55 57.17 11804.0652 -6.17 52.84	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]1223.87240.9041.1742.072127.61284.7439.4044.143085.25856.7839.1145.898333.1917-10.9054.3443.4410488.9744-6.4752.4445.9713897.1699-0.8849.9849.101514.85151.7140.5442.252284.92854.0339.9744.004247.524810.5139.4649.978549.4025-10.5557.1746.6211804.0652-6.1752.8446.67	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]1223.87240.9041.1742.0768.202127.61284.7439.4044.1468.203085.25856.7839.1145.8968.208333.1917-10.9054.3443.4468.2010488.9744-6.4752.4445.9768.2013897.1699-0.8849.9849.1068.201514.85151.7140.5442.2568.202284.92854.0339.9744.0068.204247.524810.5139.4649.9768.208549.4025-10.5557.1746.6268.2011804.0652-6.1752.8446.6768.20	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity1223.87240.9041.1742.0768.2026.13PASSH2127.61284.7439.4044.1468.2024.06PASSH3085.25856.7839.1145.8968.2022.31PASSH3085.25856.7839.1145.8968.2022.31PASSH3085.25856.7839.1145.9768.2024.76PASSH10488.9744-6.4752.4445.9768.2022.23PASSH13897.1699-0.8849.9849.1068.2019.10PASSH1514.85151.7140.5442.2568.2025.95PASSV2284.92854.0339.9744.0068.2024.20PASSV4247.524810.5139.4649.9768.2025.95PASSV4247.524810.5139.4649.9768.2018.23PASSV8549.4025-10.5557.1746.6268.2021.58PASSV11804.0652-6.1752.8446.6768.2021.53PASSV

Page 28 of 57

Mc	ode:		802.11 n(HT2	0) Transmitti	ing	Chann	el:	5240MH	z
NC	D Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1331.1331	1.24	41.29	42.53	68.20	25.67	PASS	н	PK
2	2095.7096	5.03	39.52	44.55	68.20	23.65	PASS	Н	PK
3	3541.8042	7.37	37.42	44.79	68.20	23.41	PASS	Н	PK
4	8924.8962	-9.06	52.88	43.82	68.20	24.38	PASS	Н	PK
5	11895.4948	-5.47	52.25	46.78	68.20	21.42	PASS	Н	PK
6	15569.3535	0.42	50.27	50.69	68.20	17.51	PASS	Н	PK
7	1327.2827	1.23	41.06	42.29	68.20	25.91	PASS	V	PK
8	2408.1408	4.44	37.71	42.15	68.20	26.05	PASS	V	PK
9	3765.1265	8.11	36.91	45.02	68.20	23.18	PASS	V	PK
10	8549.4025	-10.55	57.30	46.75	68.20	21.45	PASS	V	PK
11	I 11918.4959	-5.33	52.59	47.26	68.20	20.94	PASS	V	PK
12	2 14403.7702	0.58	48.77	49.35	68.20	18.85	PASS	V	PK

	Mode	:	80)2.11 n(HT2	0) Transmitti	ng	Channe	el:	5745MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1399.3399	1.82	39.99	41.81	68.20	26.39	PASS	Н	PK
	2	2551.1551	5.57	39.78	45.35	68.20	22.85	PASS	Н	PK
	3	4665.5666	12.80	35.96	48.76	68.20	19.44	PASS	Н	PK
	4	7937.5958	-11.33	53.68	42.35	68.20	25.85	PASS	Н	PK
-	5	10471.5981	-6.43	51.84	45.41	68.20	22.79	PASS	Н	PK
	6	12473.4982	-4.20	54.24	50.04	68.20	18.16	PASS	Н	PK
	7	1373.4873	1.77	40.03	41.80	68.20	26.40	PASS	V	PK
	8	1999.4499	5.08	42.52	47.60	68.20	20.60	PASS	V	PK
	9	4079.2079	10.44	37.02	47.46	68.20	20.74	PASS	V	PK
	10	8991.8328	-8.47	57.19	48.72	68.20	19.48	PASS	V	PK
	11	11163.9443	-5.97	52.42	46.45	68.20	21.75	PASS	V	PK
	12	14442.4295	0.02	49.67	49.69	68.20	18.51	PASS	V	PK
				•						

Page 29 of 57

Mode):		802.11 n(HT2	0) Transmitti	ng	Chann	el:	5785MH	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1332.7833	1.70	42.96	44.66	68.20	23.54	PASS	Н	PK
2	2041.2541	5.31	39.91	45.22	68.20	22.98	PASS	Н	PK
3	3564.9065	7.92	37.66	45.58	68.20	22.62	PASS	Н	PK
4	8458.1972	-10.62	53.70	43.08	68.20	25.12	PASS	Н	PK
5	11918.3946	-5.33	53.12	47.79	68.20	20.41	PASS	Н	PK
6	16988.6992	2.97	50.66	53.63	68.20	14.57	PASS	Н	PK
7	1504.9505	1.96	40.77	42.73	68.20	25.47	PASS	V	PK
8	1993.9494	5.06	42.28	47.34	68.20	20.86	PASS	V	PK
9	3376.7877	8.19	38.26	46.45	68.20	21.75	PASS	V	PK
10	8983.3989	-8.55	57.42	48.87	68.20	19.33	PASS	V	PK
11	11573.3716	-6.30	57.05	50.75	68.20	17.45	PASS	V	PK
12	16277.1851	0.92	50.47	51.39	68.20	16.81	PASS	V	PK

	Mode	:		802.11 n(HT2	20) Transmitti	ing	Channe	el:	5825MHz	
	NO	Freq. [MHz]	Facto [dB]	[dBuV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1438.3938	1.86	41.06	42.92	68.20	25.28	PASS	Н	PK
	2	2448.2948	5.14	39.77	44.91	68.20	23.29	PASS	Н	PK
	3	4522.5523	12.26	37.81	50.07	68.20	18.13	PASS	Н	PK
	4	9261.7174	-7.63	3 52.72	45.09	68.20	23.11	PASS	Н	PK
-	5	11657.7105	-6.08	3 56.36	50.28	68.20	17.92	PASS	Н	PK
	6	16285.6190	0.90	50.38	51.28	68.20	16.92	PASS	Н	PK
	7	1330.5831	1.70	41.84	43.54	68.20	24.66	PASS	V	PK
	8	3052.2552	7.40	38.39	45.79	68.20	22.41	PASS	V	PK
	9	3950.4951	10.04	4 37.68	47.72	68.20	20.48	PASS	V	PK
	10	8544.0696	-10.5	5 56.54	45.99	68.20	22.21	PASS	V	PK
	11	11658.4772	-6.07	7 58.70	52.63	68.20	15.57	PASS	V	PK
2	12	15500.5000	0.47	50.74	51.21	68.20	16.99	PASS	V	PK
	9	•								(\mathcal{A})

Page 30 of 57

Mode	e:		802.11 n(HT4	0) Transmitti	ing	Channe	el:	5190MH	z
NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1433.9934	1.49	41.06	42.55	68.20	25.65	PASS	Н	PK
2	2700.2200	5.55	39.17	44.72	68.20	23.48	PASS	Н	PK
3	4106.1606	9.62	36.62	46.24	68.20	21.96	PASS	Н	PK
4	8428.6464	-10.64	54.01	43.37	68.20	24.83	PASS	Н	PK
5	11968.5234	-5.02	52.71	47.69	68.20	20.51	PASS	Н	PK
6	14388.2444	0.51	49.08	49.59	68.20	18.61	PASS	Н	PK
7	1329.4829	1.24	42.70	43.94	68.20	24.26	PASS	V	PK
8	2424.0924	4.57	39.84	44.41	68.20	23.79	PASS	V	PK
9	4051.1551	9.52	36.61	46.13	68.20	22.07	PASS	V	PK
10	7482.7241	-11.32	2 56.12	44.80	68.20	23.40	PASS	V	PK
11	8996.7748	-8.43	55.95	47.52	68.20	20.68	PASS	V	PK
12	13609.6555	-1.64	49.44	47.80	68.20	20.40	PASS	V	PK

Mode	Mode:		802.11 n(HT40) Transmitting			Channe	el:	5230MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1241.4741	0.96	40.77	41.73	68.20	26.47	PASS	Н	PK
2	2156.2156	4.42	39.27	43.69	68.20	24.51	PASS	Н	PK
3	3492.2992	7.62	37.69	45.31	68.20	22.89	PASS	Н	PK
4	8318.8159	-10.95	53.48	42.53	68.20	25.67	PASS	Н	PK
5	12389.4445	-4.17	51.84	47.67	68.20	20.53	PASS	Н	PK
6	15895.3948	0.06	51.51	51.57	68.20	16.63	PASS	Н	PK
7	1998.3498	4.61	44.32	48.93	68.20	19.27	PASS	V	PK
8	2446.6447	4.75	41.44	46.19	68.20	22.01	PASS	V	PK
9	4172.7173	9.98	38.64	48.62	68.20	19.58	PASS	V	PK
10	8987.5744	-8.51	56.82	48.31	68.20	19.89	PASS	V	PK
11	11453.2977	-6.00	52.87	46.87	68.20	21.33	PASS	V	PK
12	15071.9536	-0.17	49.82	49.65	68.20	18.55	PASS	V	PK
	·		¥						(\mathcal{A})

Page 31 of 57

	(4)				(16)	6	6		
Mode	Mode:		802.11 n(HT40) Transmitting			Channel:		5755MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1327.8328	1.69	43.75	45.44	68.20	22.76	PASS	Н	PK
2	2396.0396	4.85	39.46	44.31	68.20	23.89	PASS	Н	PK
3	4255.2255	11.39	35.80	47.19	68.20	21.01	PASS	Н	PK
4	9265.5510	-7.63	52.58	44.95	68.20	23.25	PASS	Н	PK
5	11744.3496	-5.97	53.18	47.21	68.20	20.99	PASS	Н	PK
6	15126.3418	0.34	49.42	49.76	68.20	18.44	PASS	Н	PK
7	1327.2827	1.69	42.34	44.03	68.20	24.17	PASS	V	PK
8	2333.3333	4.69	39.14	43.83	68.20	24.37	PASS	V	PK
9	4139.1639	10.63	40.71	51.34	68.20	16.86	PASS	V	PK
10	8991.8328	-8.47	56.05	47.58	68.20	20.62	PASS	V	PK
11	11922.2281	-5.30	53.06	47.76	68.20	20.44	PASS	V	PK
12	15101.8068	0.15	49.98	50.13	68.20	18.07	PASS	V	PK

Mod	Mode:		802.11 n(HT40) Transmitting			Channel:		5795MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1389.4389	1.80	40.83	42.63	68.20	25.57	PASS	Н	PK
2	2680.9681	6.04	40.00	46.04	68.20	22.16	PASS	Н	PK
3	4512.1012	12.23	36.66	48.89	68.20	19.31	PASS	Н	PK
4	7049.7366	-11.70	58.98	47.28	68.20	20.92	PASS	Н	PK
5	9255.5837	-7.64	52.30	44.66	68.20	23.54	PASS	Н	PK
6	15006.7338	-0.89	50.09	49.20	68.20	19.00	PASS	Н	PK
7	1664.4664	3.27	39.93	43.20	68.20	25.00	PASS	V	PK
8	1996.6997	5.07	43.14	48.21	68.20	19.99	PASS	V	PK
9	3431.2431	8.22	38.69	46.91	68.20	21.29	PASS	V	PK
10	8996.4331	-8.43	55.08	46.65	68.20	21.55	PASS	V	PK
11	11594.0729	-6.44	54.71	48.27	68.20	19.93	PASS	V	PK
12	14478.4652	-0.51	50.39	49.88	68.20	18.32	PASS	V	PK
9									

Page 32 of 57

Mode	ə:		802.11 ac(VHT80) Transmitting			Channel:		5210MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1333.3333	1.25	42.51	43.76	68.20	24.44	PASS	Н	PK
2	2407.0407	4.43	41.96	46.39	68.20	21.81	PASS	Н	PK
3	3496.6997	7.62	38.23	45.85	68.20	22.35	PASS	Н	PK
4	8383.2192	-10.72	2 53.43	42.71	68.20	25.49	PASS	Н	PK
5	11915.0458	-5.35	52.89	47.54	68.20	20.66	PASS	Н	PK
6	15098.9799	0.13	49.81	49.94	68.20	18.26	PASS	Н	PK
7	1332.7833	1.25	42.76	44.01	68.20	24.19	PASS	V	PK
8	1992.8493	4.59	43.10	47.69	68.20	20.51	PASS	V	PK
9	2996.1496	6.53	39.83	46.36	68.20	21.84	PASS	V	PK
10	8998.4999	-8.41	55.24	46.83	68.20	21.37	PASS	V	PK
11	10439.5220	-6.36	55.36	49.00	68.20	19.20	PASS	V	PK
12	14431.3716	0.18	49.07	49.25	68.20	18.95	PASS	V	PK

5775MHz	
Polarity	Remark
Н	PK
V	PK
	H V V V V V

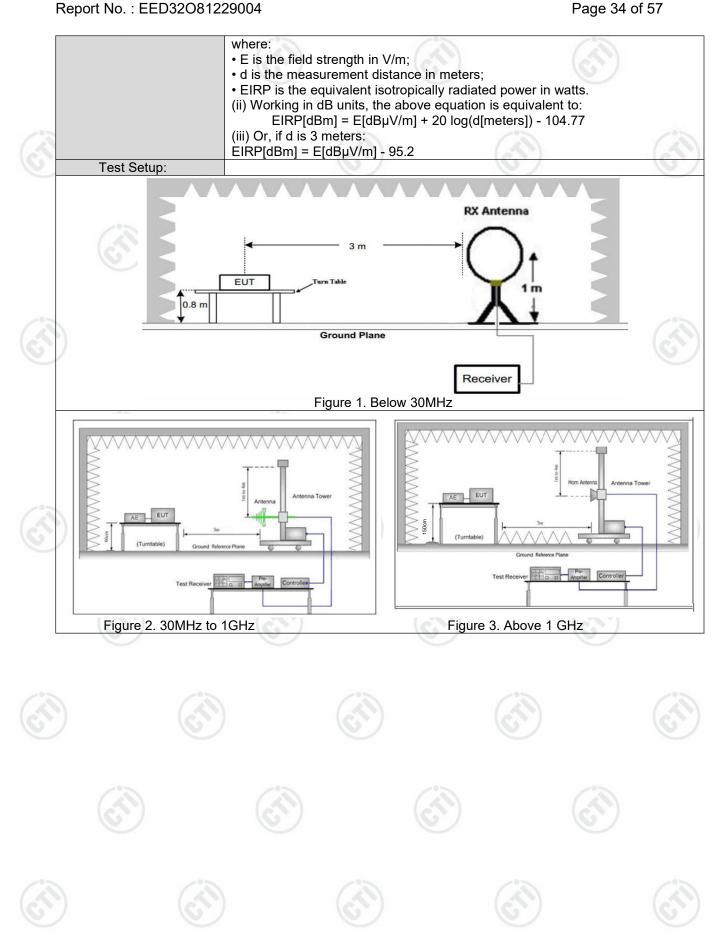
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

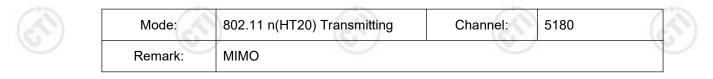


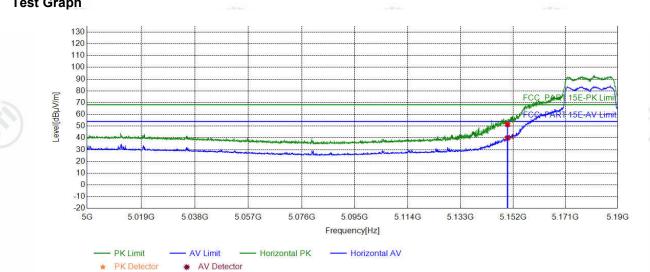
Page 33 of 57

6.9 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Section	ion 15.209 and F	Part 15E Se	ection 15.407	(b)			
	Test Method:	ANSI C63.10 2013							
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
	Receiver Setup:	Frequency	Detector	RBV	N VBW	Remark			
		0.009MHz-0.090MH	Iz Peak	10kH	Hz 30kHz	Peak			
		0.009MHz-0.090MH				Average			
		0.090MHz-0.110MH				Quasi-peak			
		0.110MHz-0.490MH		10kH		Peak			
		0.110MHz-0.490MH	0			Average			
		0.490MHz -30MHz				Quasi-peak			
		30MHz-1GHz	Quasi-pea			Quasi-peak			
		Above 1GHz	Peak	1MF		Peak			
			Peak	1MF	lz 10kHz	Average			
	Limit:								
3		Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m			
_		0.009MHz-0.490MHz	2400/F(kHz)	6	/ -	300			
		0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
		1.705MHz-30MHz	30	-	-	30			
		30MHz-88MHz	100	40.0	Quasi-peak	3			
		88MHz-216MHz	150	43.5	Quasi-peak	3			
		216MHz-960MHz	200	46.0	Quasi-peak	3			
		960MHz-1GHz	500	54.0	Quasi-peak	3			
2		Above 1GHz	500	54.0	Average	3			
		outside of the 5.15-5 dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz b (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters ope (i) All emissions shall b above or below the ba above or below the ba edge increasing linearl the band edge, and fr linearly to a level of 27 Remark: The emission measurements emplo frequency bands 9-90	erating in the 5.2 pand shall not exc operating in the 5.725 GHz band erating in the 5.7 be limited to a level and edge, and fi ly to a level of 15 rom 5 MHz above dBm/MHz at the on limits shown ying a CISPR 0kHz, 110-490k	5-5.35 GH ceed an e. 5.47-5.72 shall no 25-5.85 G vel of -27 sing linearl rom 25 MI 5.6 dBm/M ve or belo band edg n in the quasi-pea Hz and a	Iz band: All en i.r.p. of -27 dE 5 GHz band t exceed an Hz band: dBm/MHz at 7 y to 10 dBm/I Hz above or I Hz at 5 MHz w the band e e. above table ak detector above 1000	hissions outsid 3m/MHz. All emission e.i.r.p. of -2 75 MHz or mor MHz at 25 MH below the ban above or belo edge increasin are based o except for th MHz. Radiate			
		emission limits in thes an average detector, the		ength of a					

Test Procedure:	 j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. K. The EUT was set 3 meters away from nemeter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for 	
	 horizontal and vertical polarizations of the antenna are set to make the measurement. m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 	
	 degrees to find the maximum reading. n. The test-receiver system was set to Peak Detect Function and Specified 	
	 Bandwidth with Maximum Hold Mode. o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 	
	p. Test the EUT in the lowest channel, the Highest channelq. The radiation measurements are performed in X, Y, Z axis positioning	
	for Transmitting mode, and found the X axis positioning which it is the worst case.	
	r. Repeat above procedures until all frequencies measured was complete.	
Test Mode:	Transmitting mode with modulation	
Test Results:	Pass	



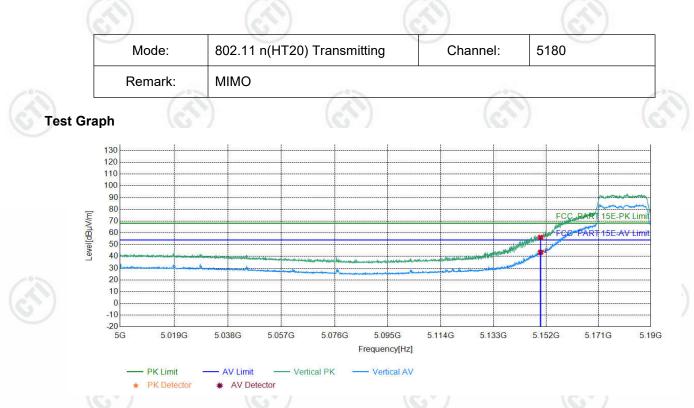

Page 36 of 57

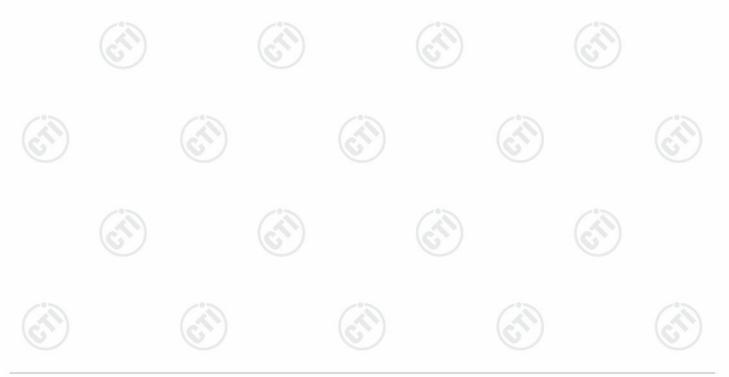
Remark: Through Pre-scan,

for 20MHz Occupied Bandwidth, MIMO mode of 802.11 n(HT20) mode was the worst case; for 40MHz Occupied Bandwidth, MIMO mode of 802.11 n(HT40) mode was the worst case; for 80MHz Occupied Bandwidth, MIMO mode of 802.11 ac(VHT80) mode was the worst case; only the worst case was in the report.

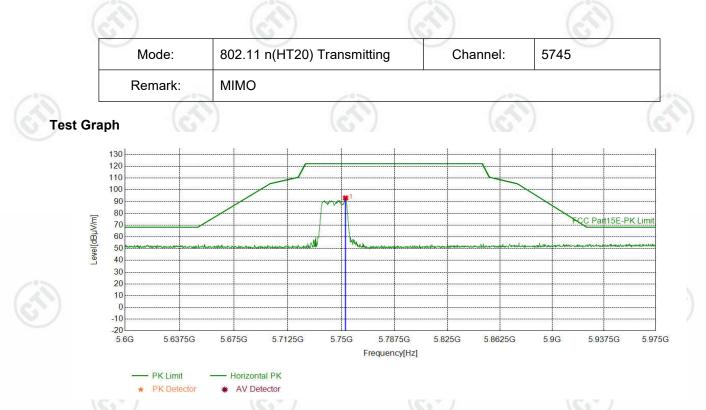
Test Graph

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	-15.08	66.52	51.44	68.29	16.85	PASS	Horizontal	PK
2	5150.0000	-15.08	55.05	39.97	54.00	14.03	PASS	Horizontal	AV




Hotline:400-6788-333

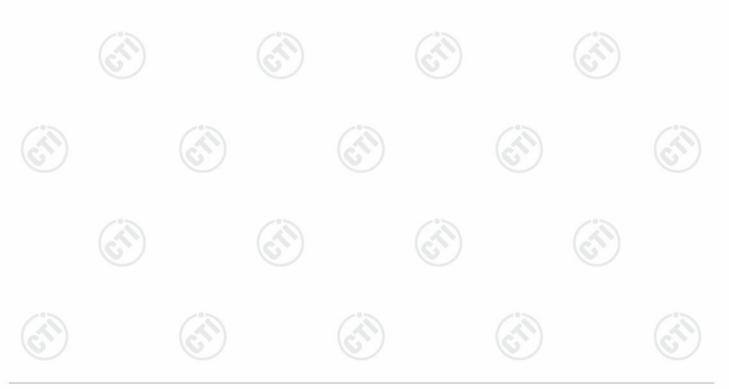
Page 37 of 57



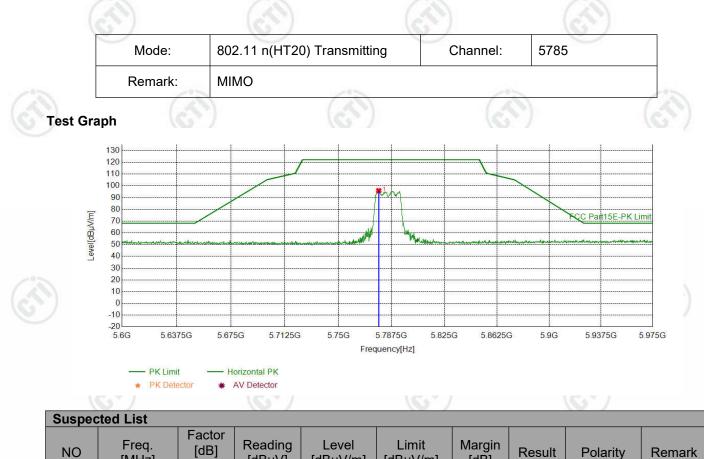
	Suspec	ted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{S})	1	5150.0000	-15.08	71.25	56.17	68.29	12.12	PASS	Vertical	PK
P.	2	5150.0000	-15.08	58.52	43.44	54.00	10.56	PASS	Vertical	AV

Page 38 of 57

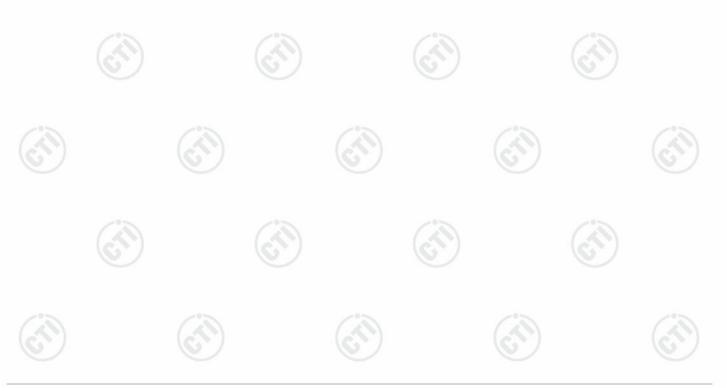
	Suspec	ted List								
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
S	1	5752.8889	13.86	79.22	93.08	122.20	29.12	PASS	Horizontal	PK



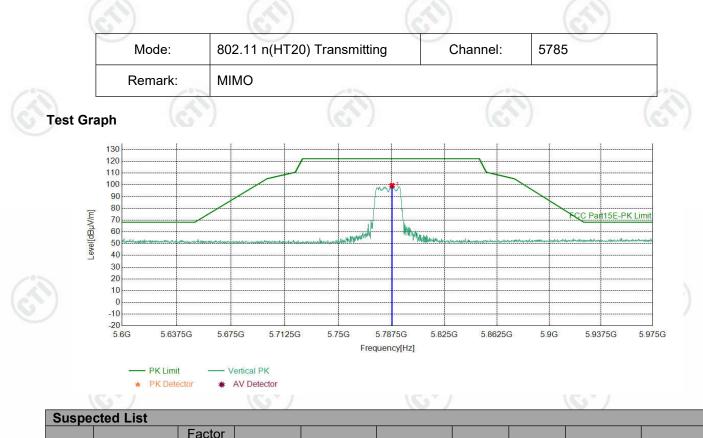
Page 39 of 57



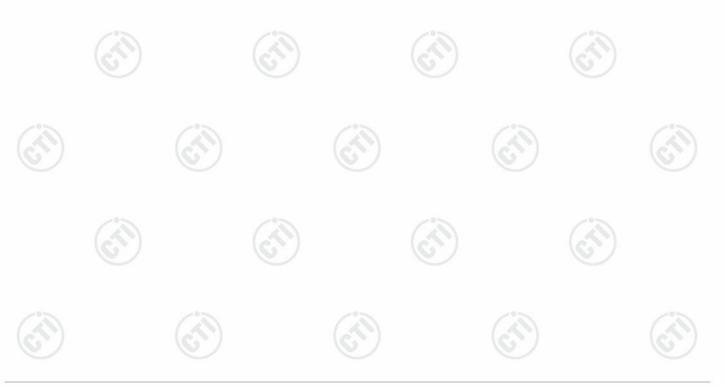
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5741.6333	13.84	82.39	96.23	122.20	25.97	PASS	Vertical	PK



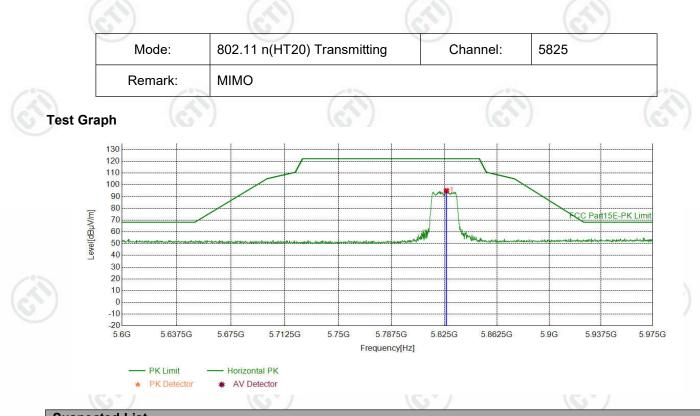
Page 40 of 57



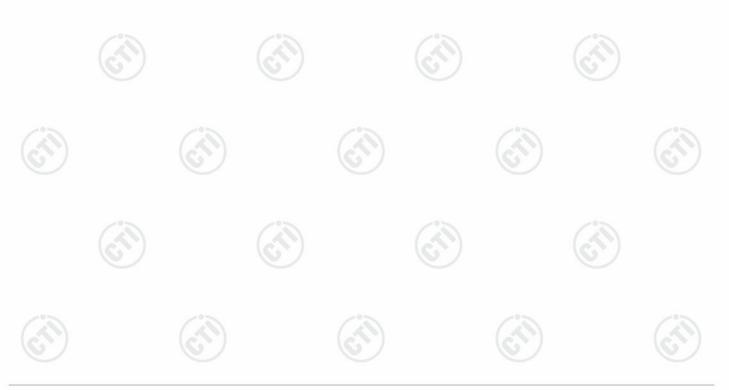
13	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
(\sim)	1	5778.4017	13.90	82.08	95.98	122.20	26.22	PASS	Horizontal	PK



Page 41 of 57



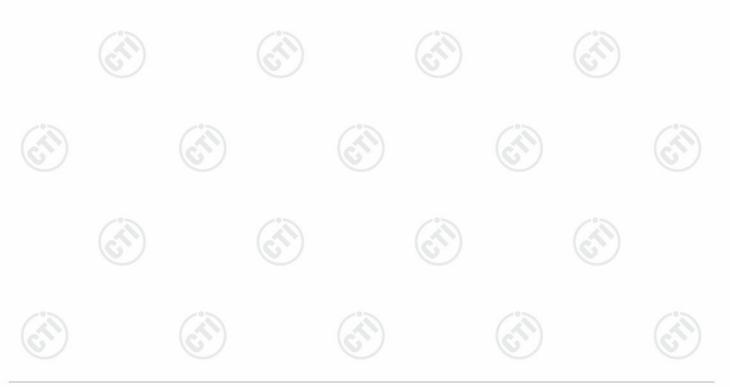
	Cacpe									
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(a)	1	5787.7814	13.92	85.51	99.43	122.20	22.77	PASS	Vertical	PK
	1									



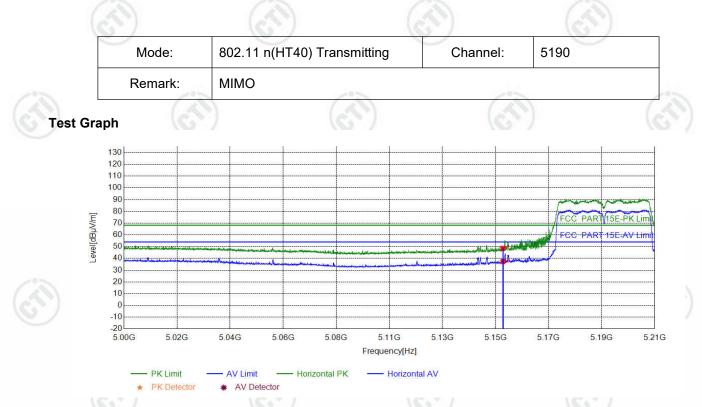
Page 42 of 57



	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\sim)	1	5826.4257	14.04	81.00	95.04	122.20	27.16	PASS	Horizontal	PK
			\sim							

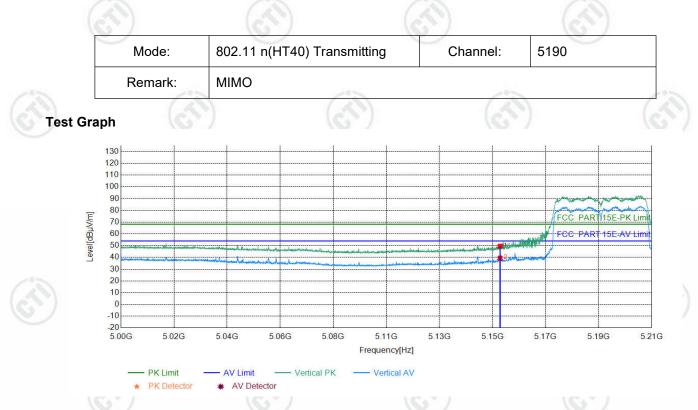


Page 43 of 57



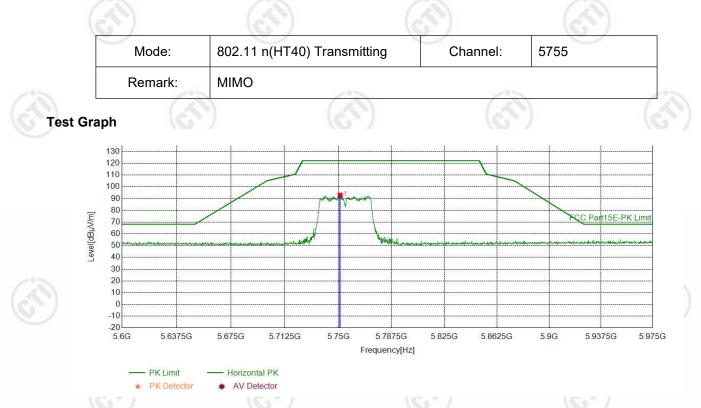
	Suspec	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	5821.9235	14.02	83.95	97.97	122.20	24.23	PASS	Vertical	PK

Page 44 of 57

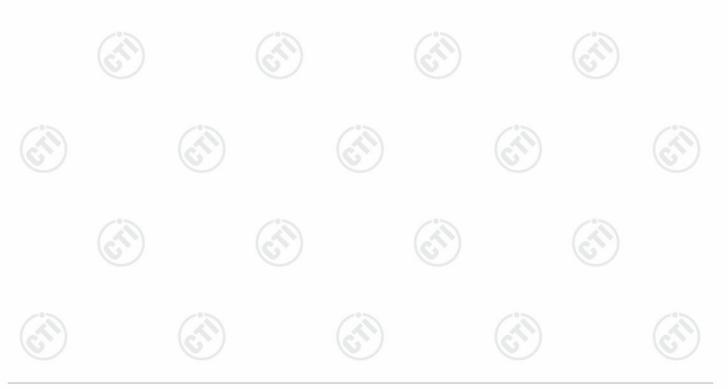


	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	36.24	48.60	68.20	19.60	PASS	Horizontal	PK
C	2	5150.0000	12.36	25.03	37.39	54.00	16.61	PASS	Horizontal	AV

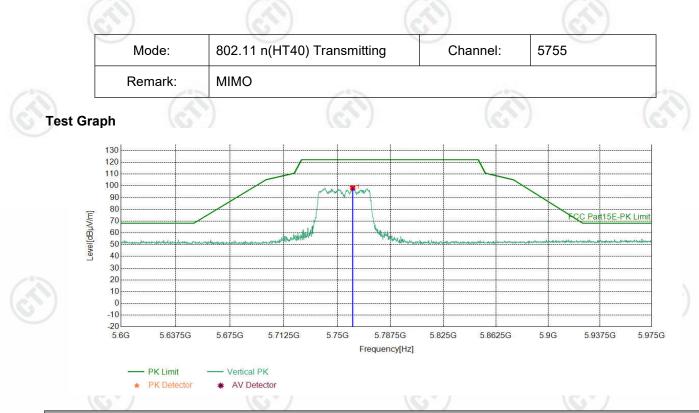
Page 45 of 57



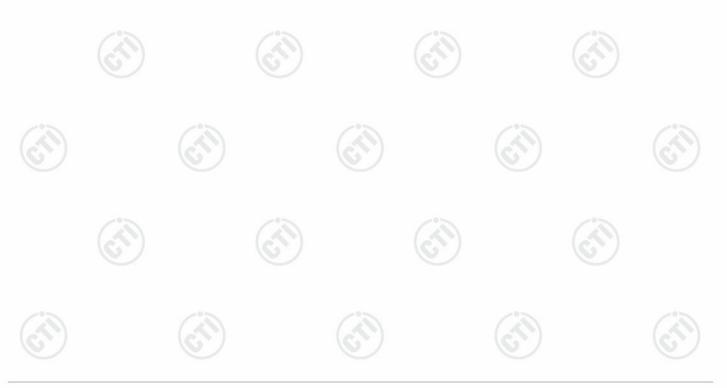
	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	5150.0000	12.36	37.05	49.41	68.20	18.79	PASS	Vertical	PK
S.	2	5150.0000	12.36	26.91	39.27	54.00	14.73	PASS	Vertical	AV



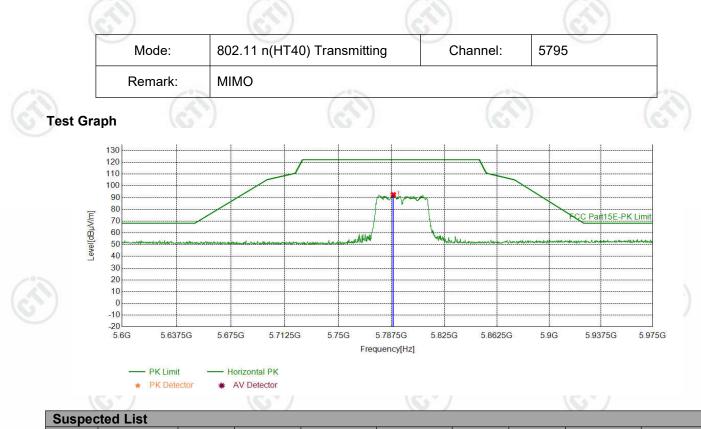
Page 46 of 57



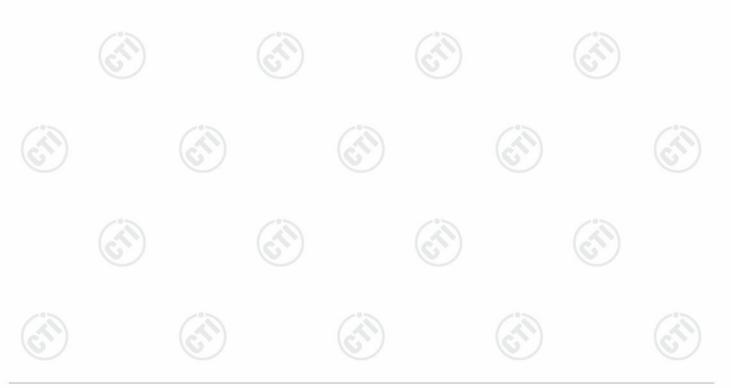
Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5751.2006	13.86	79.13	92.99	122.20	29.21	PASS	Horizontal	PK



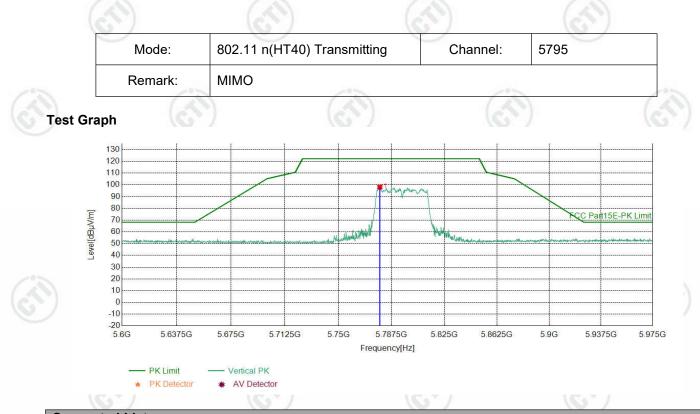
Page 47 of 57



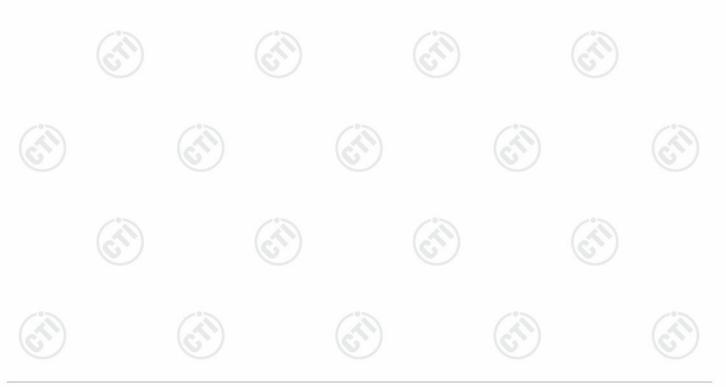
	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	5760.7679	13.87	84.49	98.36	122.20	23.84	PASS	Vertical	PK
	100									



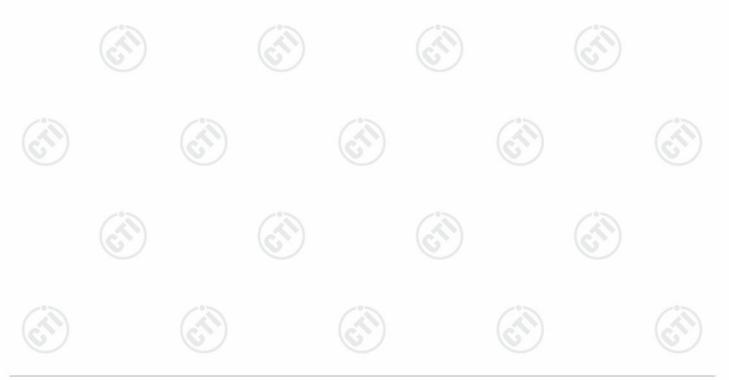
Page 48 of 57



	ouspee									
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\sim)	1	5788.7194	13.92	78.53	92.45	122.20	29.75	PASS	Horizontal	PK
	/			•						



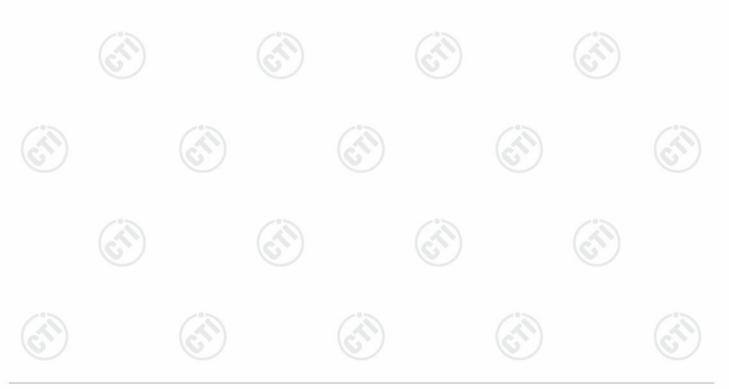
Page 49 of 57



	Suspe	Suspected List									
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
(\sim)	1	5779.1521	13.90	84.26	98.16	122.20	24.04	PASS	Vertical	PK	

NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	12.36	38.50	50.86	68.20	17.34	PASS	Horizontal	PK
2	5150.0000	12.36	29.53	41.89	54.00	12.11	PASS	Horizontal	AV

13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
(a)	1	5150.0000	12.36	39.47	51.83	68.20	16.37	PASS	Vertical	PK			
S.	2	5150.0000	12.36	33.47	45.83	54.00	8.17	PASS	Vertical	AV			



Page 52 of 57

	Suspected List									
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$\left(\mathcal{S} \right)$	1	5741.2581	13.84	75.29	89.13	122.20	33.07	PASS	Horizontal	PK
0	1	5741.2581	13.84	75.29	89.13	122.20	33.07	PASS	Horizontal	

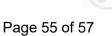
Page 53 of 57

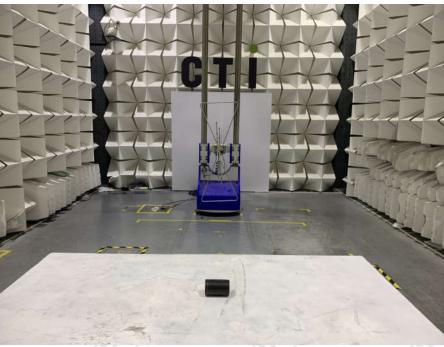
Note:

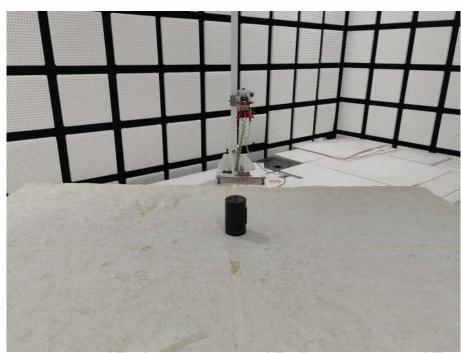
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

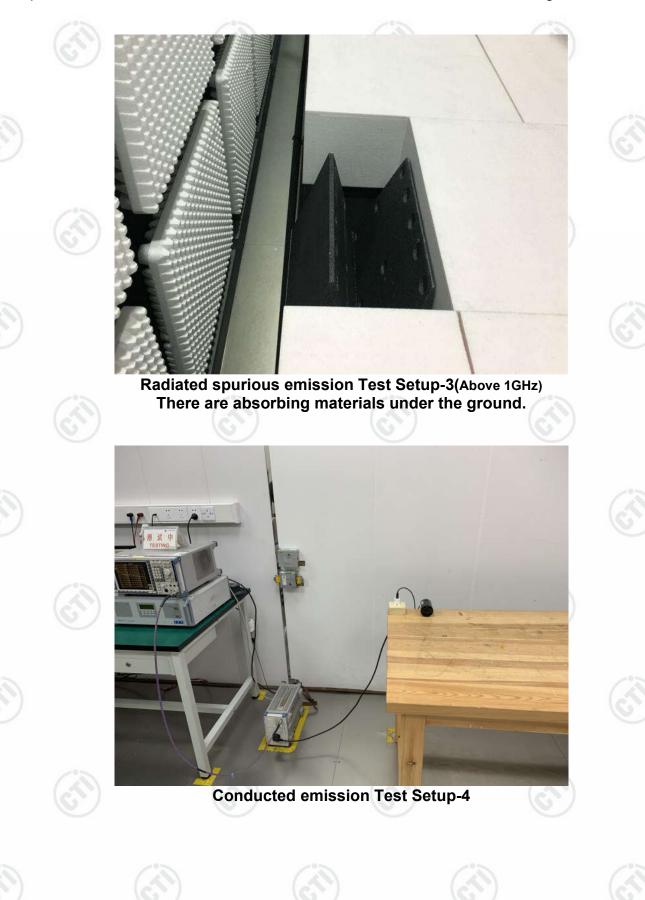

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



PHOTOGRAPHS OF TEST SETUP Test model No.: E7004

Radiated spurious emission Test Setup-1(Below 1GHz)


Radiated spurious emission Test Setup-2(Above 1GHz)

Page 56 of 57

Page 57 of 57

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32O81229001 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

