

TEST	REPORT

Product

Trade mark

Model/Type reference

Serial Number Report Number FCC ID Date of Issue Test Standards Test result : EMEET GeniusCall HS80 / EMEET GeniusCall HS80 Lite / EMEET GeniusCall HS80 Pro / EMEET GeniusCall HS80 Max

: E2104, E210401, E210402, E210403, E210404, E210405, E210406, E2105, E210501, E210502, E210503, E210504, E210505, E210506

N/A

- : EED32P80288201
- 2ALCN-E2104
- Apr. 27, 2023
- 47 CFR Part 15 Subpart C
- PASS

Prepared for: SHENZHEN EMEET TECHNOLOGY CO., LTD. Unit 2C, Building A6, Guangming Science Park, Guanguang Road 3009, Guangming District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

	FAX: +86-7	755-3368 3385	5	
S Bompiled By	Frazer. Lo	Reviewed by:	Tom cha	
	Frazer Li		Tom Chen	
Approved by	Aavon Ma	Date:	Apr. 27, 2023	
	Aaron Ma			
Report Seal			Check No.:5651060323	

1 Contents

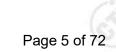
1 CONTENTS	2
2 VERSION	3
3 TEST SUMMARY	4
4 GENERAL INFORMATION	5
4.3 Test Configuration	7
4.4 Test Environment	8
4.5 DESCRIPTION OF SUPPORT UNITS	8
5 EQUIPMENT LIST	10
6.1 ANTENNA REQUIREMENT	
6.2 AC Power Line Conducted Emissions	13
6.3 MAXIMUM CONDUCTED OUTPUT POWER	17
6.4 20dB Emission Bandwidth	18
	-
8 PHOTOGRAPHS OF TEST SETUP	
9 PHUTUGKAPHS OF EUT CONSTRUCTIONAL DETAILS	
	1 CONTENTS

2 Version

13	Version No	. / >	Date		Descriptio	on	12
(ST)	00	A	pr. 27, 2023		Original		
ľ	(A)			(A)			

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
		and the second se


Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.: E2104, E210401, E210402, E210403, E210404, E210405, E210406, E2105, E210501, E210502,

Model No.: E2104, E210401, E210402, E210403, E210404, E210405, E210406, E2105, E210501, E210502 E210503, E210504, E210505, E210506

They have the same hardware and software, only different in model name for marketing requirements, the main test model name is E2104, all parameters remain the same.

4 General Information

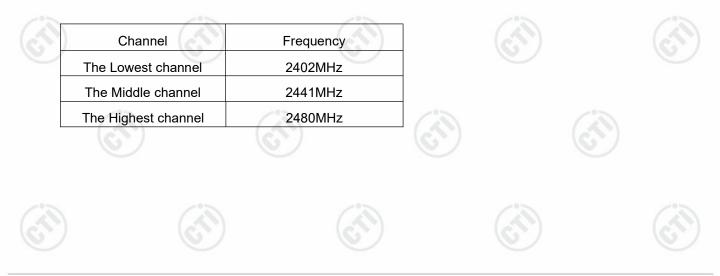
4.1 Client Information

Applicant:	SHENZHEN EMEET TECHNOLOGY CO., LTD.
Address of Applicant:	Unit 2C,Building A6,Guangming Science Park, Guanguang Road 3009,Guangming District, Shenzhen, China
Manufacturer:	SHENZHEN EMEET TECHNOLOGY CO., LTD.
Address of Manufacturer:	Unit 2C,Building A6,Guangming Science Park, Guanguang Road 3009,Guangming District, Shenzhen, China
Factory:	SHENZHEN EMEET INTELLIGENT TECHNOLOGY CO., LTD
Address of Factory:	A401, B401, Building B5, Guangming Science Park, Guanguang Road , Fenghuang community,Fenghuang Street, Guangming District, Shenzhen, China

4.2 General Description of EUT

6	Product Name:		HS80 / EMEET GeniusCall HS80 Lite / E b / EMEET GeniusCall HS80 Max	MEET
	Model No.:		10402, E210403, E210404, E210405, E 10502, E210503, E210504, E210505, E	
	Test Model No.:	E2104		
	Trade Mark:			
	Product Type:	☐ Mobile ⊠ Por	table 🗌 Fix Location	
	Operation Frequency:	2402MHz~2480MHz		
	Modulation Technique:	Frequency Hopping	Spread Spectrum(FHSS)	
ି	Modulation Type:	GFSK, π/4DQPSK, 8	BDPSK	(\mathcal{C})
	Number of Channel:	79	\sim	\smile
	Hopping Channel Type:	Adaptive Frequency	Hopping systems	
	Antenna Type:	Ceramic Antenna		
	Antenna Gain:	3.66dBi	(I) (I)	
	Dewer Surah <i>u</i>	USB port: DC	5.0V	
	Power Supply:	Battery: DC	3.85V,1035mAh	
	Test Voltage:	DC 3.85V		
2	Sample Received Date:	Mar. 23, 2023	()	0
	Sample tested Date:	Mar. 23, 2023 to Ma	r. 27, 2023	
	6102	0.40	512 S22	

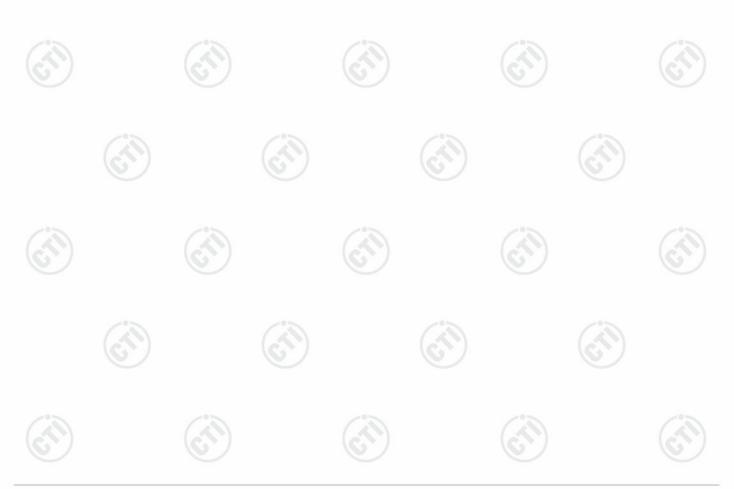
CTI 华测 检测 Report No. : EED32P80288201



Operation F	- requency each	of channel		11		1	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:



4.3 Test Configuration

; :					
Airoha.Tool.Kit.ex	е				
Default (Power lev selected)	Default (Power level is built-in set parameters and cannot be changed and selected)				
owest frequency, the m	niddle frequency and the	highest frequency keep			
Ch	annel	Frequency(MHz)			
C C	но	2402			
с	Н39	2441			
с	H78	2480			
C	но	2402			
С	H39	2441			
С	H78	2480			
C	но	2402			
С	H39	2441			
c	H78	2480			
	Default (Power lev selected) pwest frequency, the m Char C C C C C C C C C C C C C C C C C C C	Airoha.Tool.Kit.exe Default (Power level is built-in set paramete			

4.4 Test Environment

	(3)			1.5	
Operating Enviror	nment:				
Radiated Spuriou	s Emissions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		(in)		6
Atmospheric Press	ure: 1010mbar		(\mathcal{C})		6)
Conducted Emiss	ions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	12		12	
Atmospheric Press	ure: 1010mbar	(\mathcal{A})		(\mathcal{A})	
RF Conducted:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Press	ure: 1010mbar				
) (C'			G		67

4.5 Description of Support Units

The EUT has been tested independently.

4.6 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower conducted	0.46dB (30MHz-1GHz)
2 RF power, conducted	RF power, conducted	0.55dB (1GHz-40GHz)
	(S ^C) (S ^C)	3.3dB (9kHz-30MHz)
2	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz)
3 Radiated Spuri	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
	Conduction omission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5 Equipment List

		RF tes	t system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023
Signal Generator	Agilent	N5181A	MY46240094	12-19-2022	12-18-2023
DC Power	Keysight	E3642A	MY56376072	12-19-2022	12-18-2023
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	06-11-2022	06-10-2023
RF control unit	JS Tonscend	JS0806-2	158060006	12-23-2022	12-22-2023
Communication test set	R&S	CMW500	120765	12-23-2022	12-22-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-01-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518		

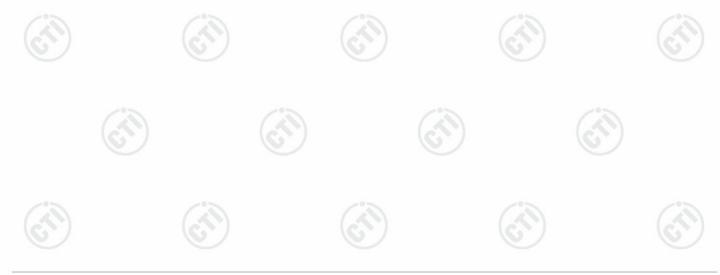
		Conducted dis	sturbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-06-2022	05-05-2023
Temperature/ Humidity Indicator	Defu	TH128) /		6
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023
Barometer	changchun	DYM3	1188		

CTI 华测检测

Report No. : EED32P80288201

Page 11 of 72

Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber &			e		
Accessory	TDK	SAC-3		05/22/2022	05/21/2025
Equipment	100	10	2	100	
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/23/2022	12/23/2023
Multi device Controller	maturo	NCD/070/10711112	9		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023

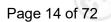


6 Test results and Measurement Data

6.1 Antenna Requirement

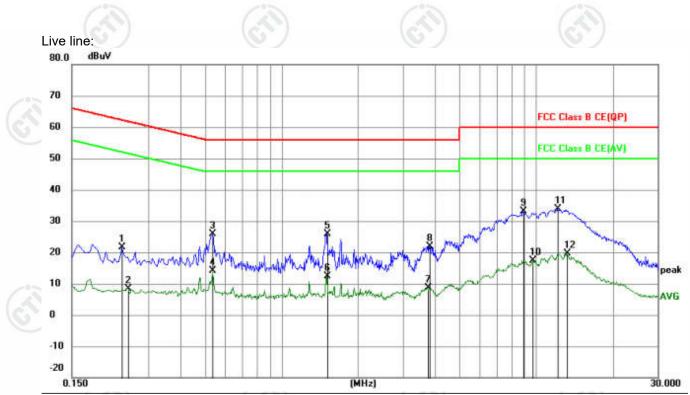
Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be antenna that uses a uniqu	
antennas with directional section, if transmitting and power from the intentional	wer limit specified in paragraph (b) of this section is based on the use of gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this sennas of directional gain greater than 6 dBi are used, the conducted output I radiator shall be reduced below the stated values in paragraphs (b)(1), ection, as appropriate, by the amount in dB that the directional gain of the
EUT Antenna:	Please see Internal photos

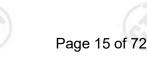
The antenna is ceramic antenna. The best case gain of the antenna is 3.66dBi.



6.2 AC Power Line Conducted Emissions

6.2	AC Power Line Cor	nducted Emissions							
	Test Requirement:	47 CFR Part 15C Section 15.20	07	(\mathcal{C})					
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	150kHz to 30MHz							
- 60	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
4	Limit:		dBuV)	(2)					
2		Frequency range (MHz)	Quasi-peak	Average	2				
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarithm							
	Test Setup:	Shielding Room	AE move	Test Receiver					
	Test Procedure:	 The mains terminal disturbation. The EUT was connected to Impedance Stabilization Ne impedance. The power cable connected to a second LISN reference plane in the same measured. A multiple socke power cables to a single LIS exceeded. 	AC power source thr twork) which provides les of all other units o N 2, which was bonde way as the LISN 1 fo to utlet strip was use	ough a LISN 1 (Li s a 50Ω/50µH + 5 f the EUT were ed to the ground or the unit being d to connect mult	ine Ω linea iple				
		 3) The tabletop EUT was place ground reference plane. An placed on the horizontal gro 4) The test was performed with of the EUT shall be 0.4 m fr vertical ground reference plane. The LISN unit under test and bonded mounted on top of the groun between the closest points of the EUT and associated equitients. 5) In order to find the maximum 	d for floor-standing an ound reference plane, on a vertical ground ref om the vertical groun ane was bonded to th 1 was placed 0.8 m fr to a ground reference nd reference plane. T of the LISN 1 and the uipment was at least	rrangement, the E ference plane. Th d reference plane he horizontal grou om the boundary e plane for LISNs his distance was EUT. All other ur 0.8 m from the LI	UT wa e rear e. The nd of the nits of				

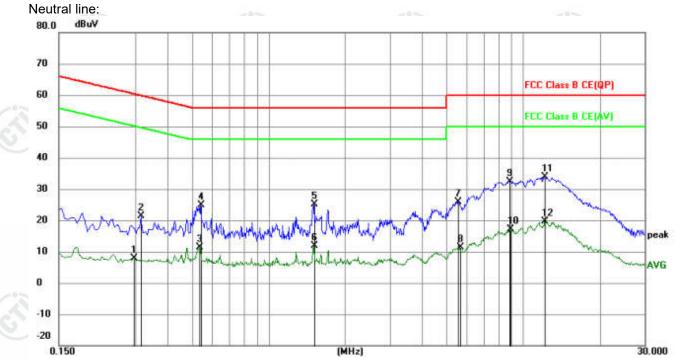



	equipment and all of the interface cables must be changed accordin ANSI C63.10: 2013 on conducted measurement.	ig to
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind data type at the lowest, middle, high channel.	of
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation lowest channel is the worst case. Only the worst case is recorded in the report.	at the
Test Results:	Pass	5)

Measurement Data


	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.2355	11.75	9.94	21.69	62.25	-40.56	peak	
3	2	0.2490	-1.47	9.97	8.50	51.79	-43.29	AVG	
	3	0.5370	15.93	9.99	25.92	56.00	-30.08	peak	
-	4	0.5370	4.06	9.99	14.05	46.00	-31.95	AVG	
	5	1.5045	16.12	9.81	25.93	56.00	-30.07	peak	
	6	1.5045	2.65	9.81	12.46	46.00	-33.54	AVG	
	7	3.7545	-1.10	9.78	8.68	46.00	-37.32	AVG	
	8	3.7995	12.02	9.78	21.80	56.00	-34.20	peak	
	9	8.8979	23.25	9.78	33.03	60.00	-26.97	peak	
	10	9.6765	7.72	9.78	17.50	50.00	-32.50	AVG	
3	11 *	12.1605	23.93	9.84	33.77	60.00	-26.23	peak	
Ν.	12	13.2585	9.81	9.88	19.69	50.00	-30.31	AVG	
						-			

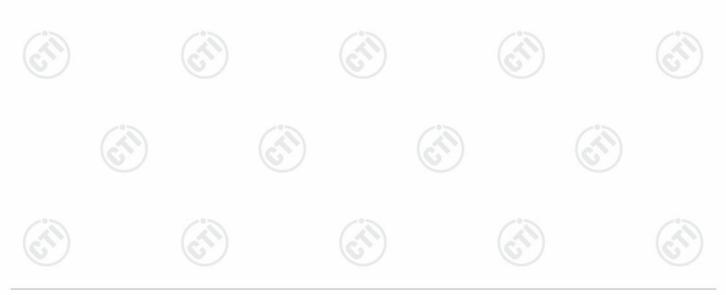
Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

						-		
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2940	-2.25	10.06	7.81	50.41	-42.60	AVG	
2	0.3165	11.44	10.05	21.49	59.80	-38.31	peak	
3	0.5325	1.44	9.99	11.43	46.00	-34.57	AVG	
4	0.5415	14.85	10.00	24.85	56.00	-31.15	peak	
5	1.5045	15.28	9.81	25.09	56.00	-30.91	peak	
6	1.5045	2.04	9.81	11.85	46.00	-34.15	AVG	
7	5.5410	16.06	9.78	25.84	60.00	-34.16	peak	
8	5.6579	1.52	9.78	11.30	50.00	-38.70	AVG	
9	8.8620	22.71	9.78	32.49	60.00	-27.51	peak	
10	8.8800	7.45	9.78	17.23	50.00	-32.77	AVG	
11 *	12.1694	23.96	9.84	33.80	60.00	-26.20	peak	
12	12.1694	9.81	9.84	19.65	50.00	-30.35	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



6.3 Maximum Conducted Output Power

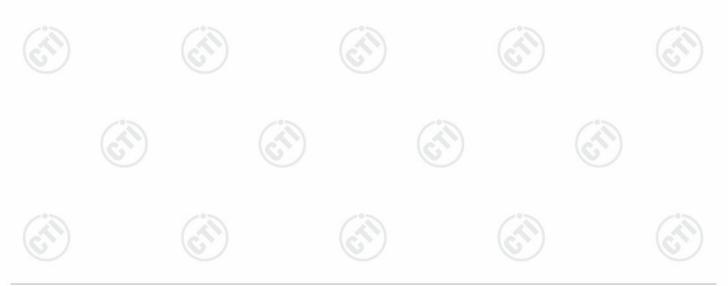
	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
0	Test Setup:	Control Computer Power Supply Table RF test System Instrument
ŝ	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
2	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
2	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A
	C)	

6.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Centred Centred Power Supply TemPERATURE CABNET Table
	Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
	Limit:	NA
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
3	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A
	(GN)	

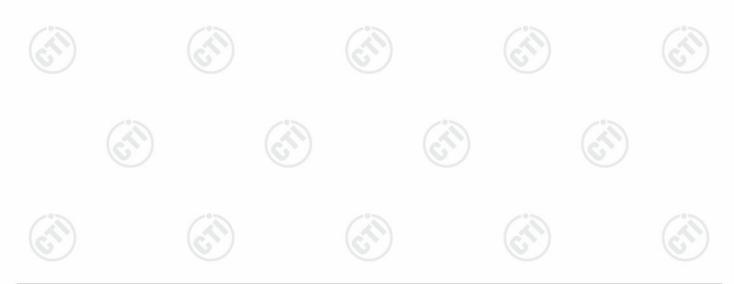
6.5 Carrier Frequency Separation

•.•	camerrequency	ooparation
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	RF test Control Control Control Control Control Control Control Control Control Control Power Power Power Power TemPERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Ć	Test Results:	Refer to Appendix A
S		



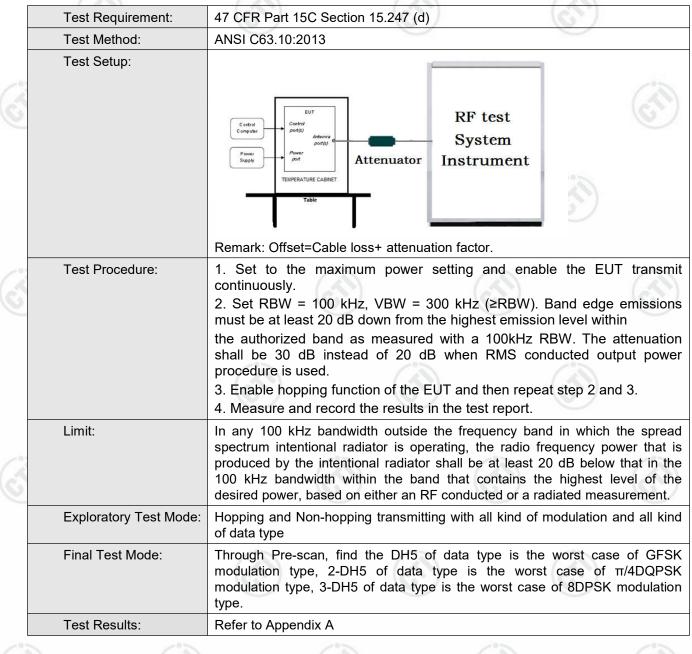
6.6 Number of Hopping Channel

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
8	Test Setup:	RF test System Four Four Forth Attenuator Table					
8	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.					
		 Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 					
3		5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.					
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.					
	Test Mode:	Hopping transmitting with all kind of modulation					



6.7 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	RF test Congular Congular Power Suppy Power Suppy Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A
(C)	



6.8 **Band edge Measurements**

Hotline:400-6788-333

6.9 Conducted Spurious Emissions

Test Requirement:		(d)
Test Method:	ANSI C63.10:2013	
Test Setup:	Control Computer Computer Power Supply TEMPERATURE CABINET Table	RF test System r Instrument
	Remark: Offset=Cable loss+ atten	uation factor.
Test Procedure:	 cable and attenuator. The path los measurement. 2. Set to the maximum power continuously. 3. Set RBW = 100 kHz, VBW = 30 harmonics / spurs must be at lea level within the authorized band as 4. Measure and record the results 	
Limit:	spectrum intentional radiator is op produced by the intentional radiator 100 kHz bandwidth within the ba	e the frequency band in which the spread berating, the radio frequency power that is or shall be at least 20 dB below that in the and that contains the highest level of the her an RF conducted or a radiated
Exploratory Test Mode:	Non-hopping transmitting with all k	kind of modulation and all kind of data type
Final Test Mode:	modulation type, 2-DH5 of data	of data type is the worst case of GFSK a type is the worst case of π /4DQPSK pe is the worst case of 8DPSK modulation
	ijpo.	
	Test Method: Test Setup: Test Setup: Test Procedure: Limit: Limit:	Test Method: ANSI C63.10:2013 Test Setup: Image: Comparison of the particle of

6.10 Pseudorandom Frequency Hopping Sequence

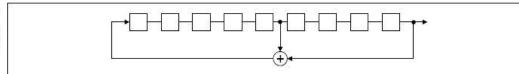
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

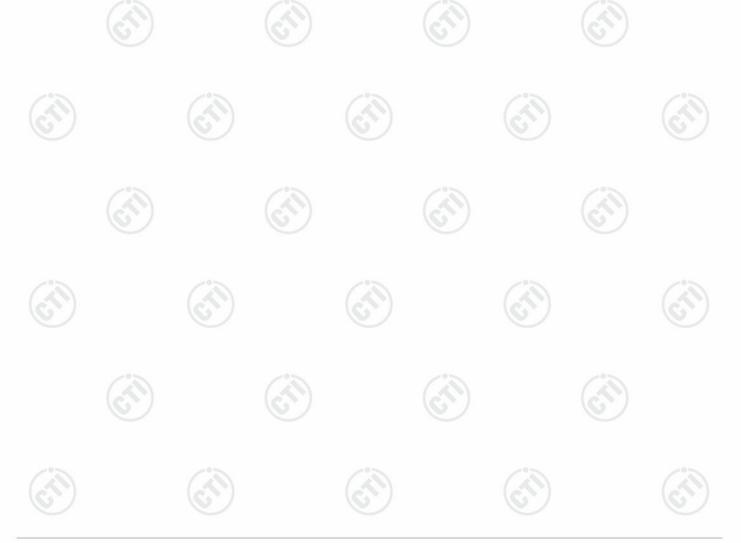
. .

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of	Pseudorandom i	-requen	icy Hopping Sec	uence as follow:			
20 62 46 77	1	7 64	8 73	16	75	1	
Each frequency	y used equally or	the ave	erage by each t	ansmitter.			
bandwidths the		opping d	channel bandwi	receivers are designe dths of any Bluetooth aals.			
Compliance for	or section 15.24	7(g)					
				tooth system transmi lata and the short burs			

Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

Report No. : EED32P80288201


Page 25 of 72

hopping frequency system.

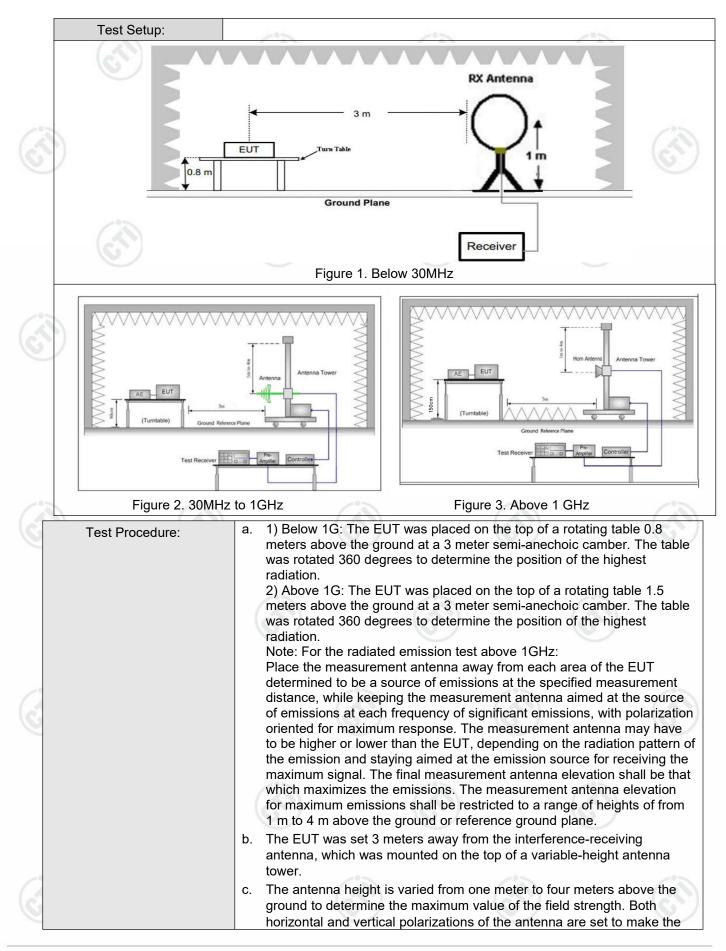
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

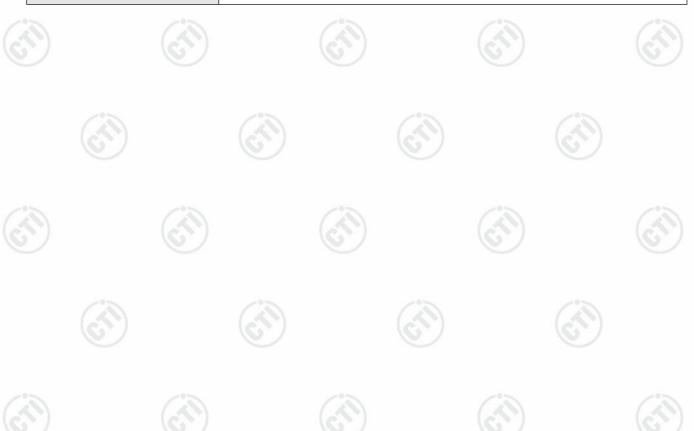
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

6.11 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15.	.205			
	Test Method:	ANSI C63.10: 2013		\sim		\bigcirc		
	•	Measurement Distance	: 3m	n (Semi-Anech	ioic Cham	ber)		
		Frequency		Detector	RBW	VBW	Remark	
		0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak	
		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average	
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak	
		0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak	
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average	
		0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak	
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak	
			Peak	1MHz	3MHz	Peak		
		Above 1GHz	Peak	1MHz	10kHz	Average		
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m	
		0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
		0.490MHz-1.705MHz	24	000/F(kHz)	-	- (3	30	
		1.705MHz-30MHz		30	-	0	30	
		30MHz-88MHz		100	40.0	Quasi-peak	3	
		88MHz-216MHz		150	43.5	Quasi-peak	3	
		216MHz-960MHz		200	46.0	Quasi-peak	3	
		960MHz-1GHz	č)	500	54.0	Quasi-peak	3	
		Above 1GHz	/	500	54.0	Average	3	
		Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	3 ab equi	ove the maxin pment under t	num permi est. This p	tted average	emission limit	

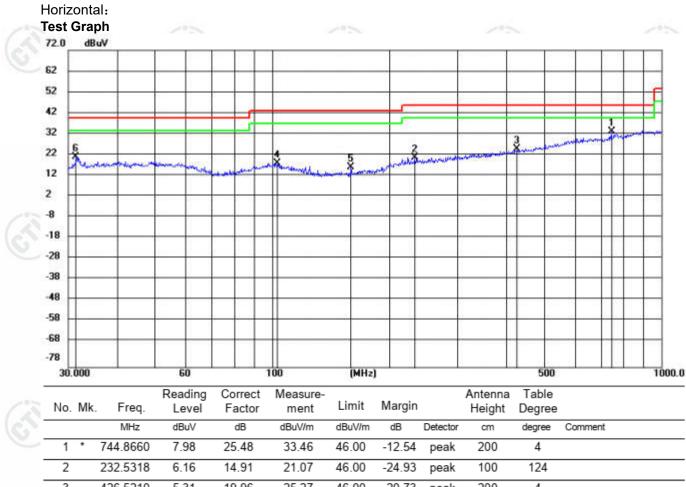


Page 27 of 72



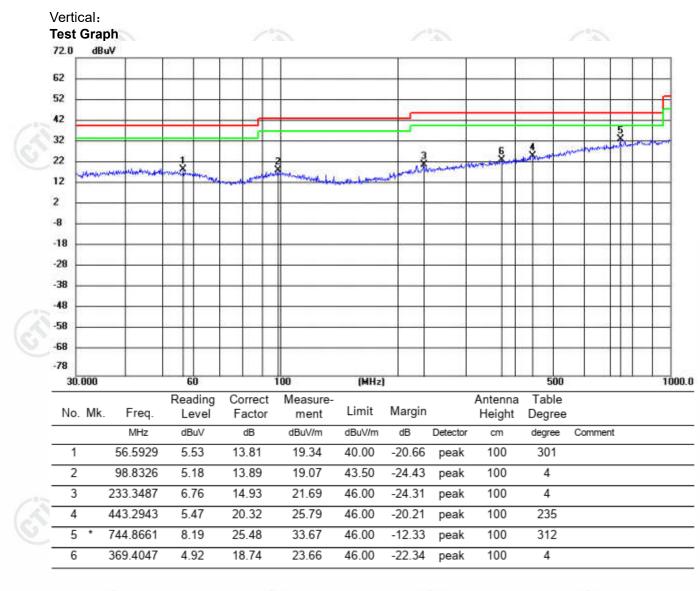
Report No. : EED32P80288201

	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.



2	232.3310	0.10	14.31	21.07	40.00	-24.33	реак	100	124	
3	426.5210	5.31	19.96	25.27	46.00	-20.73	peak	200	4	
4	103.4421	5.16	13.56	18.72	43.50	-24.78	peak	200	4	
5	159.7844	6.96	9.83	16.79	43.50	-26.71	peak	100	356	
6	31.3992	8.53	13.00	21.53	40.00	-18.47	peak	100	188	

Radiated Spurious Emission above 1GHz:

				1°2							
М	lode	:		GFSK Tra	Insmit	tting		Channel:		2402 MHz	2
N	10	Freq. [MHz]	Facto [dB]	r Read [dBµ	•	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1307.6308	1.09	39.3	30	40.39	74.00	33.61	Pass	Н	PK
5	2	1742.4742	3.08	38.9	91	41.99	74.00	32.01	Pass	Н	PK
2	3	3884.0589	-19.12	2 55.1	18	36.06	74.00	37.94	Pass	Н	PK
4	4	4804.1203	-16.23	3 61.4	12	45.19	74.00	28.81	Pass	Н	PK
	5	7135.2757	-11.67	7 50.3	30	38.63	74.00	35.37	Pass	н	PK
	6	11965.5977	-5.45	49.0	00	43.55	74.00	30.45	Pass	Н	PK
	7	1198.0198	0.80	43.7	70	44.50	74.00	29.50	Pass	V	PK
	8	1761.8762	3.15	38.6	64	41.79	74.00	32.21	Pass	V	PK
	9	4804.1203	-16.23	3 61.8	30	45.57	74.00	28.43	Pass	V	PK
1	0	7047.2698	-11.70) 50.3	37	38.67	74.00	35.33	Pass	V	PK
1	1	10277.4852	-6.61	48.0)8	41.47	74.00	32.53	Pass	V	PK
1	2	12526.6351	-4.64	48.6	63	43.99	74.00	30.01	Pass	V	PK
1				1					/		

Mode	:		GFSK Transmit	tting		Channel:		2441 MHz	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1292.6293	1.04	39.94	40.98	74.00	33.02	Pass	н	PK
2	1744.6745	3.09	39.10	42.19	74.00	31.81	Pass	н	PK
3	4882.1255	-16.21	63.78	47.57	74.00	26.43	Pass	Н	PK
4	7590.306	-11.21	50.32	39.11	74.00	34.89	Pass	н	PK
5	10181.4788	-7.11	48.30	41.19	74.00	32.81	Pass	н	PK
6	12737.6492	-4.63	48.16	43.53	74.00	30.47	Pass	Н	PK
7	1306.6307	1.09	39.58	40.67	74.00	33.33	Pass	V	PK
8	1988.2988	4.49	38.22	42.71	74.00	31.29	Pass	V	PK
9	4882.1255	-16.21	63.02	46.81	74.00	27.19	Pass	V	PK
10	6827.2552	-12.25	51.45	39.20	74.00	34.80	Pass	V	PK
11	9319.4213	-7.95	48.80	40.85	74.00	33.15	Pass	V	PK
12	12566.6378	-4.35	49.19	44.84	74.00	29.16	Pass	V	PK

CTI华测检测 Report No. : EED32P80288201

Page 32 of 72

	Mode	:	G	FSK Transmit	ting		Channel:		2480 MHz	<u> </u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1177.6178	0.81	39.92	40.73	74.00	33.27	Pass	Н	PK
13	2	1851.2851	3.67	38.17	41.84	74.00	32.16	Pass	Н	PK
6	3	4960.1307	-15.97	64.12	48.15	74.00	25.85	Pass	Н	PK
1 al	4	7351.2901	-11.60	50.62	39.02	74.00	34.98	Pass	Н	PK
	5	9241.4161	-7.91	49.07	41.16	74.00	32.84	Pass	Н	PK
	6	11992.5995	-5.30	49.25	43.95	74.00	30.05	Pass	Н	PK
	7	1235.6236	0.90	39.42	40.32	74.00	33.68	Pass	V	PK
	8	2045.7046	4.70	38.48	43.18	74.00	30.82	Pass	V	PK
	9	4960.1307	-15.97	62.11	46.14	74.00	27.86	Pass	V	PK
	10	7760.3174	-11.24	49.72	38.48	74.00	35.52	Pass	V	PK
	11	9215.4144	-7.89	48.53	40.64	74.00	33.36	Pass	V	PK
Cà	12	13355.6904	-3.08	47.04	43.96	74.00	30.04	Pass	V	PK
6	7		(C)		6		0)		67

	Mode	:	π/	4DQPSK Tra	nsmitting		Channel:		2402 MHz	<u>.</u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1229.623	0.88	40.16	41.04	74.00	32.96	Pass	Н	PK
	2	2050.7051	4.72	38.68	43.40	74.00	30.60	Pass	Н	PK
	3	4804.1203	-16.23	59.46	43.23	74.00	30.77	Pass	Н	PK
ú.	4	7102.2735	-11.59	50.82	39.23	74.00	34.77	Pass	Н	PK
4	5	10851.5234	-6.30	48.78	42.48	74.00	31.52	Pass	Н	PK
2	6	14375.7584	0.82	44.63	45.45	74.00	28.55	Pass	Н	PK
	7	1203.6204	0.81	40.07	40.88	74.00	33.12	Pass	V	PK
	8	1809.0809	3.35	38.47	41.82	74.00	32.18	Pass	V	PK
	9	4804.1203	-16.23	61.61	45.38	74.00	28.62	Pass	V	PK
Ī	10	7118.2746	-11.63	50.12	38.49	74.00	35.51	Pass	V	PK
Ī	11	8829.3886	-9.39	49.64	40.25	74.00	33.75	Pass	V	PK
	12	12526.6351	-4.64	48.65	44.01	74.00	29.99	Pass	V	PK

CTI华测检测 Report No. : EED32P80288201

Page 33 of 72

	Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2441 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1290.6291	1.04	39.75	40.79	74.00	33.21	Pass	Н	PK
19	2	1659.4659	2.67	39.38	42.05	74.00	31.95	Pass	Н	PK
6	3	4882.1255	-16.21	61.29	45.08	74.00	28.92	Pass	Н	PK
(V)	4	7501.3001	-11.09	49.82	38.73	74.00	35.27	Pass	Н	PK
	5	9935.4624	-7.13	47.71	40.58	74.00	33.42	Pass	Н	PK
	6	12559.6373	-4.40	48.53	44.13	74.00	29.87	Pass	Н	PK
	7	1293.2293	1.04	39.74	40.78	74.00	33.22	Pass	V	PK
	8	1746.8747	3.10	38.96	42.06	74.00	31.94	Pass	V	PK
	9	4882.1255	-16.21	62.40	46.19	74.00	27.81	Pass	V	PK
	10	6325.2217	-12.90	51.76	38.86	74.00	35.14	Pass	V	PK
	11	9852.4568	-7.22	48.28	41.06	74.00	32.94	Pass	V	PK
CA	12	12568.6379	-4.34	47.81	43.47	74.00	30.53	Pass	V	PK
6	7		(C)		C))	6)		6

	1			/		/				
	Mode	:		π/4DQPSK Tra	ansmitting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	e		Margin [dB]	Result	Polarity	Remark
	1	1168.0168	0.82	41.61	42.43	74.00	31.57	Pass	н	PK
	2	1765.2765	3.16	39.46	42.62	74.00	31.38	Pass	Н	PK
	3	4960.1307	-15.97	64.11	48.14	74.00	25.86	Pass	н	PK
(ii)	4	7655.3104	-11.12	50.32	39.20	74.00	34.80	Pass	Н	PK
4	5	11923.5949	-5.69	49.03	43.34	74.00	30.66	Pass	н	PK
2	6	13296.6864	-3.45	47.34	43.89	74.00	30.11	Pass	н	PK
	7	1211.2211	0.83	41.04	41.87	74.00	32.13	Pass	V	PK
	8	1755.6756	3.13	38.59	41.72	74.00	32.28	Pass	V	PK
	9	4960.1307	-15.97	61.53	45.56	74.00	28.44	Pass	V	PK
	10	7551.3034	-11.16	50.06	38.90	74.00	35.10	Pass	V	PK
	11	10833.5222	-6.27	48.54	42.27	74.00	31.73	Pass	V	PK
	12	14393.7596	1.11	43.95	45.06	74.00	28.94	Pass	V	PK
			-						-	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI华测检测 Report No. : EED32P80288201

Page 34 of 72

	Mode	:	8	DPSK Transm	itting	Channel:		2402 MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1296.6297	1.05	39.42	40.47	74.00	33.53	Pass	Н	PK
19	2	1926.8927	4.17	38.67	42.84	74.00	31.16	Pass	Н	PK
6	3	4804.1203	-16.23	60.33	44.10	74.00	29.90	Pass	Н	PK
C	4	7134.2756	-11.67	50.23	38.56	74.00	35.44	Pass	Н	PK
	5	11281.5521	-6.59	48.98	42.39	74.00	31.61	Pass	Н	PK
	6	13680.712	-1.74	45.86	44.12	74.00	29.88	Pass	Н	PK
	7	1315.0315	1.11	39.68	40.79	74.00	33.21	Pass	V	PK
	8	1822.4822	3.45	39.30	42.75	74.00	31.25	Pass	V	PK
	9	4804.1203	-16.23	61.05	44.82	74.00	29.18	Pass	V	PK
	10	7160.2774	-11.74	50.35	38.61	74.00	35.39	Pass	V	PK
	11	10890.526	-6.35	48.41	42.06	74.00	31.94	Pass	V	PK
	12	14410.7607	1.07	43.71	44.78	74.00	29.22	Pass	V	PK
6	9		(C)	·	6)	6)		6)

	Mode	:		8DPSK Transm	nitting	Channel:		2441 MHz		
	NO	NO Freq. [MHz]		Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1253.6254	0.94	40.53	41.47	74.00	32.53	Pass	Н	PK
	2	1883.6884	3.91	38.79	42.70	74.00	31.30	Pass	Н	PK
	3	4882.1255	-16.21	61.98	45.77	74.00	28.23	Pass	Н	PK
6	4	6991.2661	-11.82	50.81	38.99	74.00	35.01	Pass	Н	PK
4	5	10736.5158	-6.38	48.41	42.03	74.00	31.97	Pass	Н	PK
9	6	14371.7581	0.75	44.16	44.91	74.00	29.09	Pass	Н	PK
	7	1182.0182	0.81	40.36	41.17	74.00	32.83	Pass	V	PK
	8	1791.8792	3.26	39.47	42.73	74.00	31.27	Pass	V	PK
	9	4882.1255	-16.21	62.34	46.13	74.00	27.87	Pass	V	PK
	10	6888.2592	-11.89	50.97	39.08	74.00	34.92	Pass	V	PK
	11	11898.5932	-5.83	48.66	42.83	74.00	31.17	Pass	V	PK
	12	14388.7593	1.03	44.51	45.54	74.00	28.46	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI 华测检测 Report No.: EED32P80288201

(S)

Page 35 of 72

Mode):		8DPSK Transm	itting	Channel:		2480 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1293.4293	1.04	39.89	40.93	74.00	33.07	Pass	Н	PK
2	1996.4996	4.53	38.18	42.71	74.00	31.29	Pass	Н	PK
3	4960.1307	-15.97	63.75	47.78	74.00	26.22	Pass	Н	PK
4	7404.2936	-11.50	50.40	38.90	74.00	35.10	Pass	Н	PK
5	11833.5889	-6.01	48.52	42.51	74.00	31.49	Pass	Н	PK
6	13829.722	-1.73	45.85	44.12	74.00	29.88	Pass	Н	PK
7	1206.6207	0.82	39.95	40.77	74.00	33.23	Pass	V	PK
8	1980.298	4.45	38.28	42.73	74.00	31.27	Pass	V	PK
9	4960.1307	-15.97	61.21	45.24	74.00	28.76	Pass	V	PK
10	6982.2655	-11.82	50.05	38.23	74.00	35.77	Pass	V	PK
11	10344.4896	-6.38	47.78	41.40	74.00	32.60	Pass	V	PK
12	14389.7593	1.05	43.65	44.70	74.00	29.30	Pass	V	PK

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

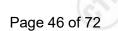
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

	Suspected List										
Ś	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2390	5.77	38.00	43.77	74.00	30.23	PASS	Horizontal	PK	
	2	2390	5.77	24.92	30.69	74.00	43.31	PASS	Horizontal	AV	

	(a		(in)		(3)	\$		(i)	
		EUT_Nar	ne B	T S		Test_Mod	del	١	\odot	
		Test_Mode		GFSK Transmitting		Test_Frequ	ency	2402		
		Tset_Engineer		usongwei	E.	Test_Da	te	2023\3\25		
		Remark	۲ <i>۱</i>	- 25						
т	est Gra	ph		(~1)		(3)	•)		(c1)	
		130								
		110 100 90							Δ	
	[mW/tgp/ww/	60 50							FOC PARTISCA	VLIM
	3	40 30 20		in pieren de la competence	50,000 mm sound dan diger dident sound	9-38-4-9-6-9-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9-9-4-9	ndenski svetan of the state of the	5		
		10 0 -10								
		-20 2.33G 2.33	376G 2.:	3452G 2.3528G	2.3604G	2.368G 2.3756 'requency[Hz]	G 2.3832G	2.3908G	2.3984G	2.406G
		PK Limit PK Detector	AV Limit	Vertical PK — Vertical AV						
(GL										
S	Suspecte	ed List	(61)		6	/	6	57		(67)
S	NO	ed List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
S	NO 1	Freq. [MHz] 2390	[dB] 5.77	Reading[dBµV]37.75	Level [dBµV/m] 43.52	[dBµV/m] 74.00	Margin [dB] 30.48	Result	Vertical	Remark PK
S	NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	[dBµV/m]	Margin [dB]	Result		Remark
S	NO 1	Freq. [MHz] 2390	[dB] 5.77	Reading[dBµV]37.75	Level [dBµV/m] 43.52	[dBµV/m] 74.00	Margin [dB] 30.48	Result	Vertical	Remark PK
	NO 1	Freq. [MHz] 2390	[dB] 5.77	Reading[dBµV]37.75	Level [dBµV/m] 43.52	[dBµV/m] 74.00	Margin [dB] 30.48	Result	Vertical	Remark PK
(d)	NO 1	Freq. [MHz] 2390	[dB] 5.77	Reading[dBµV]37.75	Level [dBµV/m] 43.52	[dBµV/m] 74.00	Margin [dB] 30.48	Result	Vertical	Remark PK
(i)	NO 1	Freq. [MHz] 2390	[dB] 5.77	Reading[dBµV]37.75	Level [dBµV/m] 43.52	[dBµV/m] 74.00	Margin [dB] 30.48	Result	Vertical	Remark PK
(The second seco	NO 1	Freq. [MHz] 2390	[dB] 5.77	Reading[dBµV]37.75	Level [dBµV/m] 43.52	[dBµV/m] 74.00	Margin [dB] 30.48	Result	Vertical	Remark PK
S	NO 1	Freq. [MHz] 2390	[dB] 5.77	Reading[dBµV]37.75	Level [dBµV/m] 43.52	[dBµV/m] 74.00	Margin [dB] 30.48	Result	Vertical	Remark PK
	NO 1	Freq. [MHz] 2390	[dB] 5.77	Reading[dBµV]37.75	Level [dBµV/m] 43.52	[dBµV/m] 74.00	Margin [dB] 30.48	Result	Vertical	Remark PK

	6	(A)					1			
		EUT_Nan	ne B			Test_Mod	del	١	\odot	
		Test_Mod	de G	FSK Transn	nitting	Test_Frequ	ency	2480		
)	Tset_Engin	ieer yu	usongwei	(S)	Test_Da	te	2023\3\2	5	(\mathcal{S})
		Remark	: \							
	Test Gra	ph		(ch)		64	•)		(c1)	
		130								
		110 100 90								
	Level (dB, Am)	80 70 60			in an				FCC-PART 15C1	= /
	Les	40	10	antan ar an	n hanna a braisin a she baarada adaa	an gan ar an			unneran principalities	
		30								
		30 20 10								
		30 20 10 	94G 2.48	286 248626	2.4896G	2.493G 2.4984(Frequency[Hz]	3 2.4998G	2.5032G	2.5086G	2.51G
				zładzą z 4862g rticał PK Verticał AV		2.499G 2.4994G Frequency[Hz]	3 24990G	2.5032G	2.5086G	251G
		-20 2476G 247 						250320	25086G	2516
(K)	Suspecte		- AV Limit - Ve	rtical PK — Vertical AV	107	Frequency[Hz]		87 /		(6,2)
(K)	Suspecto NO	-20 2476G 247 	— AV Limit — Ve		,				250883 Polarity	
(K)	NO 1	ed List Freq. [MHz] 2483.5	AV Limit Ve Factor [dB] 6.57	rical PK	Level [dBµV/m] 44.60	Limit [dBµV/m] 74.00	Margin [dB] 29.40	Result	Polarity Vertical	Remark
	NO	PKLinit AV Detector PKLinit AV Detector ed List Freq. [MHz]	AV Limit — Ve Factor [dB]	rtical PK	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	NO 1	ed List Freq. [MHz] 2483.5	AV Limit Ve Factor [dB] 6.57	rical PK	Level [dBµV/m] 44.60	Limit [dBµV/m] 74.00	Margin [dB] 29.40	Result	Polarity Vertical	Remark
	NO 1	ed List Freq. [MHz] 2483.5	AV Limit Ve Factor [dB] 6.57	rical PK	Level [dBµV/m] 44.60	Limit [dBµV/m] 74.00	Margin [dB] 29.40	Result	Polarity Vertical	Remark
	NO 1	ed List Freq. [MHz] 2483.5	AV Limit Ve Factor [dB] 6.57	rical PK	Level [dBµV/m] 44.60	Limit [dBµV/m] 74.00	Margin [dB] 29.40	Result	Polarity Vertical	Remark
	NO 1	ed List Freq. [MHz] 2483.5	AV Limit Ve Factor [dB] 6.57	rical PK	Level [dBµV/m] 44.60	Limit [dBµV/m] 74.00	Margin [dB] 29.40	Result	Polarity Vertical	Remark
	NO 1	ed List Freq. [MHz] 2483.5	AV Limit Ve Factor [dB] 6.57	rical PK	Level [dBµV/m] 44.60	Limit [dBµV/m] 74.00	Margin [dB] 29.40	Result	Polarity Vertical	Remark
	NO 1	ed List Freq. [MHz] 2483.5	AV Limit Ve Factor [dB] 6.57	rical PK	Level [dBµV/m] 44.60	Limit [dBµV/m] 74.00	Margin [dB] 29.40	Result	Polarity Vertical	Remark
	NO 1	ed List Freq. [MHz] 2483.5	AV Limit Ve Factor [dB] 6.57	rical PK	Level [dBµV/m] 44.60	Limit [dBµV/m] 74.00	Margin [dB] 29.40	Result	Polarity Vertical	Remark

	6	<i>a</i>				(3	<u></u>			
	0	EUT_Na	me B	T		Test_Mod	lel	١		
		Test_Mode		π/4DQPSK Transmitting		Test_Frequ	ency	2402		
):	Tset_Engi	neer y	usongwei	E	Test_Dat	te	2023\3\2	5	6
		Remar	k ۱							
т	est Gra	ph		(~1)		641			(~1)	
		130								
		110 100 90								
	Imm	80 70 60								
	[mW/g]]ww]	50 40	and the second	anayya ana kana na ana iya ka an						
		20								
		-10 -20 2.33G 2.1	3376G 2.3	452G 2.3528G	2.3604G	2.368G 2.37560	3 2.3832G	2.3908G	2.3984G	2.406G
		PK Limit	AV (imit kl	orizontal BK		'requency[Hz]				
		← PK Limit ★ PK Detector	AV Detector	orizontal PK — Horizontal A	v	requency[rtz]				
S	Suspecte		AV Detector			requency[12]	10	3° /		(6-)
S	Suspecte NO		AV Detector		v	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
S	NO 1	Freq. [MHz] 2390	• AV Detector Factor [dB] 5.77	Reading [dBµV] 38.04	Level [dBµV/m] 43.81	Limit [dBµV/m] 74.00	Margin [dB] 30.19	Result	Horizontal	Remark PK
S	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result		Remark
S	NO 1	Freq. [MHz] 2390	• AV Detector Factor [dB] 5.77	Reading [dBµV] 38.04	Level [dBµV/m] 43.81	Limit [dBµV/m] 74.00	Margin [dB] 30.19	Result	Horizontal	Remark PK
C S	NO 1	Freq. [MHz] 2390	• AV Detector Factor [dB] 5.77	Reading [dBµV] 38.04	Level [dBµV/m] 43.81	Limit [dBµV/m] 74.00	Margin [dB] 30.19	Result	Horizontal	Remark PK
CTI	NO 1	Freq. [MHz] 2390	• AV Detector Factor [dB] 5.77	Reading [dBµV] 38.04	Level [dBµV/m] 43.81	Limit [dBµV/m] 74.00	Margin [dB] 30.19	Result	Horizontal	Remark PK
	NO 1	Freq. [MHz] 2390	• AV Detector Factor [dB] 5.77	Reading [dBµV] 38.04	Level [dBµV/m] 43.81	Limit [dBµV/m] 74.00	Margin [dB] 30.19	Result	Horizontal	Remark PK
	NO 1	Freq. [MHz] 2390	• AV Detector Factor [dB] 5.77	Reading [dBµV] 38.04	Level [dBµV/m] 43.81	Limit [dBµV/m] 74.00	Margin [dB] 30.19	Result	Horizontal	Remark PK
	NO 1	Freq. [MHz] 2390	• AV Detector Factor [dB] 5.77	Reading [dBµV] 38.04	Level [dBµV/m] 43.81	Limit [dBµV/m] 74.00	Margin [dB] 30.19	Result	Horizontal	Remark PK
	NO 1	Freq. [MHz] 2390	• AV Detector Factor [dB] 5.77	Reading [dBµV] 38.04	Level [dBµV/m] 43.81	Limit [dBµV/m] 74.00	Margin [dB] 30.19	Result	Horizontal	Remark PK



	EUT_Nam	ne B1	- (S)		Test_Mod	del	\	(\mathcal{O})	
	Test_Mod		PSK Trans	mitting	Test_Frequ		2480		
	Tset_Engin	eer yu	songwei	S	Test_Date		2023\3\25		(I)
	Remark	١	-15		-115	1		-0.5	
Test	t Graph		$\binom{c^{1}}{c}$		64			(\mathcal{A})	
	130								
	110	con							
	reee(gp/yuu)			War marine				FCC PARTISCIP	
	3 30 mmanuferridd	(News	un 19 ¹ 0 April Marun Burrador, andar	* aprobable an an day and a second standard a second second second second second second second second second s	a upogi nga tilaga dapita i fotori ng nganga panan anta ana ana ana ana ana ana ana ana ana	رور شاه معرفان کارونیز رو مورد کارد و کاروم محمد استان می از این می از این می از این می از این می کارونی کاروم	al-pallinested of + attaining		
	20								
	20 10 								
	20 10 	4G 2482	8G 2.4862G	2.4896G F	2.499G 2.4984G requency[Hz]	3 2.4998G	2 5032G	2.5006G	2.51G
	20 10 -10 2.476G 2.476 PK Limit		BG 2 4652G zontal PK — Horizontal A	F		3 2.4998G	2.5032G	2.5086G	2516
Sus	PK Limit AV Detector			F		249986	2.5032G	2 5000G	2510
Sus N	PK Limit AV Detector			F		2 249980 Dargin [dB]	250320 Result	25086G	251G
N	PK Limit • AV DetectorPected ListOFreq. [MHz]12483.5	AV Limit Hor Factor [dB] 6.57	Reading [dBµV] 37.96	Level [dBµV/m] 44.53	Limit [dBµV/m] 74.00	Margin [dB] 29.47	Result	Polarity Horizontal	Remar
N	O Freq. [MHz]	AV Limit Hon	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
N	PK Limit • AV DetectorPected ListOFreq. [MHz]12483.5	AV Limit Hor Factor [dB] 6.57	Reading [dBµV] 37.96	Level [dBµV/m] 44.53	Limit [dBµV/m] 74.00	Margin [dB] 29.47	Result	Polarity Horizontal	Remar
N	PK Limit • AV DetectorPected ListOFreq. [MHz]12483.5	AV Limit Hor Factor [dB] 6.57	Reading [dBµV] 37.96	Level [dBµV/m] 44.53	Limit [dBµV/m] 74.00	Margin [dB] 29.47	Result	Polarity Horizontal	Remar
N	PK Limit • AV DetectorPected ListOFreq. [MHz]12483.5	AV Limit Hor Factor [dB] 6.57	Reading [dBµV] 37.96	Level [dBµV/m] 44.53	Limit [dBµV/m] 74.00	Margin [dB] 29.47	Result	Polarity Horizontal	Remar
N	PK Limit • AV DetectorPected ListOFreq. [MHz]12483.5	AV Limit Hor Factor [dB] 6.57	Reading [dBµV] 37.96	Level [dBµV/m] 44.53	Limit [dBµV/m] 74.00	Margin [dB] 29.47	Result	Polarity Horizontal	Remar
N	PK Limit • AV DetectorPected ListOFreq. [MHz]12483.5	AV Limit Hor Factor [dB] 6.57	Reading [dBµV] 37.96	Level [dBµV/m] 44.53	Limit [dBµV/m] 74.00	Margin [dB] 29.47	Result	Polarity Horizontal	Remar
N	PK Limit • AV DetectorPected ListOFreq. [MHz]12483.5	AV Limit Hor Factor [dB] 6.57	Reading [dBµV] 37.96	Level [dBµV/m] 44.53	Limit [dBµV/m] 74.00	Margin [dB] 29.47	Result	Polarity Horizontal	Remai

	EUT_Nam	e BT	Ì		Test_Mod	lel	١	Ì	
	Test_Mode	e 8D	PSK Trans	mitting	Test_Freque	ency	2480		
	Tset_Engine	eer yu	songwei	E	Test_Dat	te	2023\3\2	5	Ś
	Remark	١						-	
Tes	t Graph		(~1)		641)		(1)	
	130				_				
	120								
	80	and the						FCC PARTISC P	Ktumt
	70 60 50							FOC PART ISO A	Vilme
	50	(here	ta n in kanalanga kanalan kanala			ารางรับสีสต้างประวัญหังสถาไปประว	alan (ab anRuiptaine, Managara dad laba	naga dalahan yang dalah menangkala.	
	20		A Constantine Research			interver, som en diter (den det		ann an coltra a traffician constantin	
	0								
	-10 -20 2.476G 2.4794	G 2.4828	G 2.4862G	2.4896G	2.493G 2.4964G	2.4998G	2.5032G	2.5066G	2.51G
				F	requency[Hz]				
	PK Limit	AV Limit Verti	al PK — Vertical AV						
		G77							
						1			1
Sus	pected List	Factor							
	IO Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Rema
N	Freq.						Result PASS PASS	Polarity Vertical Vertical	Rema PK AV

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Page 48 of 72

7 Appendix A

Refer to Appendix: Bluetooth classic of EED32P80288201

