

Report Seal

TEST REPORT

Product: EMEET AirFlow, EMEET AirFlowX,

EMEET AirFlowE

Trade mark : SEMEET

Model/Type reference : E2053, E2055, E2056

Serial Number : N/A

Report Number : EED32P81818401

FCC ID : 2ALCN-E2053

Date of Issue : Nov. 28, 2023

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

SHENZHEN EMEET TECHNOLOGY CO., LTD.
Unit 2C, Building A6, Guangming Science Park, Guanguang Road
3009,Guangming District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Frazer Li

Frazer Li

Approved by:

Approved by:

Aaron Ma

Reviewed by:

Tow Che

Tom Chen

Nov. 28, 2023

Check No.: 2401131123

2 Version

Version No.	Date		Description		
00	Nov. 28, 2023		Original		
-((3/2)	(2,51)	(61)	

Page 3 of 68 Report No.: EED32P81818401

Content

1 COVER PAGE	1
2 VERSION	
3 CONTENT	3
4 TEST SUMMARY	
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
6 EQUIPMENT LIST7 TEST RESULTS AND MEASUREMENT DATA	9
7 TEST RESULTS AND MEASUREMENT DATA	12
7.1 ANTENNA REQUIREMENT	
8 PHOTOGRAPHS OF TEST SETUP	43
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	48

Report No. : EED32P81818401 Page 4 of 68

4 Test Summary


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: E2053, E2055, E2056

Only the model E2053 was tested. They have the same hardware, software, electrical circuit design, layout, components used and internal wiring. These models are mainly used for the division of sales areas, so only different in model name. Both the left and right earphones have been tested and recorded in the report.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN EMEET TECHNOLOGY CO., LTD.
Address of Applicant:	Unit 2C, Building A6, Guangming Science Park, Guanguang Road 3009, Guangming District, Shenzhen, China
Manufacturer:	SHENZHEN EMEET TECHNOLOGY CO., LTD.
Address of Manufacturer:	Unit 2C, Building A6, Guangming Science Park, Guanguang Road 3009, Guangming District, Shenzhen, China
Factory:	SHENZHEN EMEET INTELLIGENT TECHNOLOGY CO., LTD
Address of Factory:	A401, B401, Building B5, Guangming Science Park, Guanguang Road, Fenghuang community, Fenghuang Street, Guangming District, Shenzhen, China

5.2 General Description of EUT

Product Name:	EMEET AirFlow, EMEET AirFlowX, EMEET AirFlowE				
Model No.:	E2053, E2055, E2056				
Test Model No.:	E2053	(6,1)		(0,)	
Trade mark:	\$ EMEET				
Product Type:	☐ Mobile ☐ Portable	☐ Fix Location	-07		
Operation Frequency:	2402MHz~2480MHz				
Modulation Type:	GFSK	0	(0)		
Transfer Rate:	⊠ 1Mbps ⊠ 2Mbps				
Number of Channel:	40				
Antenna Type:	FPC Antenna				
Antenna Gain:	-4.80 dBi	(0,2)		(0,2)	
Power Supply:	Battery DC 3.85V				
Test Voltage:	DC 3.85V				
Sample Received Date:	Nov. 15, 2023				
Sample tested Date:	Nov. 15, 2023 to Nov. 21, 20	023	(0,)		

Report No. : EED32P81818401 Page 6 of 68

100		100		707		100	
Operation F	requency eac	h of channe		(2)		(6.7)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	Settings:			
Software:	AB ²	1565_AB1568_Airoha_Tool	_Kit(ATK)	(25)
EUT Power Grade: Default(Power level is built-in set parameters and cannot be change selected)				
Use test software to transmitting of the E		equency, the middle frequer	ncy and the highest	frequency keep
Test Mode	Modulatio	n Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	CH0	2402
Mode b GFSK		1Mbps	CH19	2440
Mode c	GFSK	1Mbps	CH39	2480
Mode d	GFSK	2Mbps	CH0	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

Report No.: EED32P81818401 Page 7 of 68

5.4 Test Environment

	Operating Environment	:							
	Radiated Spurious Emissions:								
	Temperature:	22~25.0 °C	(4)		(41)		(41)		
	Humidity:	50~55 % RH	0		(0)		6		
	Atmospheric Pressure:	1010mbar							
	Conducted Emissions:								
	Temperature:	22~25.0 °C		(3)		(30)			
	Humidity:	50~55 % RH		(0,)		(0,)			
	Atmospheric Pressure:	1010mbar							
	RF Conducted:								
	Temperature:	22~25.0 °C	(3)		(3)				
r)	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6,7)		
	Atmospheric Pressure:	1010mbar							

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
AC adapter	MI	/	FCC	СТІ

5.6 Test Location

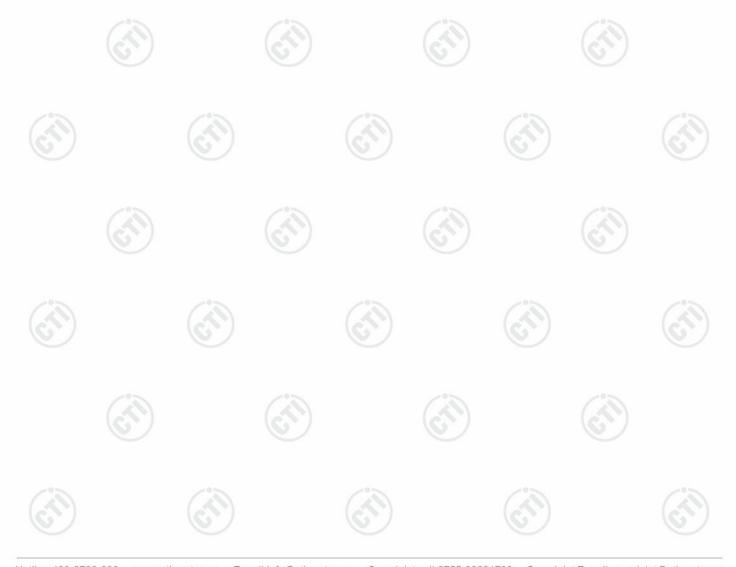
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	6	3.3dB (9kHz-30MHz)
2	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3		4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32P81818401 Page 9 of 68

6 Equipment List

RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication tset set	R&S	CMW500	107929	06-28-2023	06-27-2024	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024	
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/	(6)	N)	(6,2)	((1)	
Humidity	biaozhi	HM10	1804186	06-01-2023	05-31-2024	
Indicator						
BT&WI-FI Automatic test	MWRF-test	MTS 8310	2.0.0.0	(Fil)	- 6	
software						

Conducted disturbance Test								
Equipment	Manufacturer			Manufacturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date	
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024			
Temperature/ Humidity Indicator	Defu	TH128	/					
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024			
Barometer	changchun	DYM3	1188	/	63			
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	(II			
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-29-2023	06-28-2024			
ISN	TESEQ	ISN T800	30297	01-04-2022	12-29-2023			

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 10 of 68 Report No.: EED32P81818401

	3M Semi-and	echoic Chamber (2)- Radiated disturb	ance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09-22-2023	09-21-2024	
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023	07/24/2024	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/23/2022	12/23/2023	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	05/29/2021	05/28/2024	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Preamplifier	Agilent	11909A	12-1	03/28/2023	03/27/2024	
Preamplifier	CD	PAP-1840-60	6041.6042	07/03/2023	07/02/2024	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre			
Cable line	Fulai(7M)	SF106	5219/6A	(2	<u> </u>	
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A		- 0	
Cable line	Fulai(3M)	SF106	5217/6A	<u></u>		

Report No. : EED32P81818401 Page 11 of 68

	9								
3M full-anechoic Chamber									
Equipment	Manufacturer Model No.		Serial Number	Cal. Date	Cal. Due date				
RSE Automatic test software JS Tonscend		JS36-RSE	10166	(i)	6				
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024				
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024				
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024				
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024				
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024				
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024				
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024				
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024				
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024				
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023				
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024				
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024				
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(D)				
Cable line	Times	SFT205-NMSM-2.50M	394812-0002						
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(i)	(2				
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(6,2)					
Cable line	Times	EMC104-NMNM-1000	SN160710						
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	/					
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(<u> </u>				
Cable line	Times	SFT205-NMSM-7.00M	394815-0001						
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(in	(à				

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

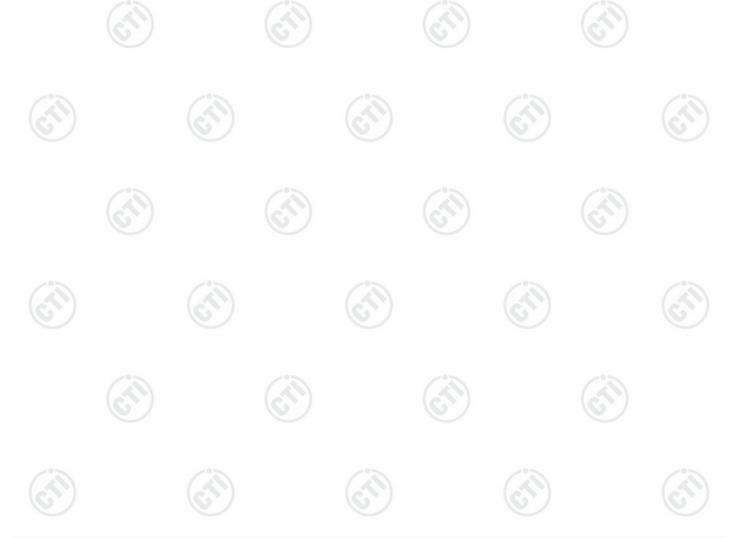
Report No. : EED32P81818401 Page 12 of 68

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

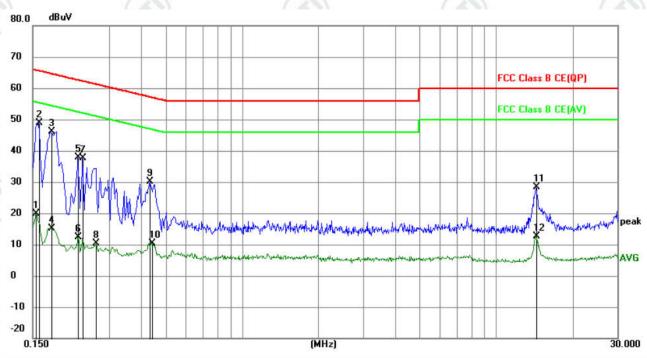
EUT Antenna: Please see Internal photos

The antenna is FPC antenna. The best case gain of the antenna is -4.80dBi.

Report No.: EED32P81818401 Page 13 of 68

7.2 Conducted Emissions

 Conducted Emis	SIONS		(20)					
Test Requirement:	47 CFR Part 15C Section 15	.207	0					
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150kHz to 30MHz							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
Limit:	Fragueray vana (MIII-)	BuV)						
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarith	m of the frequency.						
Test Setup:								
	Shielding Room EUT AC Mains LISN1	AE ### LISN2	Test Receiver					
	Ground Reference Plane							
Test Procedure:	1) The mains terminal distant	banas voltare test	conducted in a shiplet					
, sect resource.	impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the 3) The tabletop EUT was placed on the horizontal ground reference plane. A placed on the horizontal ground reference was performed with EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bo mounted on top of the ground reference provided the provided that the provi	It to AC power source Network) which provides cables of all other is SN 2, which was bonde as the LISN 1 for the was used to connect notating of the LISN was naced upon a non-metal And for floor-standing arground reference plane. With a vertical ground reference plane was bonded to a ground reference plane. The LISN 1 and the EUT. At was at least 0.8 m from the must be changed ables must be changed and the source of the plane was at least 0.8 m from the must be changed and the source of the plane was at least 0.8 m from the must be changed and the source of the plane was at least 0.8 m from the must be changed and the source of the plane was at least 0.8 m from the plane was at	through a LISN 1 (Line is a $50\Omega/50\mu\text{H} + 5\Omega$ linear units of the EUT were d to the ground reference unit being measured. A multiple power cables to a not exceeded. Ilic table 0.8m above the trangement, the EUT was erence plane. The rear of nd reference plane. The to the horizontal ground from the boundary of the erence plane for LISNs his distance was between All other units of the EUT in the LISN 2.					
Test Mode:	All modes were tested, only t	he worst case mode a						
	earphones charge at the san	ne time was recorded in	the report.					

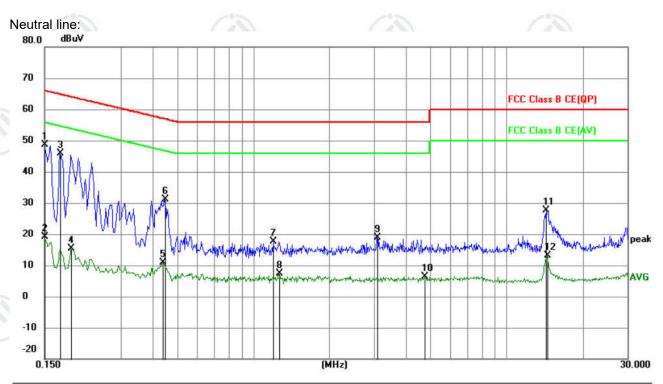


Test Results:	Pass
---------------	------

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1545	10.12	9.87	19.99	55.75	-35.76	AVG	
2	*	0.1590	39.13	9.87	49.00	65.52	-16.52	peak	
3		0.1770	36.32	9.87	46.19	64.63	-18.44	QP	
4		0.1777	5.22	9.87	15.09	54.59	-39.50	AVG	
5		0.2265	27.87	9.92	37.79	62.58	-24.79	QP	
6		0.2265	2.46	9.92	12.38	52.58	-40.20	AVG	
7		0.2355	27.77	9.94	37.71	62.25	-24.54	QP	
8		0.2670	0.30	10.00	10.30	51.21	-40.91	AVG	
9		0.4335	20.21	9.96	30.17	57.19	-27.02	QP	
10		0.4425	0.37	9.96	10.33	47.01	-36.68	AVG	
11		14.4195	18.56	9.91	28.47	60.00	-31.53	QP	
12		14.4195	2.70	9.91	12.61	50.00	-37.39	AVG	


Remark

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	38.72	9.87	48.59	66.00	-17.41	QP	
2		0.1500	9.26	9.87	19.13	56.00	-36.87	AVG	
3		0.1725	36.13	9.87	46.00	64.84	-18.84	QP	
4		0.1905	5.44	9.87	15.31	54.01	-38.70	AVG	
5		0.4380	0.94	9.96	10.90	47.10	-36.20	AVG	
6		0.4470	21.12	9.96	31.08	56.93	-25.85	QP	
7		1.2030	7.81	9.82	17.63	56.00	-38.37	QP	
8		1.2660	-2.49	9.82	7.33	46.00	-38.67	AVG	
9		3.0885	9.01	9.79	18.80	56.00	-37.20	QP	
10		4.7670	-3.32	9.78	6.46	46.00	-39.54	AVG	
11		14.3475	17.81	9.91	27.72	60.00	-32.28	QP	
12		14.4420	3.15	9.91	13.06	50.00	-36.94	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32P81818401 Page 16 of 68

7.3 Maximum Conducted Output Power

1 - 44 - 41	
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Control Power Power Pool Attenuator Instrument Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Limit:	30dBm
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE of left ear & Appendix Bluetooth LE of rigil ear

7.4 DTS Bandwidth

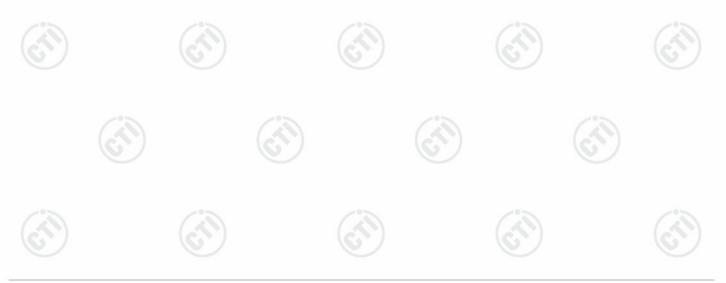
47 CFR Part 15C Section 15.247 (a)(2)
ANSI C63.10 2013
(ET)
Control Compuler Power Supply Power Ford Table RF test System Instrument Instrument
Remark: Offset=Cable loss+ attenuation factor.
 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
≥ 500 kHz
Refer to clause 5.3
Refer to Appendix Bluetooth LE of left ear & Appendix Bluetooth LE of right ear

7.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)					
Test Method:	ANSI C63.10 2013					
Test Setup:						
	Control Computer port(s) Arbenna port(s) S	RF test System strument				
	Remark: Offset=Cable loss+ attenuation fa	actor.				
Test Procedure:	a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude leve within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.					
Limit:	≤8.00dBm/3kHz					
Test Mode:	Refer to clause 5.3	105				
Test Results:	Refer to Appendix Bluetooth LE of left ea ear	r & Appendix Bluetooth LE of right				

7.6 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Conquies Actenna portity Actenuator Control System Power port Temperature Cabnet Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE of left ear & Appendix Bluetooth LE of right ear



7.7 Radiated Spurious Emission & Restricted bands

	16.7		1800		16.7					
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak				
	Ab 4011-		Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10kHz	Average					
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)				
	/ //		400/F(kHz)	-	-/0>	300				
			1000/F(kHz)	-	(A)	30				
			30	-	-	30				
			100	40.0 Quasi-peak		3				
	88MHz-216MHz	150 200		43.5	Quasi-peak	3				
	216MHz-960MHz			46.0	Quasi-peak	3				
	960MHz-1GHz		500	54.0	Quasi-peak	3				
	Above 1GHz		500	54.0	Average	3				
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	IB above the i	maximum est. This p	permitted ave	erage emission				

Report No.: EED32P81818401 Page 21 of 68

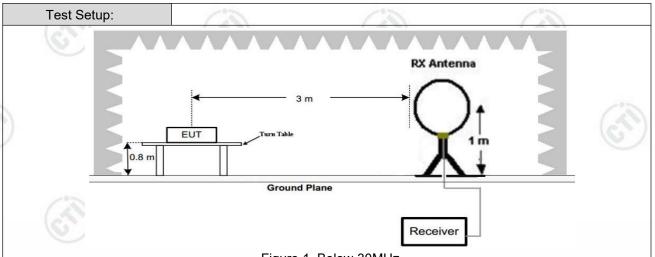
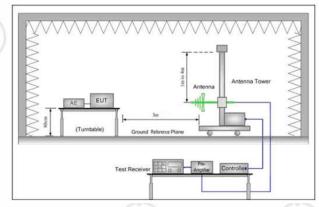



Figure 1. Below 30MHz

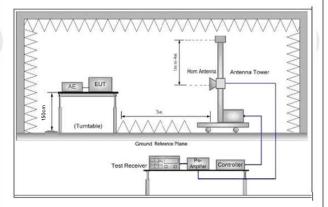


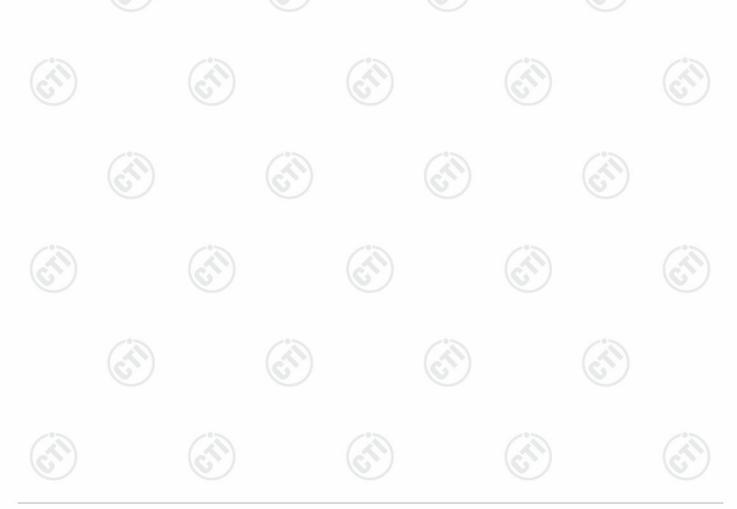
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

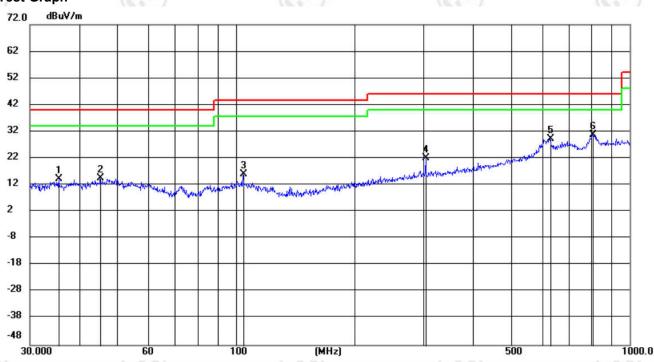
Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32P81818401 Page 22 of 68

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

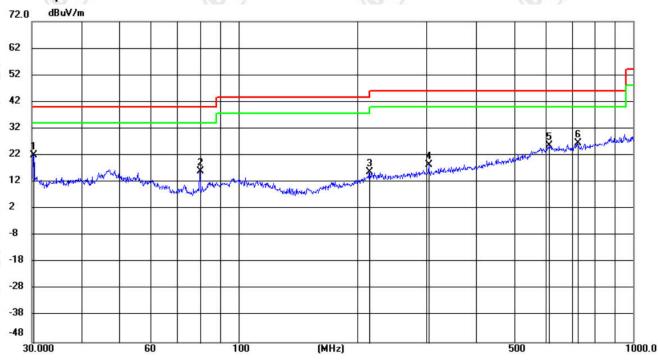

Report No.: EED32P81818401 Page 23 of 68

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M of left ear was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.5802	0.98	13.42	14.40	40.00	-25.60	QP	100	60	
2		45.2880	0.40	14.13	14.53	40.00	-25.47	QP	100	330	
3		104.2614	2.62	13.36	15.98	43.50	-27.52	QP	200	60	
4		304.1830	5.45	16.65	22.10	46.00	-23.90	QP	100	7	
5		627.9339	5.44	23.68	29.12	46.00	-16.88	QP	200	360	
6	*	804.7438	4.75	25.89	30.64	46.00	-15.36	QP	100	216	



Page 24 of 68 Report No.: EED32P81818401

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	30.3119	9.37	12.62	21.99	40.00	-18.01	QP	100	85	
2		79.9824	6.60	9.55	16.15	40.00	-23.85	QP	100	249	
3		214.7024	2.42	13.37	15.79	43.50	-27.71	QP	100	167	
4		304.1830	1.86	16.65	18.51	46.00	-27.49	QP	100	0	
5		613.6760	1.93	23.60	25.53	46.00	-20.47	QP	200	75	
6		721.8524	1.95	24.48	26.43	46.00	-19.57	QP	100	291	

Page 25 of 68 Report No.: EED32P81818401

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M of left ear was recorded in the report.

Mod	e:		BLE GFSK Trai	nsmitting		Channel:		2402 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1671.4671	2.75	37.78	40.53	74.00	33.47	Pass	Н	PK
2	1994.2994	4.52	37.26	41.78	74.00	32.22	Pass	Н	PK
3	4804.1203	-16.23	65.86	49.63	74.00	24.37	Pass	Н	PK
4	7682.3122	-11.07	48.92	37.85	74.00	36.15	Pass	Н	PK
5	12433.6289	-4.74	47.47	42.73	74.00	31.27	Pass	Н	PK
6	16273.8849	1.51	45.58	47.09	74.00	26.91	Pass	Н	PK
7	1979.898	4.45	38.18	42.63	74.00	31.37	Pass	V	PK
8	3415.0277	-20.17	55.96	35.79	74.00	38.21	Pass	V	PK
9	4804.1203	-16.23	61.34	45.11	74.00	28.89	Pass	V	PK
10	5975.1983	-13.12	60.10	46.98	74.00	27.02	Pass	V	PK
11	9977.4652	-7.19	50.43	43.24	74.00	30.76	Pass	V	PK
12	16265.8844	1.44	45.48	46.92	74.00	27.08	Pass	V	PK

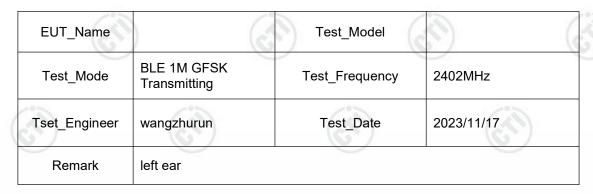
	Mode	:		BLE GFS	SK Tra	nsmitting		Channel:		2440 MHz	2
100	NO	Freq. [MHz]	Factor	1 100	ding µV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1977.8978	4.43	37	.80	42.23	74.00	31.77	Pass	Н	PK
Ī	2	3328.0219	-19.91	57	.50	37.59	74.00	36.41	Pass	Н	PK
Ī	3	4880.1253	-16.21	65	.66	49.45	74.00	24.55	Pass	Н	PK
	4	5973.1982	-13.13	53	.39	40.26	74.00	33.74	Pass	Н	PK
Ī	5	9178.4119	-8.06	47	.68	39.62	74.00	34.38	Pass	Н	PK
Ī	6	13753.7169	-1.70	46	.68	44.98	74.00	29.02	Pass	Н	PK
	7	1993.8994	4.52	38	.42	42.94	74.00	31.06	Pass	V	PK
Γ	8	3325.0217	-19.90	59	.18	39.28	74.00	34.72	Pass	V	PK
9	9	4880.1253	-16.21	62	.38	46.17	74.00	27.83	Pass	V	PK
0	10	5989.1993	-13.03	62	.20	49.17	74.00	24.83	Pass	V	PK
	11	9995.4664	-7.22	49	.47	42.25	74.00	31.75	Pass	V	PK
	12	16324.8883	1.18	46	.05	47.23	74.00	26.77	Pass	V	PK

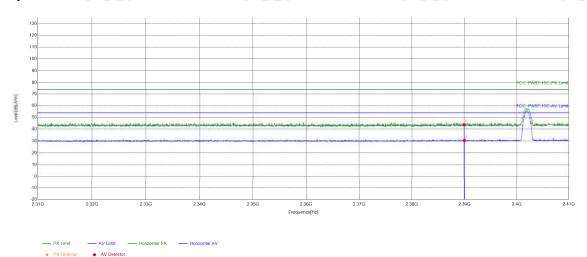
Report No. : EED32P81818401 Page 26 of 68

	100				20%		100	0.50	
Mode	:		BLE GFSK Trai	nsmitting		Channel:		2480 MHz	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1582.4582	2.14	37.94	40.08	74.00	33.92	Pass	Н	PK
2	1985.8986	4.48	37.79	42.27	74.00	31.73	Pass	Н	PK
3	3405.027	-20.19	52.72	32.53	74.00	41.47	Pass	Н	PK
4	4960.1307	-15.97	65.34	49.37	74.00	24.63	Pass	Н	PK
5	5982.1988	-13.08	50.47	37.39	74.00	36.61	Pass	Н	PK
6	9244.4163	-7.91	47.21	39.30	74.00	34.70	Pass	Н	PK
7	2040.7041	4.69	37.89	42.58	74.00	31.42	Pass	V	PK
8	3326.0217	-19.90	59.46	39.56	74.00	34.44	Pass	V	PK
9	4960.1307	-15.97	60.83	44.86	74.00	29.14	Pass	V	PK
10	5973.1982	-13.13	63.92	50.79	74.00	23.21	Pass	V	PK
11	9968.4646	-7.18	48.53	41.35	74.00	32.65	Pass	V	PK
12	16258.8839	1.39	45.97	47.36	74.00	26.64	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

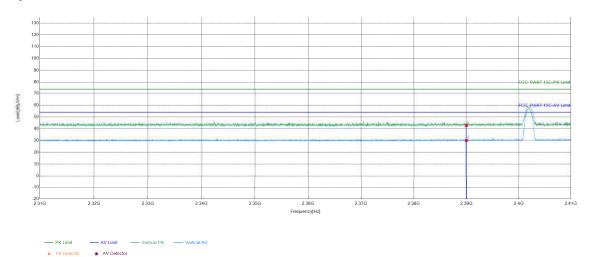


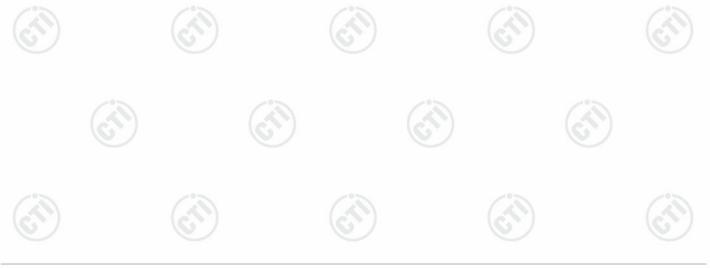


Restricted bands:

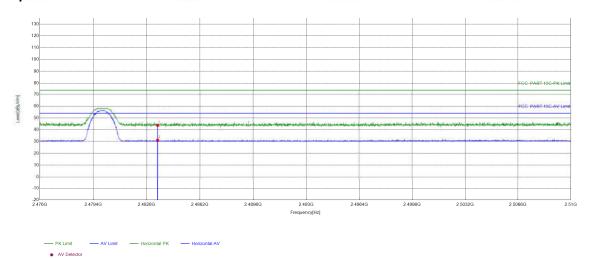
Test plot as follows:

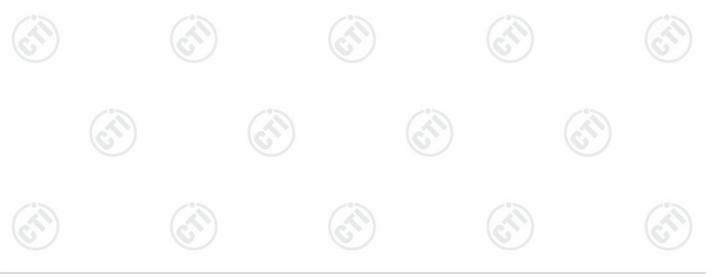
Sı	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	38.06	43.83	74.00	30.17	PASS	Horizontal	PK
	2	2390	5.77	24.71	30.48	54.00	23.52	PASS	Horizontal	AV



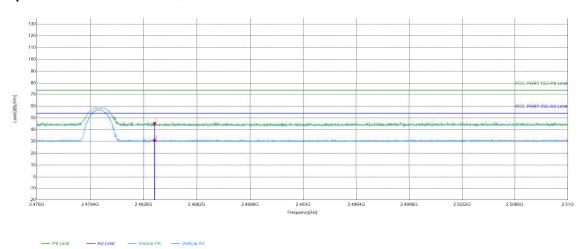


EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/17
Remark	left ear		Cil


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	36.90	42.67	74.00	31.33	PASS	Vertical	PK
2	2390	5.77	24.28	30.05	54.00	23.95	PASS	Vertical	AV

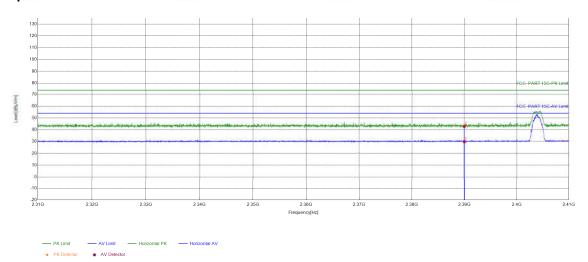


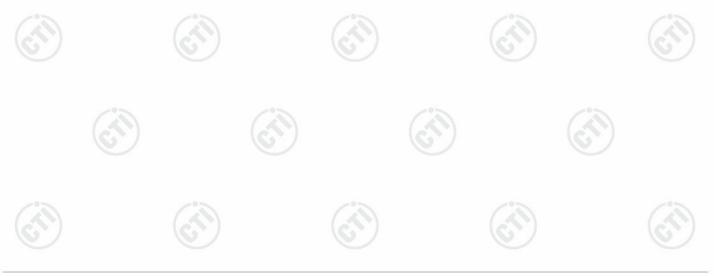

EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/17
Remark	left ear		


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	37.19	43.76	74.00	30.24	PASS	Horizontal	PK
2	2483.5	6.57	24.39	30.96	54.00	23.04	PASS	Horizontal	AV

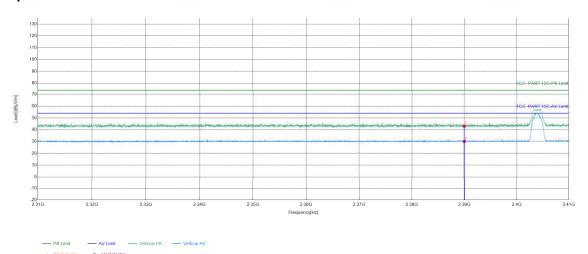


0.7	16.5	16.4	167
EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/17
Remark	left ear		

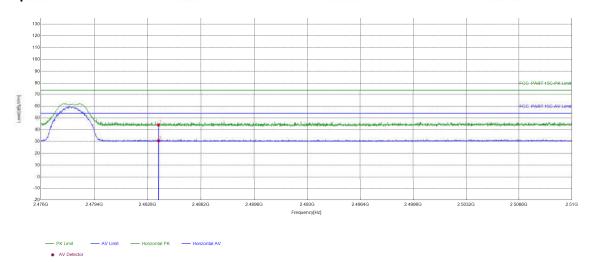

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	6.57	38.80	45.37	74.00	28.63	PASS	Vertical	PK	
2	2483.5	6.57	24.36	30.93	54.00	23.07	PASS	Vertical	AV	



EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/17
Remark	left ear	CO.	

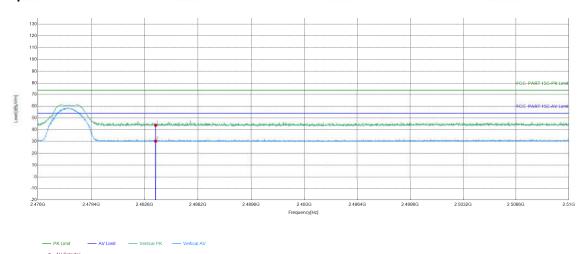

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	5.77	37.10	42.87	74.00	31.13	PASS	Horizontal	PK	
2	2390	5.77	24.18	29.95	54.00	24.05	PASS	Horizontal	AV	

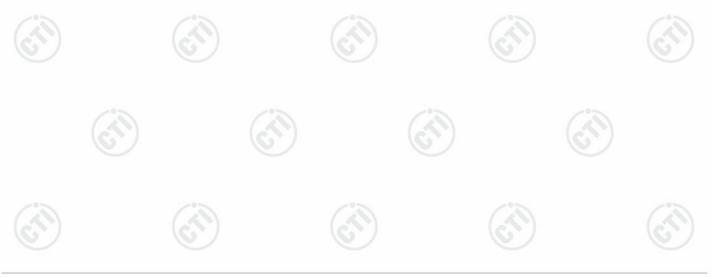
6.70	(6.34)	(6.5)	(6.5)	
EUT_Name		Test_Model		
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz	
Tset_Engineer	wangzhurun	Test_Date	2023/11/17	
Remark	left ear			


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390	5.77	37.23	43.00	74.00	31.00	PASS	Vertical	PK		
2	2390	5.77	24.35	30.12	54.00	23.88	PASS	Vertical	AV		

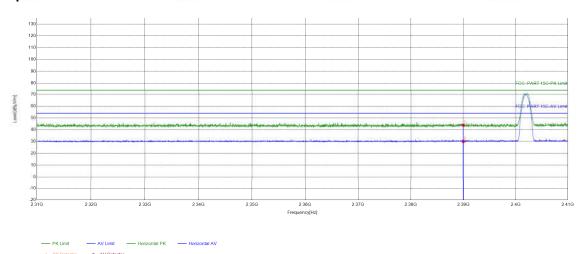


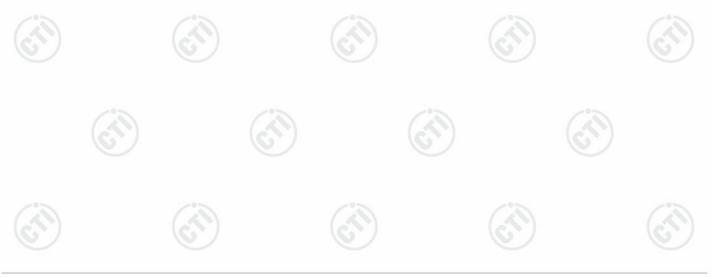
	10.5	(6.5)	16.7
EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	left ear		(2)


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5	6.57	37.57	44.14	74.00	29.86	PASS	Horizontal	PK		
2	2483.5	6.57	24.08	30.65	54.00	23.35	PASS	Horizontal	AV		

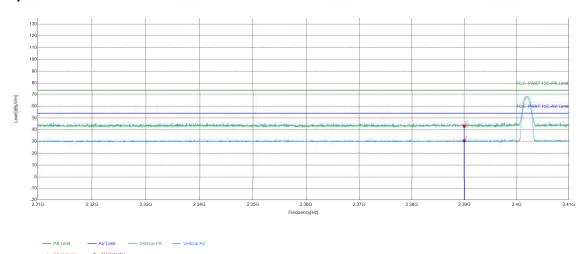


EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	left ear		

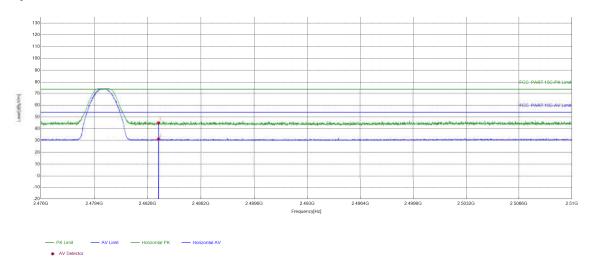

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5	6.57	37.26	43.83	74.00	30.17	PASS	Vertical	PK		
2	2483.5	6.57	23.81	30.38	54.00	23.62	PASS	Vertical	AV		

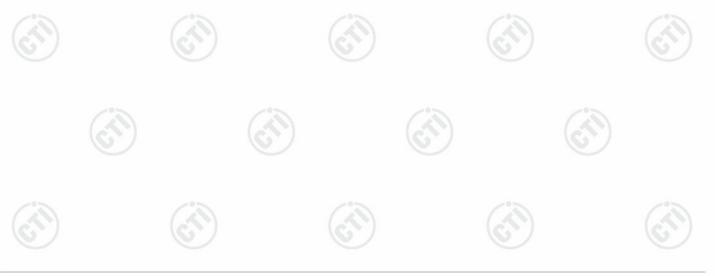


EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	right ear		Cil

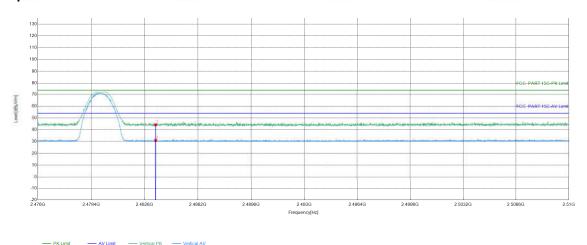

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390	5.77	38.12	43.89	74.00	30.11	PASS	Horizontal	PK		
2	2390	5.77	24.32	30.09	54.00	23.91	PASS	Horizontal	AV		

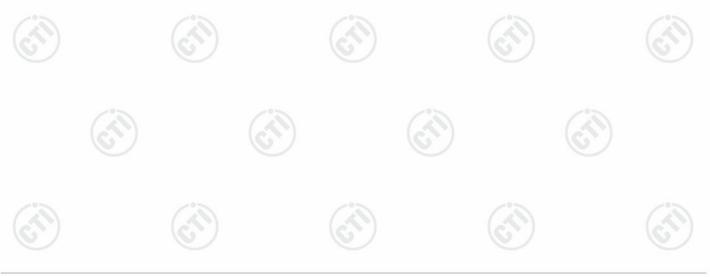
6.70	(6.5)	(6.4)	(6.7)	
EUT_Name		Test_Model		
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz	
Tset_Engineer	wangzhurun	Test_Date	2023/11/20	
Remark	right ear			


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	5.77	37.18	42.95	74.00	31.05	PASS	Vertical	PK	
2	2390	5.77	24.79	30.56	54.00	23.44	PASS	Vertical	AV	

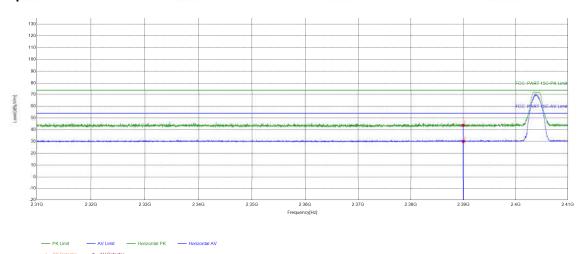


EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	right ear	CO.	


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	6.57	38.51	45.08	74.00	28.92	PASS	Horizontal	PK	
2	2483.5	6.57	24.70	31.27	54.00	22.73	PASS	Horizontal	AV	

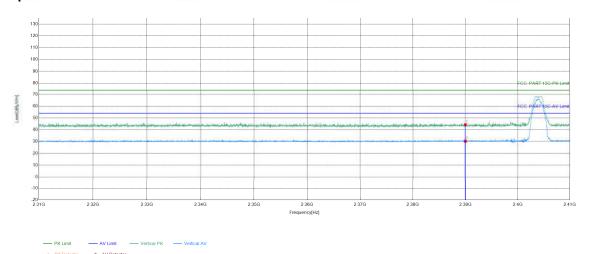


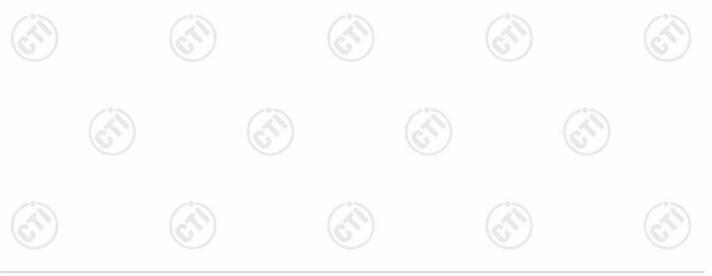
EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	right ear		


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5	6.57	37.65	44.22	74.00	29.78	PASS	Vertical	PK		
2	2483.5	6.57	24.30	30.87	54.00	23.13	PASS	Vertical	AV		

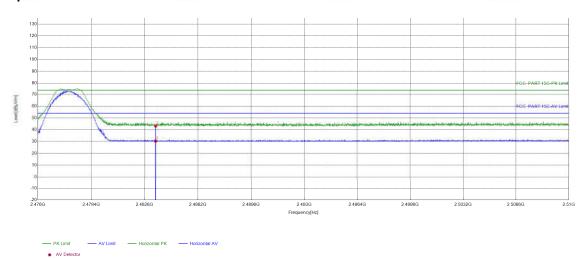
Page 39 of 68 Report No.: EED32P81818401

	(6.70)	(6.3)	16.5
EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	right ear		

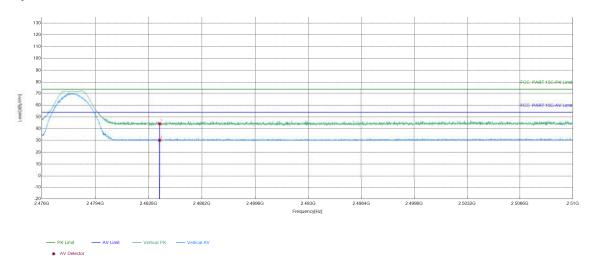

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390	5.77	38.03	43.80	74.00	30.20	PASS	Horizontal	PK		
2	2390	5.77	24.37	30.14	54.00	23.86	PASS	Horizontal	AV		



EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	right ear		Cil


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	5.77	38.50	44.27	74.00	29.73	PASS	Vertical	PK	
2	2390	5.77	24.51	30.28	54.00	23.72	PASS	Vertical	AV	

EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	right ear	CO.	


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5	6.57	36.59	43.16	74.00	30.84	PASS	Horizontal	PK		
2	2483.5	6.57	23.82	30.39	54.00	23.61	PASS	Horizontal	AV		

EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2023/11/20
Remark	right ear		Cil

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	37.70	44.27	74.00	29.73	PASS	Vertical	PK
2	2483.5	6.57	23.65	30.22	54.00	23.78	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

