

	TEST REPOR	RT					
FCC ID:	2ALCFXY-AU029						
Test Report No::	TCT220105E005						
Date of issue::	Jan. 13, 2022						
Testing laboratory:	SHENZHEN TONGCE TESTIN	NG LAB					
Testing location/ address:		ıqiao 5th Industrial Zone, Fuhai en, Guangdong, 518103, People's					
Applicant's name::	Dongguan Xing Yue Electronic	co., Ltd					
Address::	#98 LiWu Swan Industrial Distriction	rict, Qiao Tou Town, Dong Guan					
Manufacturer's name:	Dongguan Xing Yue Electronic	co., Ltd					
Address:	#98 LiWu Swan Industrial Distriction	rict, Qiao Tou Town, Dong Guan					
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013						
Test item description:	LED LANTERN WIRELESS SI	PEAKER					
Trade Mark:	VIVITAR						
Model/Type reference:	XY-AU029, RLT6006, RLT600	6-CM					
Rating(s)::	Rechargeable Li-ion Battery D	C 3.7V					
Date of receipt of test item	Jan. 05, 2022						
Date (s) of performance of test:	Jan. 05, 2022 ~ Jan. 13, 2022						
Tested by (+signature):	: Rieo LIU Pro Chu Jongce						
Check by (+signature):	Beryl ZHAO	Boyl share TCT					
Approved by (+signature):	Tomsin Tomsin						

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1. General Product Information	3
1.1. EUT description	3
1.2. Model(s) list	3
1.3. Operation Frequency	3
2. Test Result Summary	4
3. General Information	
3.1. Test environment and mode	5
3.2. Description of Support Units	5
4. Facilities and Accreditations	
4.1. Facilities	<u> </u>
4.2. Location	6
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	7
5.1. Antenna requirement	
5.2. Conducted Emission	8
5.3. Conducted Output Power	12
5.4. Emission Bandwidth	
5.5. Power Spectral Density	14
5.6. Conducted Band Edge and Spurious Emission	n Measurement15
5.7. Radiated Spurious Emission Measurement	17
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Test item description:	LED LANTERN WIRELESS SPEAKER	
Model/Type reference:	XY-AU029	
Sample Number:	TCT210105E004-0101	
Bluetooth Version:	V5.1 (This report is for BLE)	(C)
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	(3)
Data Rate:	LE 1M PHY, LE 2M PHY	
Number of Channel:	40	
Modulation Type:	GFSK	(C)
Antenna Type:	PCB Antenna	
Antenna Gain:	-0.58dBi	((0)
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

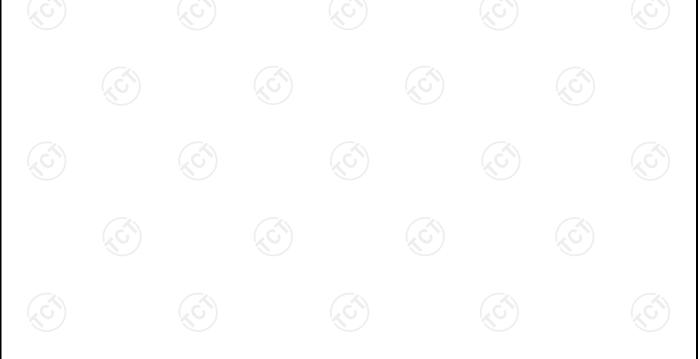
No.	Model No.	Tested with
1	XY-AU029	
Other models	RLT6006, RLT6006-CM	

Note: XY-AU029 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of XY-AU029 can represent the remaining models.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
			:				•••
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Remark: Channel 0, 19 & 39 have been tested.						

Report No.: TCT220105E005



2. Test Result Summary

Requirement	CFR 47 Section	Result		
Antenna requirement	§15.203/§15.247 (c)	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Conducted Peak Output Power	§15.247 (b)(3)	PASS		
6dB Emission Bandwidth	§15.247 (a)(2)	PASS		
Power Spectral Density	§15.247 (e)	PASS		
Band Edge	§15.247(d)	PASS		
Spurious Emission	§15.205/§15.209	PASS		

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. After pre-testing the two earphones, the two earphones are left and right ears respectively; we found that the left earphone is the worst case, so the results are recorded in this report.

3. General Information

3.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	25 °C	25.3 °C					
Humidity:	55 % RH 54 % RH						
Atmospheric Pressure:	1010 mbar 1010 mbar						
Test Software:							
Software Information:	FCC Assist 1.0.2.2						
Power Level:	10						
Test Mode:							
Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery							

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735	/	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

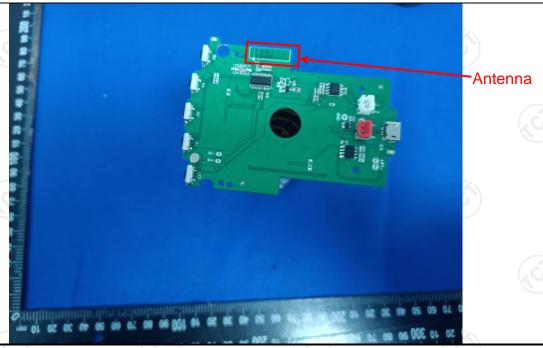
Report No.: TCT220105E005

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is -0.58dBi.

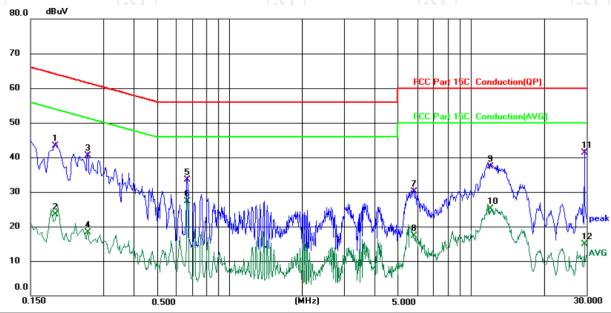
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	<u>(1)</u>	(C)			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto			
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50			
	Refere	nce Plane	1201			
Test Setup: Continue						
Test Mode:	Charging + Transmittin	g Mode				
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test Result:	PASS					

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model Serial Number		Calibration Due					
EMI Test Receiver	R&S ESCI3		100898	Jul. 07, 2022					
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	beck NSLK 8126 8126453 N		Mar. 11, 2022					
Line-5	Line-5 TCT		N/A	Jul. 07, 2022					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: L1 Temperature: 25 (°C) Humidity: 55 %

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Report No.: TCT220105E005

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1900	33.77	9.59	43.36	64.04	-20.68	QP	
2	0.1900	13.85	9.59	23.44	54.04	-30.60	AVG	
3	0.2580	31.06	9.35	40.41	61.50	-21.09	QP	
4	0.2580	8.86	9.35	18.21	51.50	-33.29	AVG	
5	0.6700	24.26	9.18	33.44	56.00	-22.56	QP	
6	0.6700	18.16	9.18	27.34	46.00	-18.66	AVG	
7	5.7859	20.49	9.56	30.05	60.00	-29.95	QP	
8	5.7859	7.81	9.56	17.37	50.00	-32.63	AVG	
9	12.0500	27.78	9.62	37.40	60.00	-22.60	QP	
10	12.0500	15.58	9.62	25.20	50.00	-24.80	AVG	
11 *	29.4500	31.55	9.85	41.40	60.00	-18.60	QP	
12	29.4500	5.00	9.85	14.85	50.00	-35.15	AVG	

Note:

Freq. = Emission frequency in MHz

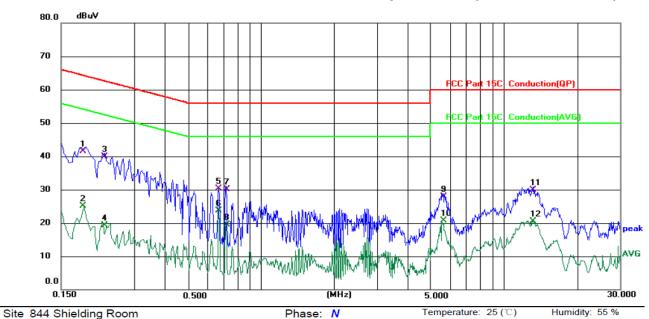
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

/lk. Fr	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
M	Hz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
0.18	335	31.96	9.54	41.50	64.33	-22.83	QP	
0.18	335	15.53	9.54	25.07	54.33	-29.26	AVG	
0.22	260	30.60	9.32	39.92	62.60	-22.68	QP	
0.22	260	10.01	9.32	19.33	52.60	-33.27	AVG	
0.67	700	21.13	9.21	30.34	56.00	-25.66	QP	
0.67	700	14.49	9.21	23.70	46.00	-22.30	AVG	
0.71	180	20.90	9.22	30.12	56.00	-25.88	QP	
0.71	180	10.29	9.22	19.51	46.00	-26.49	AVG	
5.59	980	18.50	9.50	28.00	60.00	-32.00	QP	
5.59	980	11.18	9.50	20.68	50.00	-29.32	AVG	
13.24	120	20.23	9.65	29.88	60.00	-30.12	QP	
13.24	120	10.94	9.65	20.59	50.00	-29.41	AVG	
	0.18 0.22 0.22 0.67 0.67 0.7 5.59 5.59 13.24	k. Freq. MHz 0.1835 0.1835 0.2260 0.2260 0.6700 0.6700 0.7180 0.7180 5.5980 5.5980 13.2420 13.2420	k. Freq. Level MHz dBuV 0.1835 31.96 0.1835 15.53 0.2260 30.60 0.2260 10.01 0.6700 21.13 0.6700 14.49 0.7180 20.90 0.7180 10.29 5.5980 18.50 5.5980 11.18 13.2420 20.23	k. Freq. Level Factor MHz dBuV dB 0.1835 31.96 9.54 0.1835 15.53 9.54 0.2260 30.60 9.32 0.2260 10.01 9.32 0.6700 21.13 9.21 0.6700 14.49 9.21 0.7180 20.90 9.22 0.7180 10.29 9.22 5.5980 18.50 9.50 5.5980 11.18 9.50 13.2420 20.23 9.65	k. Freq. Level Factor ment MHz dBuV dB dBuV 0.1835 31.96 9.54 41.50 0.1835 15.53 9.54 25.07 0.2260 30.60 9.32 39.92 0.2260 10.01 9.32 19.33 0.6700 21.13 9.21 30.34 0.6700 14.49 9.21 23.70 0.7180 20.90 9.22 30.12 0.7180 10.29 9.22 19.51 5.5980 18.50 9.50 28.00 5.5980 11.18 9.50 20.68 13.2420 20.23 9.65 29.88	k. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.1835 31.96 9.54 41.50 64.33 0.1835 15.53 9.54 25.07 54.33 0.2260 30.60 9.32 39.92 62.60 0.2260 10.01 9.32 19.33 52.60 0.6700 21.13 9.21 30.34 56.00 0.6700 14.49 9.21 23.70 46.00 0.7180 20.90 9.22 30.12 56.00 0.7180 10.29 9.22 19.51 46.00 5.5980 18.50 9.50 28.00 60.00 5.5980 11.18 9.50 20.68 50.00 13.2420 20.23 9.65 29.88 60.00	k. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.1835 31.96 9.54 41.50 64.33 -22.83 0.1835 15.53 9.54 25.07 54.33 -29.26 0.2260 30.60 9.32 39.92 62.60 -22.68 0.2260 10.01 9.32 19.33 52.60 -33.27 0.6700 21.13 9.21 30.34 56.00 -25.66 0.6700 14.49 9.21 23.70 46.00 -22.30 0.7180 20.90 9.22 30.12 56.00 -25.88 0.7180 10.29 9.22 19.51 46.00 -26.49 5.5980 18.50 9.50 28.00 60.00 -32.00 5.5980 11.18 9.50 20.68 50.00 -29.32 13.2420 20.23 9.65 29.88 60.00 -30.1	k. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.1835 31.96 9.54 41.50 64.33 -22.83 QP 0.1835 15.53 9.54 25.07 54.33 -29.26 AVG 0.2260 30.60 9.32 39.92 62.60 -22.68 QP 0.2260 10.01 9.32 19.33 52.60 -33.27 AVG 0.6700 21.13 9.21 30.34 56.00 -25.66 QP 0.6700 14.49 9.21 23.70 46.00 -22.30 AVG 0.7180 20.90 9.22 30.12 56.00 -25.88 QP 0.7180 10.29 9.22 19.51 46.00 -26.49 AVG 5.5980 18.50 9.50 28.00 60.00 -32.00 QP 5.5980 11.18 9.50

Note 1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note 2:

Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	EUT.
	Spectrum Analyzer
Test Mode:	Refer to item 3.1
Test Procedure:	Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Special Service Control of the Contr
	Spectrum Analyzer
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:					
Test Mode:	Refer to item 3.1				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 				
Test Result:	PASS				

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

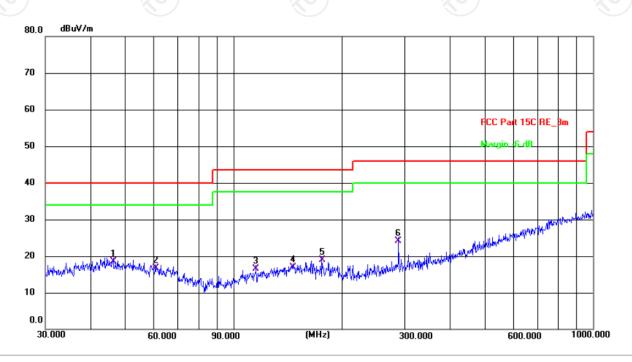
Test Requirement:	FCC Part15	C Section	15.209	(0)		KC			
Test Method:	ANSI C63.10: 2013								
Frequency Range:	9 kHz to 25 GHz								
Measurement Distance:	3 m	3 m							
Antenna Polarization:	Horizontal &	Horizontal & Vertical							
Operation mode:	Refer to item	1 3.1	((C)		CÓ			
	Frequency 9kHz- 150kHz	Detector Quasi-peak		VBW 1kHz	Quas	Remark si-peak Value			
Receiver Setup:	150kHz- 30MHz 30MHz-1GHz	Quasi-peak Quasi-peak	<u>(1)</u>		(,c	si-peak Value si-peak Value			
	Above 1GHz	Peak Peak	1MHz 1MHz	DOHZ 1kHz Qu DOKHZ 30kHz Qu DOKHZ 300KHz Qu MHZ 3MHz MHz MHZ 10Hz A Geld Strength Measurement District 4000/F(KHz) 30 0 100 150 200 500 500 Measurement Distance (meters) 3 3 3 Ow 30MHz	Р	eak Value erage Value			
Limit:	Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GH:	490 705 30 65 90 60 Field (micro	(microvolts 2400/F(l 24000/F) 30 100 150 200	Measure Distan (mete	Dista	pasurement ance (meters) 300 30 30 3 3 3 3 3 3 3 Detector Average Peak			
Test setup:	For radiated Disconnection of the second control of the second co	Turn table	Im	Pre -		ater C			

1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final

measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 3.1 for details	TESTING CENTRE TECHNOLOGY	Report No.: TCT220105E0
level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 3.1 for details		maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB
Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 3.1 for details		level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured;
		 Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
Test results: PASS	Test mode:	Refer to section 3.1 for details
	Test results:	PASS (6)

5.7.2. Test Instruments

	Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	turer Model S		Calibration Due				
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022				
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022				
Pre-amplifier	SKET	LNPA_0118G-45	SK2021012 102	Mar. 11, 2022				
Pre-amplifier	SKET	LNPA_1840G-50	SK2021092 03500	Apr. 08, 2022				
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022				
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022				
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022				
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023				
Antenna Mast	Keleto	RE-AM	N/A	N/A				
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022				
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022				
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				



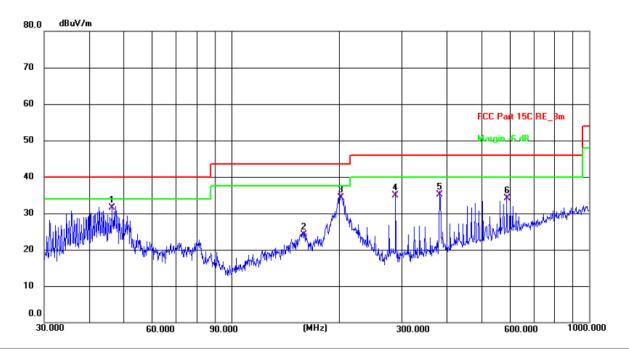
5.7.3. Test Data

Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site #1 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 25.3(C) Humidity: 54 %


Limit: FCC Part 15C RE 3m Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	46.3402	4.72	13.85	18.57	40.00	-21.43	QP	Р	
2	60.7044	4.22	12.44	16.66	40.00	-23.34	QP	Р	
3	115.7256	4.78	11.76	16.54	43.50	-26.96	QP	Р	
4	146.3735	3.45	13.39	16.84	43.50	-26.66	QP	Р	
5	176.2686	6.53	12.29	18.82	43.50	-24.68	QP	Р	
6	287.9904	10.44	13.76	24.20	46.00	-21.80	QP	Р	

Vertical:

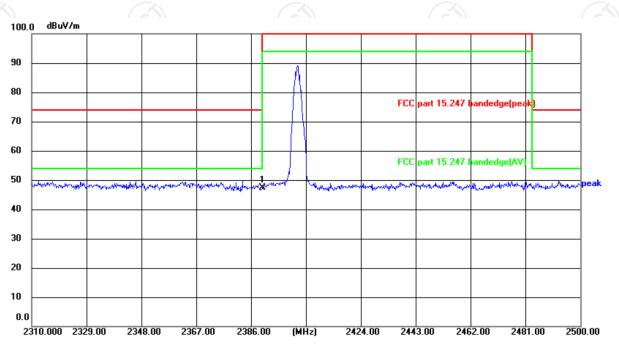
Site #1 3m Anechoic Chamber Polarization: Vertical Temperature: 25.3(C) Humidity: 54 %

Limit: FCC Part 15C RE 3m

Power: DC 3.7 V

	t. i CO Fait 130	<u> </u>			FOW				
No	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	* 46.3402	17.64	13.85	31.49	40.00	-8.51	QP	Р	
2	159.7844	10.32	13.88	24.20	43.50	-19.30	QP	Р	
3	202.1004	23.60	10.73	34.33	43.50	-9.17	QP	Р	
4	287.9904	21.20	13.76	34.96	46.00	-11.04	QP	Р	
5	382.5878	18.98	16.12	35.10	46.00	-10.90	QP	Р	
6	588.9050	12.91	21.13	34.04	46.00	-11.96	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported


- 2. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (middle, channel) was submitted only.
- Freq. = Emission frequency in MHz
 Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB)
 Correction Factor= Antenna Factor + Cable loss Pre-amplifier
 Limit (dBμV/m) = Limit stated in standard
 Margin (dB) = Measurement (dBμV/m) Limits (dBμV/m)
 * is meaning the worst frequency has been tested in the test frequency range

Test Result of Radiated Spurious at Band edges

Lowest channel 2402:

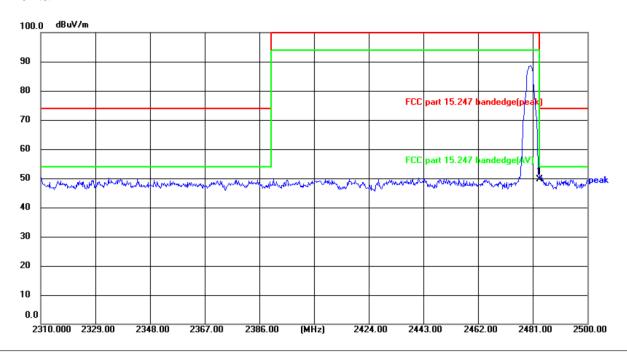
Horizontal:

Site Polarization: Horizontal Temperature: $25(^{\circ}\text{C})$ Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Humidity: 55%

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2390.000	66.14	-18.69	47.45	74.00	-26.55	peak

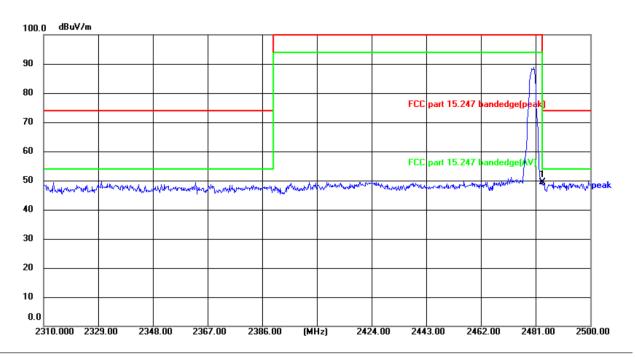
Vertical:

Site Polarization: Vertical Temperature: $25(^{\circ}\text{C})$ Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Humidity: 55%


	o part ro.z m banace	ago(pount)	1 01101.			,	
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2390.000	66.16	-18.69	47.47	74.00	-26.53	peak

Highest channel 2480:

Horizontal:



Site Polarization: Horizontal Temperature: 25(°C) Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Humidity: 55 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2483.500	67.96	-18.40	49.56	74.00	-24.44	peak

Vertical:

Site Polarization: Vertical Temperature: $25(^{\circ}\text{C})$ Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Humidity: 55%

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2483.500	67.88	-18.40	49.48	74.00	-24.52	peak

Note: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

Above 1GHz

Low channe	el: 2402 N	lHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	۸۱/	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	44.15		0.66	44.81		74	54	-9.19
7206	Н	34.84		9.50	44.34		74	54	-9.66
	Н								
							T		
4804	V	43.78		0.66	44.44		74	54	-9.56
7206	V	34.53	-4 _x C	9.50	44.03	(C) -}-	74	54	-9.97
	V								

Middle channel: 2440 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Η	45.58	-	0.99	46.57	-	74	54	-7.43
7320	Η	35.96		9.87	45.83		74	54	-8.17
	H				/				
Į.			KO					(C)	
4880	٧	45.73)	0.99	46.72	}	74	54	-7.28
7320	V	35.91		9.87	45.78		74	54	-8.22
	V	 /.	-	-					

High chann	nel: 2480 N	ИHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	H	42.45	+ 6	1.33	43.78		74	54	-10.22
7440	Н	32.87	-	10.22	43.09	1	74	54	-10.91
	Н								
4960	V	43.52		1.33	44.85		74	54	-9.15
7440	V	33.64		10.22	43.86		74	54	-10.14
) 	V				/		-		

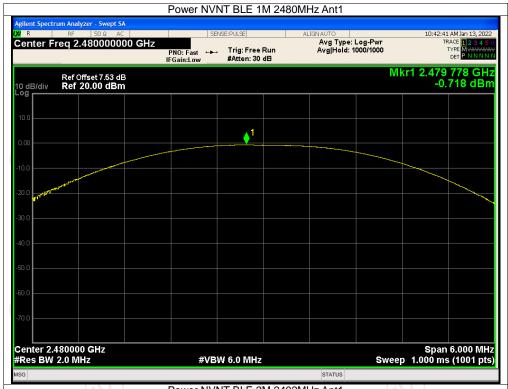
Note:

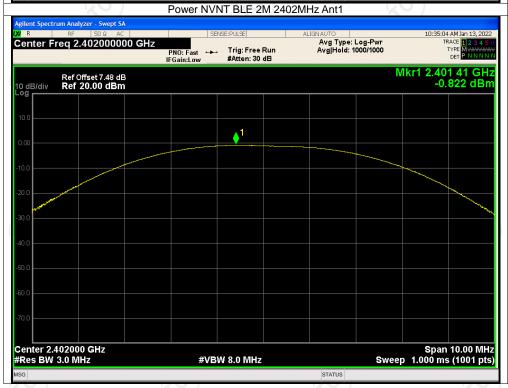
- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. All the restriction bands are compliance with the limit of 15.209.
- 7. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

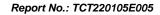
Appendix A: Test Result of Conducted Test

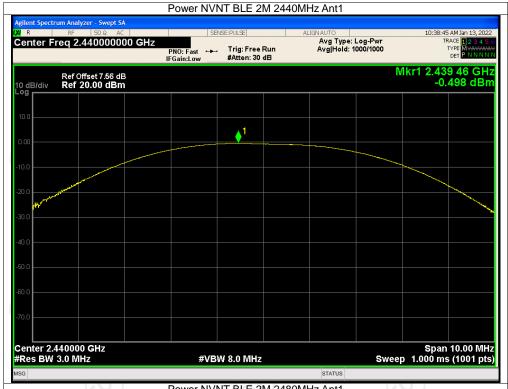
Maximum Conducted Output Power

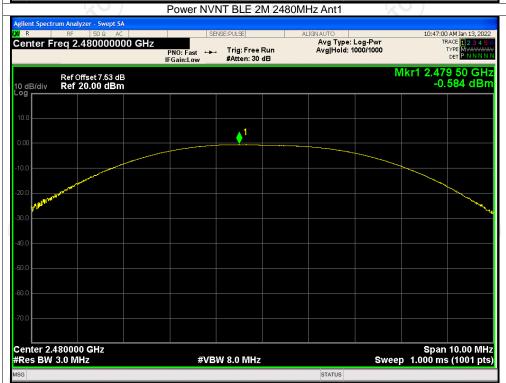
	maximum conducted catpact one										
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict					
NVNT	BLE 1M	2402	Ant1	-1.050	30	Pass					
NVNT	BLE 1M	2440	Ant1	-0.616	30	Pass					
NVNT	BLE 1M	2480	Ant1	-0.718	30	Pass					
NVNT	BLE 2M	2402	Ant1	-0.822	30	Pass					
NVNT	BLE 2M	2440	Ant1	-0.498	30	Pass					
NVNT	BLE 2M	2480	Ant1	-0.584	30	Pass					





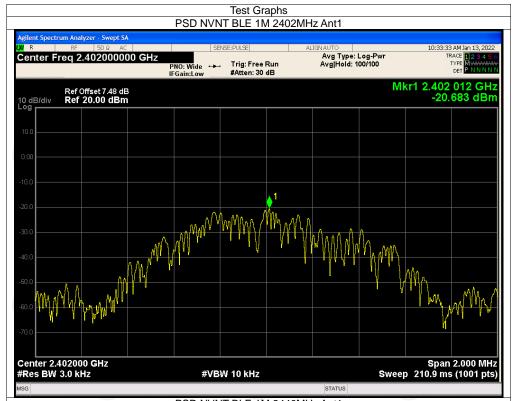






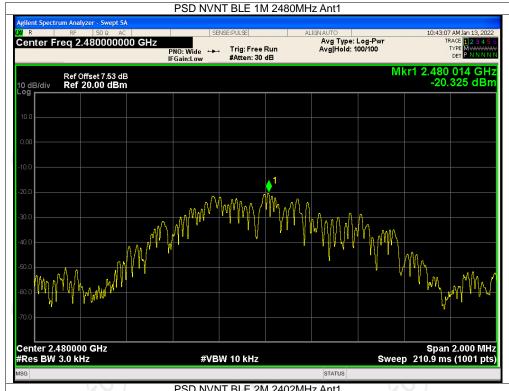
-6dB Bandwidth

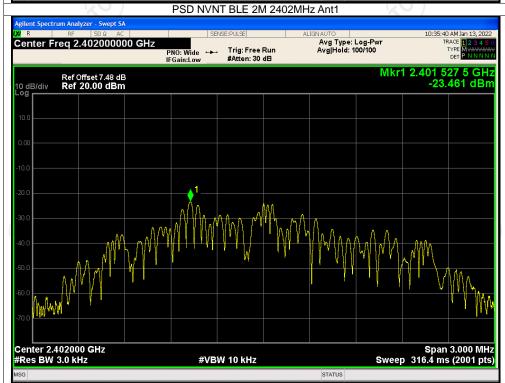
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.505	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.502	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.502	0.5	Pass
NVNT	BLE 2M	2402	Ant1	0.864	0.5	Pass
NVNT	BLE 2M	2440	Ant1	0.864	0.5	Pass
NVNT	BLE 2M	2480	Ant1	0.866	0.5	Pass

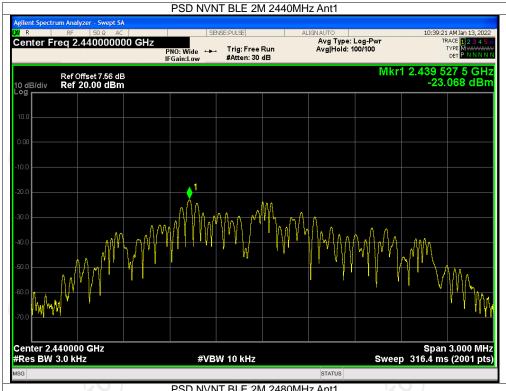


Maximum Power Spectral Density Level

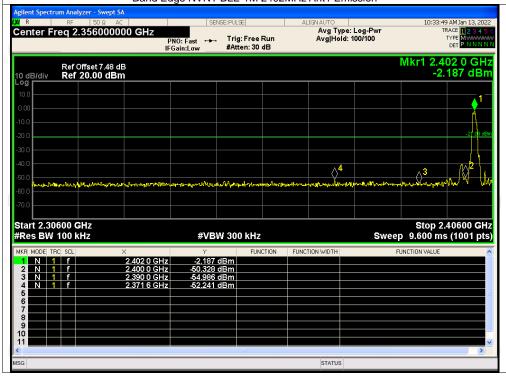
			<u> </u>			
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	Ant1	-20.683	8	Pass
NVNT	BLE 1M	2440	Ant1	-20.171	8	Pass
NVNT	BLE 1M	2480	Ant1	-20.325	8	Pass
NVNT	BLE 2M	2402	Ant1	-23.461	8	Pass
NVNT	BLE 2M	2440	Ant1	-23.068	8	Pass
NVNT	BLE 2M	2480	Ant1	-23.117	8	Pass
			8			



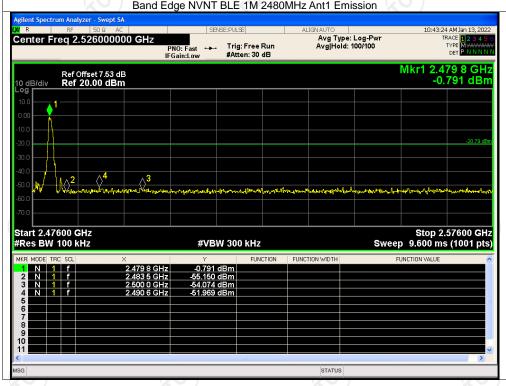


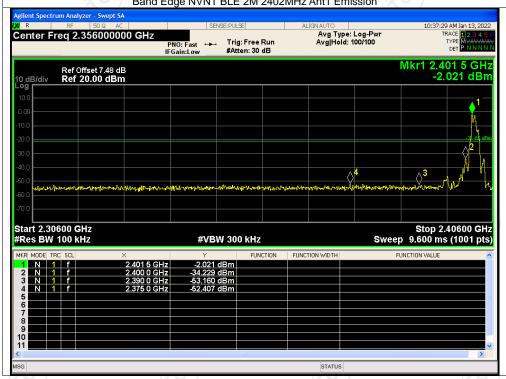


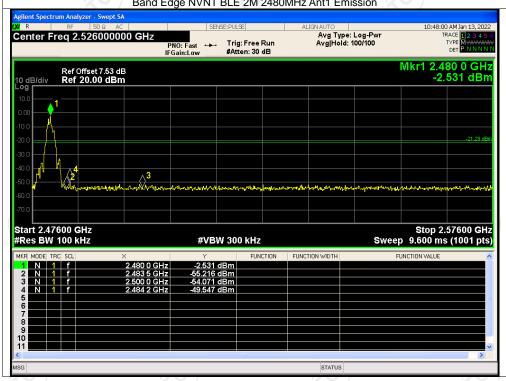

Report No.: TCT220105E005

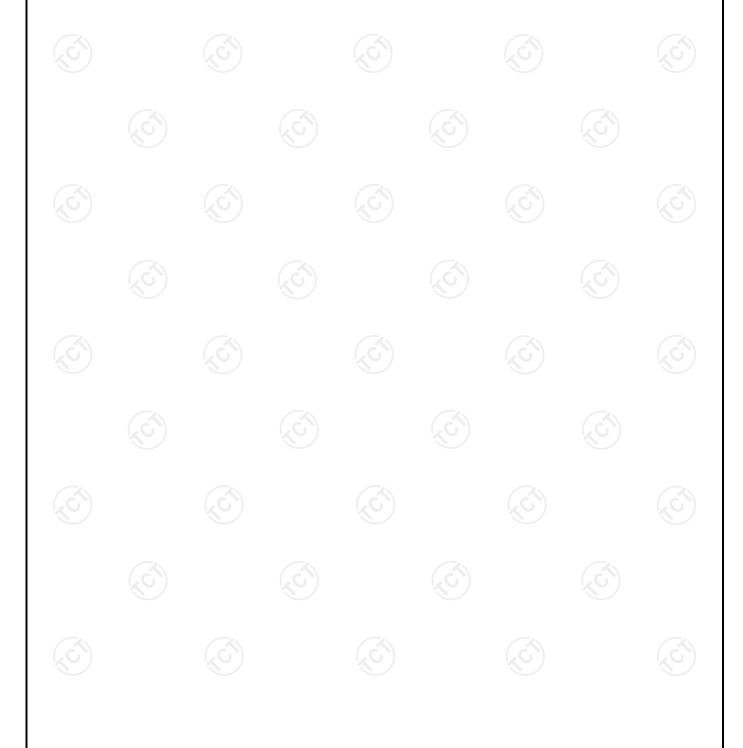

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-51.15	-20	Pass
NVNT	BLE 1M	2480	Ant1	-51.18	-20	Pass
NVNT	BLE 2M	2402	Ant1	-50.75	-20	Pass
NVNT	BLE 2M	2480	Ant1	-48.26	-20	Pass
	·					

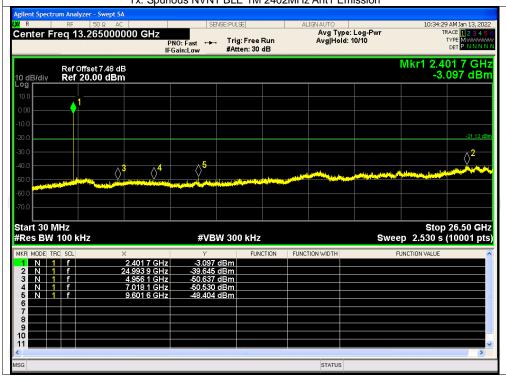




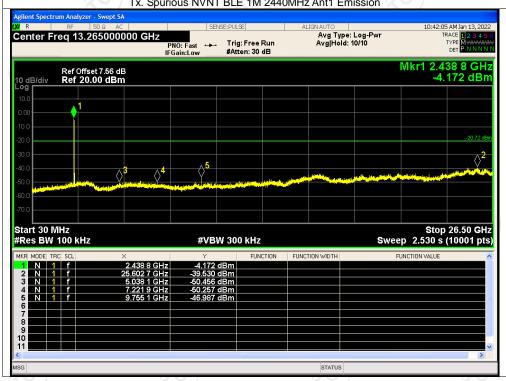


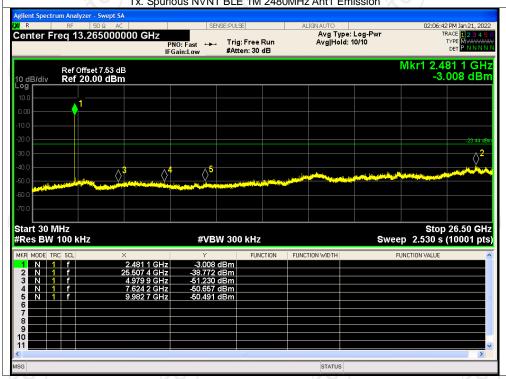


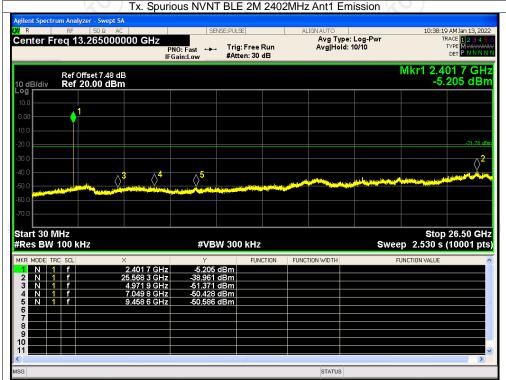
Report No.: TCT220105E005

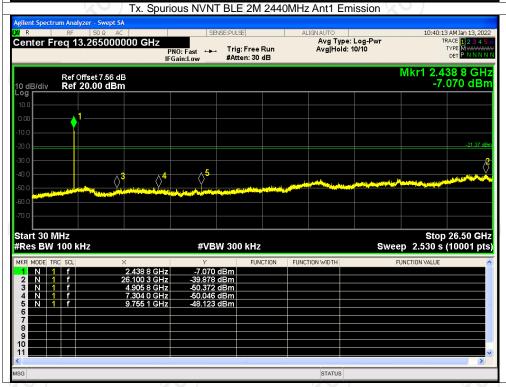

Conducted R	F S	purious	Em	ission
-------------	-----	---------	----	--------

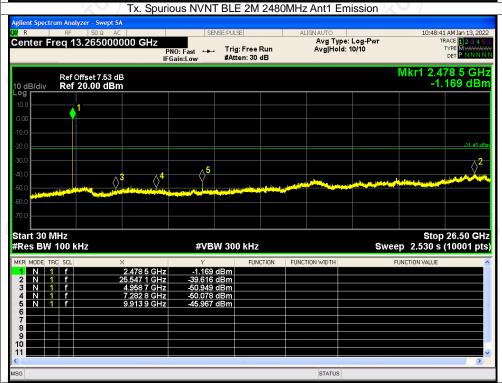
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict			
NVNT	BLE 1M	2402	Ant1	-38.52	-20	Pass			
NVNT	BLE 1M	2440	Ant1	-38.81	-20	Pass			
NVNT	BLE 1M	2480	Ant1	-38.28	-20	Pass			
NVNT	BLE 2M	2402	Ant1	-37.18	-20	Pass			
NVNT	BLE 2M	2440	Ant1	-38.50	-20	Pass			
NVNT	BLE 2M	2480	Ant1	-38.17	-20	Pass			











Report No.: TCT220105E005

Appendix B: Photographs of Test Setup

Refer to the test report No. TCT220105E004

Appendix C: Photographs of EUT

Refer to the test report No. TCT220105E004

