

FCC TEST REPORT

Test report On Behalf of Dongguan Xing Yue Electronic Co., Ltd For Dual Wireless Charging Pad Model No.: XO-9540

FCC ID: 2ALCFXO-9540

Prepared for : Dongguan Xing Yue Electronic Co., Ltd #98 LiWu Swan Industrial District, Qiao Tou Town, Dong Guan, Guang Dong, China

- Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China
- Date of Test: Oct. 09, 2018 to Oct. 16, 2018

Date of Report: Oct. 16, 2018

Report Number: HK1810101250E

TEST RESULT CERTIFICATION

Applicant's name	Dongguan Xing Yue Electronic Co., Ltd
Address:	#98 LiWu Swan Industrial District, Qiao Tou Town, Dong Guan, Guang Dong, China
Manufacture's Name:	Dongguan Xing Yue Electronic Co., Ltd
Address:	#98 LiWu Swan Industrial District, Qiao Tou Town, Dong Guan, Guang Dong, China
Product description	
Trade Mark:	N/A
Product name:	Dual Wireless Charging Pad
Model and/or type reference :	XO-9540
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.207, 15.209, 15.203 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	
Date of Issue	Oct. 16, 2018
Test Result:	Pass

2

:

Testing Engineer

Gary Qian)

Technical Manager

Edan Hu

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

Table of Contents	Page
1. TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 OPERATION OF EUT DURING TESTING	6
2.3 DESCRIPTION OF TEST SETUP	6
2.4 MEASUREMENT INSTRUMENTS LIST	7
3. RADIATED EMISSION	8
3.1TEST LIMIT	8
3.2. MEASUREMENT PROCEDURE	9
3.3. TEST SETUP	10
3.4. TEST RESULT	11
4. 20DB BANDWIDTH	14
4.1. MEASUREMENT PROCEDURE	14
4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
4.3. MEASUREMENT RESULTS	15
5. FCC LINE CONDUCTED EMISSION TEST	16
5.1. LIMITS OF LINE CONDUCTED EMISSION TEST	16
5.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	16
5.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	17
5.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	17
5.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	18
6. PHOTOGRAPH OF TEST	20
7. PHOTOGRAPH OF EUT	22

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.203	Antenna Requirement	Compliant
§15.209	Radiated Emission	Compliant
§15.215	20dB bandwidth	Compliant
§15.207	Conducted Emission	Compliant

1.2 TEST FACILITY

 Test Firm
 : Shenzhen HUAK Testing Technology Co., Ltd.

 Address
 : 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

 Designation Number:
 : CN1229

 Test Firm Registration Number : 616276

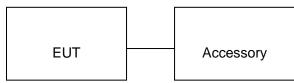
1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Operation Frequency	123.8KHz
Maximum field strength	59.46dBuV/m(Peak)@3m
Number of channels	1
Antenna Designation	Integrated Antenna (Met 15.203 Antenna requirement)
Hardware Version	HTL-HQ030V1
Software Version	V1.0
Power Supply	DC5V



2.2 OPERATION OF EUT DURING TESTING

NO.	TEST MODE DESCRIPTION	
1	Wireless charging Mode(Full load)	
2	Wireless charging Mode(half load)	
3	Wireless charging Mode(Null load)	
Note: 1. The mode 1 was the worst case and only the data of the worst case record in this report.		

2.3 DESCRIPTION OF TEST SETUP

Configure :

Item	Equipment	Model No.	ID or Specification	Remark
1	Wireless electronic Load		10W(5W*2)	Support
2	Adapter	CD05	DC5V	AE

2.4 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2017	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
3.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
4.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
5.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
6.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
7.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
8.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
9.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year

3.1TEST LIMIT

Standard FCC 15.209

Frequency	Distance	Field Strengths Limit	
(MHz)	Meters	μV/m	dB(µV)/m
0.009 ~ 0.490	300	2400/F(kHz)	
0.490 ~ 1.705	30	24000/F(kHz)	
1.705 ~ 30	30	30	
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	Other:74.0 dB(µV)/m	(Peak) 54.0 dB(µV)/m
		(Average)	
Remark: (1) Emission level dB μ V = 20 log Emission level μ V/m			

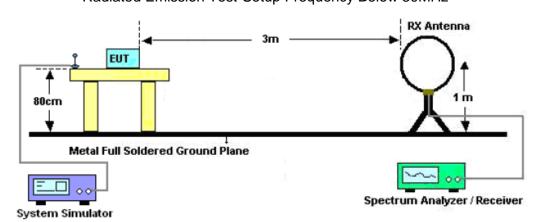
(2) The smaller limit shall apply at the cross point between two frequency bands.

(3) Distance is the distance in meters between the measuring instrument, antenna and the

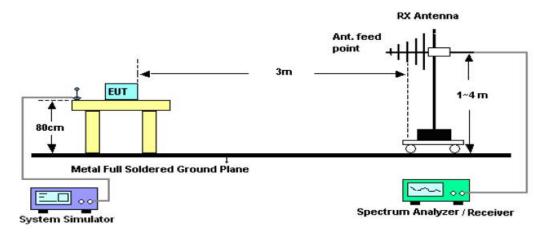
closest point of any part of the device or system.

3.2. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

The following table is the setting of spectrum analyzer and receiver.

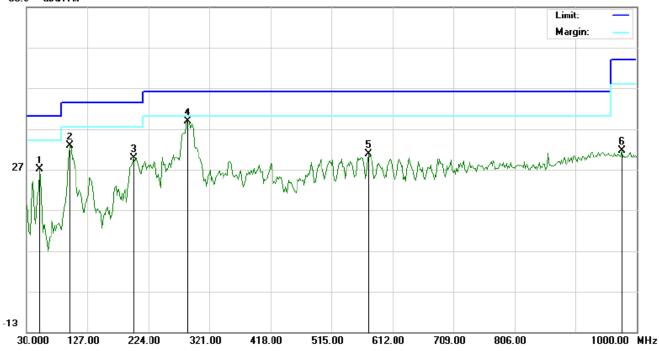

Receiver Parameter	Setting				
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP				
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP				
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP				

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION BELOW 30MHZ

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) Peak	Limit dB(uV/m) Average	Margin dB	Pass/Fail
0.1238	Face	49.06	10.4	59.46	105.75	46.29	Pass
0.1238	Side	36.95	10.4	47.35	105.75	58.40	Pass


Note: No other emissions found between lowest internal used/generated frequencies to 30MHz. The peak level of the emission is less than the average limit, so the average level shall be less than the limit without test.

RADIATED EMISSION 30MHz- 1GHZ

EUT :	Dual Wireless Charging Pad	Model Name. :	XO-9540
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	Normal
Test Mode :	Mode 1	Polarization :	Horizontal

66.9 dBuV/m

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		51.0167	16.94	10.15	27.09	40.00	-12.91	peak			
2		99.5167	22.88	10.00	32.88	43.50	-10.62	peak			
3		201.3667	17.88	11.86	29.74	43.50	-13.76	peak			
4	*	287.0500	25.66	13.21	38.87	46.00	-7.13	peak			
5		573.2000	7.65	23.06	30.71	46.00	-15.29	peak			
6		977.3667	1.81	29.74	31.55	54.00	-22.45	peak			

RESULT: PASS

EUT :	Dual Wireless Charging Pad	Model Name. :	XO-9540
Temperature :	20 ℃	Relative Humidtity :	48%
Pressure :	1010 hPa	Test Voltage :	Normal
Test Mode :	Mode 1	Polarization :	Vertical
00 0 ID VI			

66.9 dBu¥/m

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	39.7000	27.17	8.51	35.68	40.00	-4.32	peak			
2		89.8164	26.31	5.31	31.62	43.50	-11.88	peak			
3		131.8498	23.86	11.80	35.66	43.50	-7.84	peak			
4		280.5833	21.21	14.82	36.03	46.00	-9.97	peak			
5		612.0000	3.80	23.00	26.80	46.00	-19.20	peak			
6		961.2000	2.58	29.89	32.47	54.00	-21.53	peak			

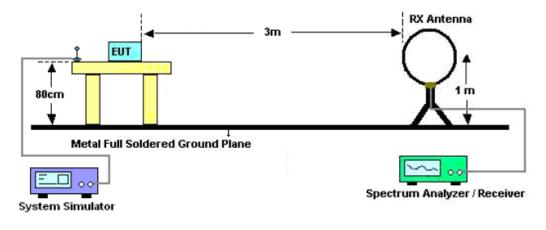
RESULT: PASS

Note:

Factor=Antenna Factor + Cable loss, Margin=Result-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The mode 1 which operate with maximum output power was the worst case and only the data of the worst case record in this report.



4. 20DB BANDWIDTH

4.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2, Set the EUT Work on operation frequency.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

4.3. MEASUREMENT RESULTS

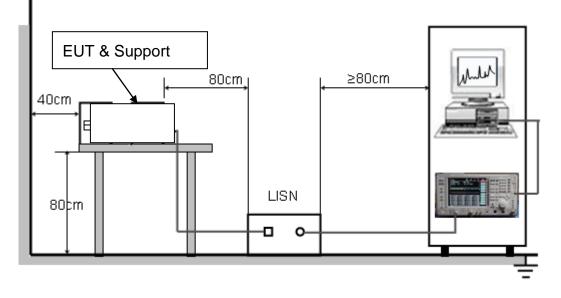
TEST ITEM	20DB BANDWIDTH
TEST MODULATION	FSK

Frequency (KHz)	Test Data (Hz)	Criteria		
123.8	244	PASS		

TEST PLOT OF BANDWIDTH

Keysight Spectrum Analyzer - Occupied BW					
M RL RF 50 Ω AC Center Freq 123.800 kHz		SENSE:INT ter Freq: 123.800 kHz		Std: None	Frequency
		j:FreeRun Avg∣Hol ten:0dB	d:>10/10 Radio	Device: BTS	
10 dB/div Ref -30.00 dBm					
-40.0					Center Freq
-50.0					123.800 kHz
-60.0					
-70.0					
-80.0					
-90.0					
-110					
-120					
Conton 400 0 kHz				Onen 4 kille	
Center 123.8 kHz #Res BW 100 Hz		#VBW 300 Hz		Span 1 kHz Sweep FFT	CF Step 100 Hz
		Total Power	-62.6 dBm		<u>Auto</u> Man
Occupied Bandwidth	00411-	Total Fower	-02.0 UBII		
	234 Hz				Freq Offset
Transmit Freq Error	2 Hz	% of OBW Pow	ver 99.00 %		0 Hz
x dB Bandwidth	244 Hz	x dB	-20.00 dE	}	
MSG			STATUS		

5. FCC LINE CONDUCTED EMISSION TEST 5.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

1. The lower limit shall apply at the transition frequency.

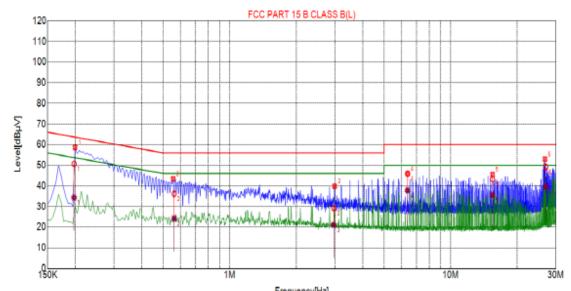
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

5.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

5.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received charging voltage by adapter which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


5.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

5.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION TEST-L

rec	lne	ncj	/[HZ	

Susp	Suspected List									
NO.	Freq.	Level	Factor	Limit	Margin	Detector				
	[MHz]	[dBµV]	[dB]	[dBµV]	[dB]					
1	0.1995	58.60	10.03	63.63	5.03	PK				
2	0.5550	43.38	10.06	56.00	12.62	PK				
3	2.9850	39.92	10.22	56.00	16.08	PK				
4	6.3915	45.89	10.22	60.00	14.11	PK				
5	15.4905	45.45	9.97	60.00	14.55	PK				
6	26.7495	53.03	10.26	60.00	6.97	PK				

Final Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit (dBµV)	QP Margin (dB)	AV Value [dBµV]	AV Limit [dBµV]	AV Margin (dB)
1	0.1975	10.03	50.70	63.71	13.01	34.28	53.71	19.43
2	0.5605	10.06	36.20	56.00	19.80	24.26	46.00	21.74
3	2.9586	10.21	29.32	56.00	26.68	21.11	46.00	24.89
4	6.3861	10.22	45.90	60.00	14.10	37.88	50.00	12.12
5	15.4681	9.97	43.28	60.00	16.72	35.57	50.00	14.43
6	26.9570	10.26	49.26	60.00	10.74	39.69	50.00	10.31

a

RESULT: PASS

LINE CONDUCTED EMISSION TEST-N

Frequency[Hz]

Susp	Suspected List							
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector		
1	0.1680	54.54	10.01	65.06	10.52	PK		
2	0.1905	51.86	10.04	64.02	12.16	PK		
3	0.9645	39.94	10.06	56.00	16.06	PK		
4	1.5630	40.91	10.11	56.00	15.09	PK		
5	10.6395	46.53	10.03	60.00	13.47	PK		
6	28.8465	51.22	10.25	60.00	8.78	PK		

Final Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit (dBµV)	QP Margin (dB)	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.1697	10.02	48.15	64.98	16.83	30.63	54.98	24.35
2	0.1902	10.04	47.55	64.03	16.48	31.70	54.03	22.33
3	0.9673	10.06	36.29	56.00	19.71	25.25	46.00	20.75
4	1.5474	10.11	34.03	56.00	21.97	24.13	46.00	21.87
5	10.6336	10.03	43.67	60.00	16.33	36.22	50.00	13.78
6	28.9283	10.26	48.68	60.00	11.32	43.74	50.00	6.26
		_		2				-

RESULT: PASS

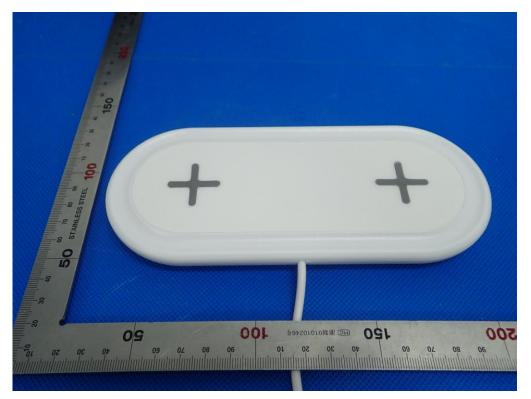
Note: The mode 1 which operate with maximum output power was the worst case and only the data of the worst case record in this report.

6. PHOTOGRAPH OF TEST

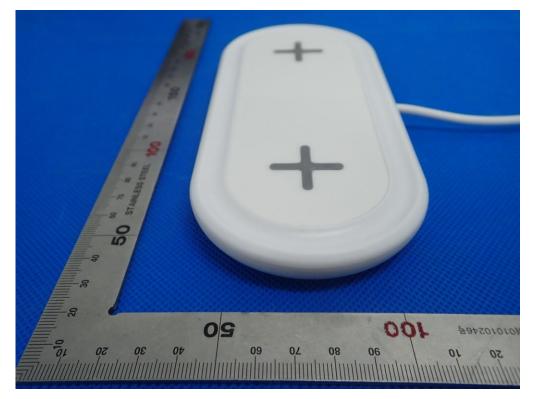
Conducted Emission

TOP VIEW OF EUT 8 -22 50 -8 20 001 80 60 70 STAINLESS 50 40 8 99 100 49120101018HT 300 120 500 TAND 520

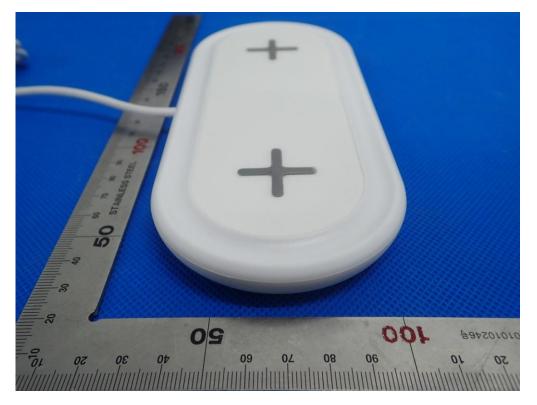
BOTTOM VIEW OF EUT



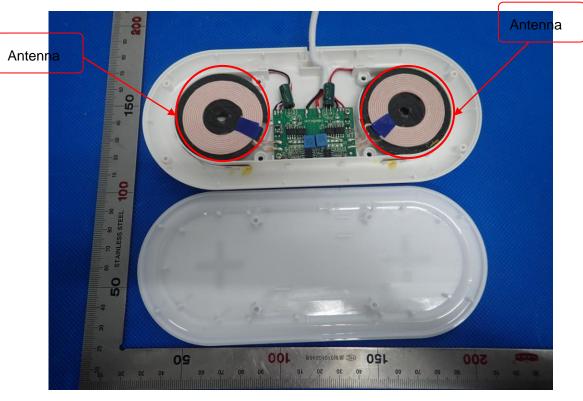
FRONT VIEW OF EUT



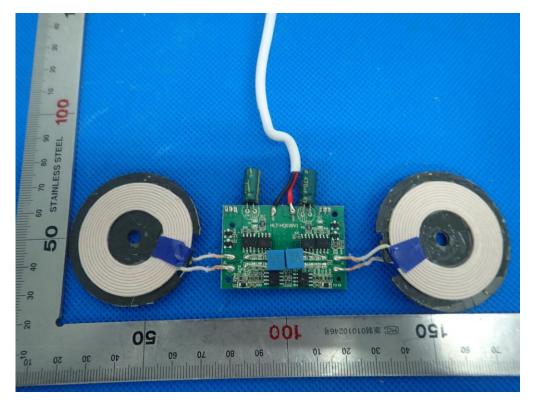
BACK VIEW OF EUT



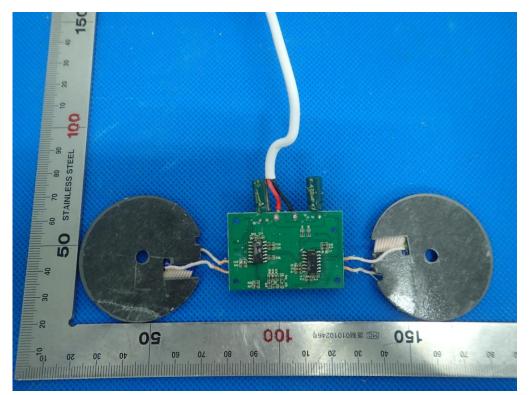
LEFT VIEW OF EUT



RIGHT VIEW OF EUT



OPEN VIEW-1 OF EUT



OPEN VIEW-2 OF EUT

INTERNAL VIEW-1 OF EUT

