FCC TEST REPORT

For

Dongguan Xing Yue Electronic co., Ltd

Wireless charger

Test Model: XY-OT013-1

Prepared for : Dongguan Xing Yue Electronic co., Ltd

Address #98 LiWu Swan Industrial District, Qiao Tou Town, Dong Guan

City, Guang Dong, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing

Street, Baoan District, Shenzhen, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : February 24, 2021

Number of tested samples : 2

Address

Serial number 210218024A-1(Engineer sample), 210218024A-2(Normal

• sample)

Date of Test : February 24, 2021 ~ February 26, 2021

Date of Report : February 27, 2021

FCC TEST REPORT FCC CFR 47 PART 15C

Report Reference No.: LCS210218024AEA

Date Of Issue: February 27, 2021

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address . 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street,

Baoan District, Shenzhen, China

Testing Location/ Procedure....... Partial application of Harmonised standards

Applicant's Name: Dongguan Xing Yue Electronic co., Ltd

Address #98 LiWu Swan Industrial District, Qiao Tou Town,Dong Guan

City, Guang Dong, China

Test Specification

Standard.....: FCC CFR 47 PART 15C

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Wireless charger

Trade Mark: N/A

Test Model: XY-OT013-1

Result: Positive

Compiled by:

Supervised by:

Approved by:

Ray Yang/ Administrators

Jin Wang/ Technique principal

Gavin Liang/ Manager

FCC TEST REPORT

Test Report No.: LCS210218024AEA February 27, 2021

Date of issue

Test Model.....: XY-OT013-1 EUT.....: : Wireless charger Applicant..... : Dongguan Xing Yue Electronic co., Ltd #98 LiWu Swan Industrial District, Qiao Tou Town,Dong Guan City,Guang Dong,China Address..... Telephone.....:: : / Fax.....: : / Manufacturer..... : Dongguan Xing Yue Electronic co., Ltd #98 LiWu Swan Industrial District, Qiao Tou Town,Dong Guan Address..... City, Guang Dong, China Telephone.....:: : / Fax.....: : / Factory.....: Dongguan Xing Yue Electronic co., Ltd #98 LiWu Swan Industrial District, Qiao Tou Town,Dong Guan Address..... City, Guang Dong, China Telephone.....: : / Fax.....: : /

Test Result Positive	
----------------------	--

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ALCFOT013-1 Report No.: LCS210218024AEA

Revision History

Revision	Issue Date	Revisions	Revised By
000	February 27, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1.	GENERAL INFORMATION	6
	1.1 Description of Device (EUT)	6
	1.2 Support equipment List	6
	1.3 External I/O Cable	
	1.4 Description of Test Facility	6
	1.5 Statement of the Measurement Uncertainty	7
	1.6 Measurement Uncertainty	
	1.7 Description of Test Modes	
	TEST METHODOLOGY	
	2.1 EUT Configuration	
	2.2 EUT Exercise	
	2.3 General Test Procedures	
	2.3.1 Conducted Emissions	
	2.3.2 Radiated Emissions	
	2.4. Test Sample	
	SYSTEM TEST CONFIGURATION	
	3.1 Justification	
	3.2 EUT Exercise Software	
	3.3 Special Accessories	
	3.4 Block Diagram/Schematics	
	3.5 Equipment Modifications	
	SUMMARY OF TEST EQUIPMENT	
	SUMMARY OF TEST RESULT	
6.	POWER LINE CONDUCTED MEASUREMENT	12
7.	RADIATED EMISSION MEASUREMENT	15
	7.1. Block Diagram of Test Setup	
	7.2. Radiated Emission Limit	16
	7.3. EUT Configuration on Measurement	
	7.4. Operating Condition of EUT	16
	7.5. Measuring Setting	
	7.6. Test Procedure	
	7.7. Test Results	
	20 DB BANDWIDTH MEASUREMENT	
	8.1. Block Diagram of Test Setup	
	8.2. Test Procedure	
	8.3. Test Results	
9.	PHOTOGRAPHS OF TEST SETUP	24
10	. EXTERNAL PHOTOGRAPHS OF THE EUT	24
		24

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : Wireless charger

Test Model : XY-OT013-1

Power Supply Input: DC 5V/3A, 9V/2A

Wireless Charger: 10W

Hardware Version : /
Software Version : /

Wireless Charging :

Operating Frequency

: 110.0~205.0KHz

Modulation Type : Continuous Wave

Antenna Type : Coil Antenna

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
OPPO	Adapter	OP52KAUH		SDOC
	Wireless charging load	15W	L06252351	SDOC

Note: The adapter is supplied by lab and only use tested.

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
Type-C Port	1	1.5m, unshielded

1.4 Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	: [200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:]	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description of Test Modes

Equipment under test was operated during the measurement under the following conditions:

Charging and communication mode

Modulation Type: CW (Continuous Wave)

Test Modes					
Mode 1	AC/DC Adapter + EUT (Fully load)	Record			
Mode 2	AC/DC Adapter + EUT (Half load)	Pre-tested			
Mode 3	AC/DC Adapter + EUT (No load)	Pre-tested			
Note: All	Note: All test modes were pre-tested, but we only recorded the worst case in this report.				

For AC conducted emission, pre-test at both AC 120V/60Hz and AC 240V/50Hz, recorded worst case; For AC conducted emission, pre-test at both AC charge from power adapter modes, recorded worst case.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207 and DA 00-705.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the normal operating mode for Hopping Numbers and Dwell Time test and a continuous transmits mode for other tests.

According to its specifications, the EUT must comply with the requirements of the Section 15.207 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz and 1.5 m above ground plane above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1(210218024A-1)	Engineer sample – continuous transmit
Sample 2(210218024A-2)	Normal sample – Intermittent transmit

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a normal condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
1	PC	Lenovo	Ideapad	A131101550	1	/	SDOC
2	Power adapter	Lenovo	CPA-A090	36200414	1.00m	unshielded	SDOC
3	Power adapter	Mass Power	ED1-0501 00UA	1	1.00m	unshielded	SDOC

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

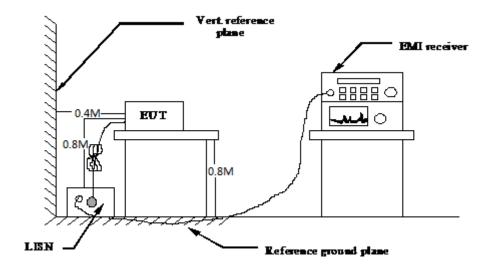
Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2020-06-17	2021-06-16
2	SPECTRUM ANALYZER	R&S	FSP40	100503	2020-11-17	2021-11-16
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2021-09-25	2021-09-25
4	Positioning Controller	MF	MF-7082	1	2020-06-22	2021-06-21
5	EMI Test Software	EZ	EZ-EMC	1	N/A	N/A
6	EMI Test Receiver	R&S	ESR 7	101181	2020-06-22	2021-06-21
7	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-07-26	2021-07-25
8	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26	2021-07-25
9	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
10	RF Cable-R03m	Jye Bao	RG142	CB021	2020-06-22	2021-06-21
11	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2020-06-22	2021-06-21
12	EMI Test Receiver	R&S	ESPI	101840	2020-06-22	2021-06-21
13	Artificial Mains	R&S	ENV216	101288	2020-06-22	2021-06-21
14	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2020-06-22	2021-06-21


5. SUMMARY OF TEST RESULT

FCC Rules	Description of Test	Test Sample	Result
§15.213	20 dB Bandwidth	Sample 1	Compliant
§15.209	Radiated Spurious Emissions	Sample 1	Compliant
§15.207(a)	AC Conducted Emissions	Sample 1	Compliant

Remark: The measurement uncertainty is not included in the test result. N/A – Not Applicable!!!

6. POWER LINE CONDUCTED MEASUREMENT

6.1. Block Diagram of Test Setup

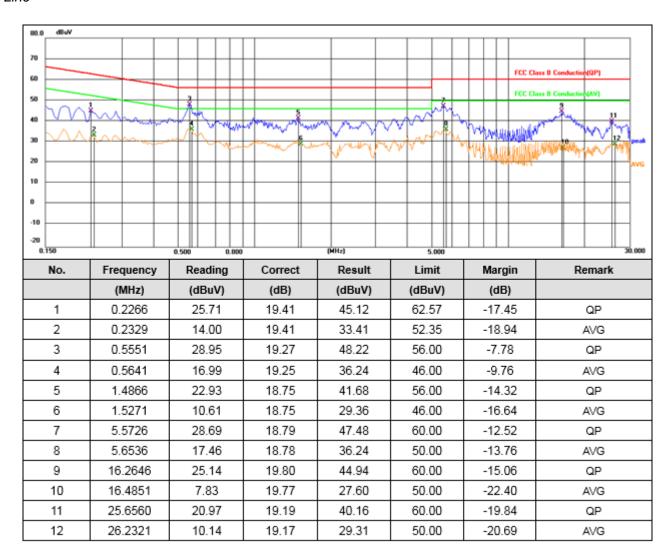
6.2. Standard Applicable

According to §15.207: For all the consumer devices which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

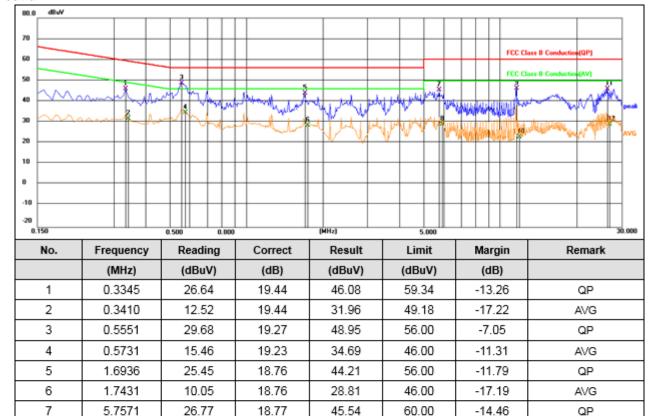
Frequency Range	Limits (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

^{*} Decreasing linearly with the logarithm of the frequency

6.3 Test Results


PASS

The test data please refer to following page.


Temperature	23.3℃	Humidity	53.7%	
Test Engineer	Ken He	Configurations	Transmit	

AC Power Line Conducted Emission (Power input to adapter @ AC 120V/60Hz (Worst Case))

Line

Neutral

29.22

46.38

23.10

46.11

29.16

50.00

60.00

50.00

60.00

50.00

-14.46

-20.78

-13.62

-26.90

-13.89

-20.84

QΡ

AVG

QΡ

AVG

QΡ

AVG

18.76

19.53

19.58

19.10

19.11

5.7571

5.9236

11.5801

11.9266

26.3131

27.0196

10.46

26.85

3.52

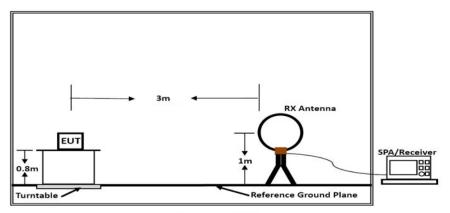
27.01

10.05

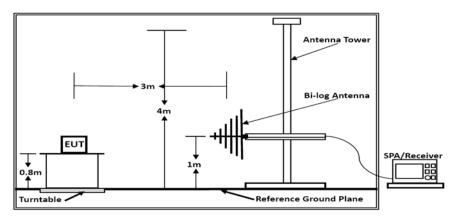
8

9

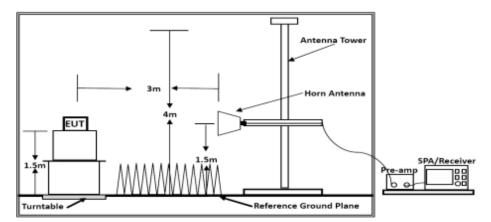
10


11

12


^{***}Note: Pre-scan all modes and recorded the worst case results in this report. Margin=Reading level + Correct - Limit

7. RADIATED EMISSION MEASUREMENT


7.1. Block Diagram of Test Setup

Below 30MHz

Below 1GHz

Above 1GHz

7.2. Radiated Emission Limit

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

7.3. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- (1) Setup the EUT as shown in Section 7.1.
- (2) Let the EUT work in worst test mode (Mode 1) and measure it.

7.5. Measuring Setting

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/Average
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/Average
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

7.6. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

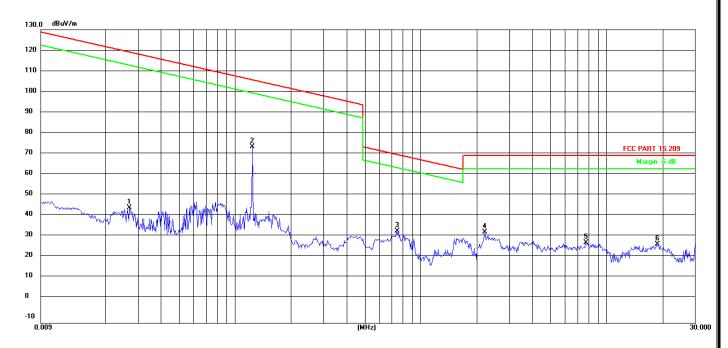
Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

7.7. Test Results

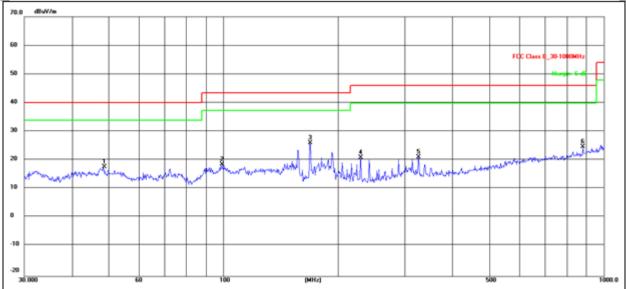

PASS.

Only report the worst test data (Mode 1) in test report;

The test data please refer to following page:

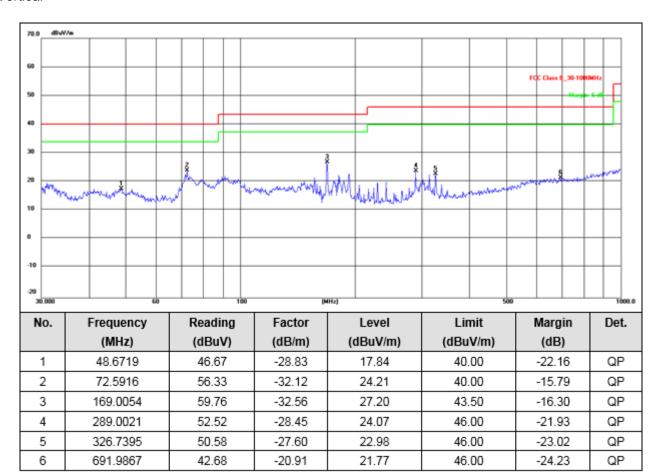
Temperature	24.6°C	Humidity	54.1%
Test Engineer	Ken He	Configurations	Transmit

0.009 MHz - 30 MHz



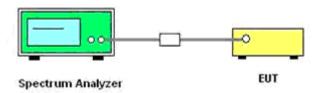
No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0271	24.43	20.68	45.11	118.95	-73.84	QP
2 *	0.1246	53.60	20.47	74.07	105.69	-31.62	QP
3	0.7425	13.81	20.28	34.09	70.19	-36.10	QP
4	2.2196	13.24	20.23	33.47	69.54	-36.07	QP
5	7.7411	8.25	20.23	28.48	69.54	-41.06	QP
6	18.7411	7.74	19.96	27.70	69.54	-41.84	QP

Remark: Measured at antenna position 0 degree and 90 degree, recorded worst case at 0 degree.


Below 1GHz

Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	48.5016	46.85	-28.83	18.02	40.00	-21.98	QP
2	99.1797	46.37	-27.53	18.84	43.50	-24.66	QP
3	169.0054	58.82	-32.56	26.26	43.50	-17.24	QP
4	230.0985	51.12	-29.86	21.26	46.00	-24.74	QP
5	326.7395	48.98	-27.60	21.38	46.00	-24.62	QP
6	881.4067	43.47	-18.52	24.95	46.00	-21.05	QP


Vertical

- 1). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 2). Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level.

8. 20 DB BANDWIDTH MEASUREMENT

8.1. Block Diagram of Test Setup

8.2. Test Procedure

Use the following spectrum analyzer settings:

Span = 500Hz

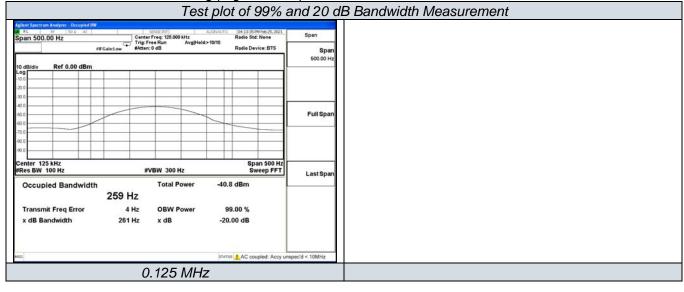
RBW = 100Hz

VBW = 300Hz

Sweep = auto

Detector function = peak

Trace = max hold


The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

8.3. Test Results

Test Result Of 99% and 20dB Bandwidth Measurement				
Test Frequency 20dB Bandwidth Limit				
(MHz) (kHz)		(KHz)		
0.125 0.261		Non-Specified		

Result: Pass

Please refer to the following page for test plot.

9. PHOTOGRAPHS OF TEST SETUP

Please refer to separated files for Test Setup Photos of the EUT.

10. EXTERNAL PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

11. INTERNAL PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----