

EMI - TEST REPORT

- FCC Part 15.250, RSS-210 -

: KNX-T6.1-1.2 / High-Capacity X-Tag Type / Model Name

Product Description : Tracking Tag

> **Applicant** : KINEXON Inc.

Address : 200 S Wacker Dr Suite 3100

CHICAGO, IL 60606, U.S.A.

Manufacturer : Kinexon GmbH

> Address : Schellingstraße 35

> > 80799 MÜNCHEN, GERMANY

Test Result according to the standards listed in clause 1 test standards:

POSITIVE

Test Report No.: 80115860-03 Rev2 22. September 2022

Date of issue

IC: 25557KNX-HCTAG1

Contents

1 <u>TEST STANDARDS</u>		3
2 <u>EQUIPMENT UNDE</u>	R TEST	4
2.1 Information provided b	by the Client	4
2.2 Sampling		4
2.3 Photo documentation	of the EUT - Detailed photos see ATTACHMENT A	4
2.4 Equipment type	·	4
2.5 Short description of th	e equipment under test (EUT)	4
2.6 Variants of the EUT		4
2.7 Operation frequency a	nd channel plan	4
2.8 Transmit operating mo	des	4
2.9 Antenna		5
2.10 Power supply system ι		5
2.11 Peripheral devices and		5
2.12 Determination of worst	t case conditions for final measurement	5
3 TEST RESULT SUM	IMARY	6
3.1 Revision history of tes	t report	6
3.2 Final assessment		7
4 TEST ENVIRONME	NT	8
4.1 Address of the test lab	oratory	8
4.2 Environmental condition	ons	8
4.3 Statement of the meas	urement uncertainty	8
4.4 Conformity Decision R	ule	9
4.5 Measurement protocol	for FCC and ISED	9
5 TEST CONDITIONS	AND RESULTS	12
5.1 UWB Bandwidth		12
5.2 Radiated Emissions 9	kHz to 40 GHz	15
5.3 Radiated Emissions at	1164-1240 MHz and 1559-1610 MHz	21
5.4 Peak Power radiated		25
6 USED TEST EQUIP	MENT AND ACCESSORIES	27

ATTACHMENT A separate supplement

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart C - Intentional Radiators (September 2021)

Part 15, Subpart C, Section 15.203 Antenna requirement

Part 15, Subpart C, Section 15.204 External radio frequency power amplifiers and antenna modifications

Part 15, Subpart C, Section 15.207 Conducted limits

Part 15, Subpart C, Section 15.209 Radiated emission limits, general requirements

Part 15, Subpart C, Section 15.250 Operation of wideband systems within the band 5925-7250 MHz

Industry Canada - Radio equipment standards

RSS-Gen, Issue 5 + A1 + A2, March 2019 General Requirements for Compliance of Radio Apparatus

RSS-210, Issue 10, December 2019 Licence-Exempt Radio Apparatus: Category I Equipment

ANSI C63.10: 2013 Testing Unlicensed Wireless Devices

ETSI TR 100 028 V1.3.1: 2001-03 Electromagnetic Compatibility and Radio Spectrum Matters (ERM);

Uncertainties in the Measurement of Mobile Radio Equipment

Characteristics—Part 1 and Part 2

2 EQUIPMENT UNDER TEST

2.1 Information provided by the Client

Please note, we do not take any responsibility for information provided by the client or his representative which may have an influence on the validity of the test results.

2.2 Sampling

The customer is responsible for the choice of sample. Sample configuration, start-up and operation is carried out by the customer or according his/her instructions.

2.3 Photo documentation of the EUT – Detailed photos see ATTACHMENT A

2.4 Equipment type

portable wideband system

2.5 Short description of the equipment under test (EUT)

The KINEXON tracking tag facilitates tracking of objects with a KINEXON RTLS system (Real Time Locating System).

Number of tested samples: 2

Serial number: 256443

260919

Firmware version: production_tate_xtag_workertag_v5

2.6 Variants of the EUT

There are no variants.

2.7 Operation frequency and channel plan

The operating frequency band is 5925 MHz to 7250 MHz.

Channel plan:

Channel number	f _c (MHz)
Channel 5	6489.6

2.8 Transmit operating modes

Modulation: variable pulse position modulation (PPM) in combination with binary phase shift keying (BPSK).

Data rate: 6.8 Mbit/s

CSA Group Bayern GmbH

Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

2.9 Antenna

The following antennas shall be used with the EUT:

Number	Characteristic	Model number	Plug	f-range (GHz)	Gain at 6.5 GHz (dBi)
1	1 Omni Decawave WB001		None (PCB)	3.5 - 7.0	3.7

2.10 Power supply system utilised

Power supply voltage (operating) : 3.1 V DC (internal battery)

Power supply voltage (nominal) 3.0 V DC

2.11 Peripheral devices and interface cables

The following peripheral	devices and interface cables are connected during the measurements:
	Model:

2.12 Determination of worst case conditions for final measurement

Measurements are made in all three orthogonal axes with horizontal and vertical antenna positions to determine the worst case condition.

2.12.1 Test jig

No test jig is used.

2.12.2 Test software

No special test software is used. The EUT starts with continuous transmission as soon as the internal battery is connected.

3 TEST RESULT SUMMARY

Wideband device using digital modulation:

Operating in the 5925 MHz - 7250 MHz band:

FCC Rule Part	RSS Rule Part	Description	Result
15.207(a)	RSS-Gen, 8.8	AC power line conducted emissions	not applicable *1
15.250(b)	RSS-210, Annex K, K2	Bandwidth of the fundamental emission	passed
	RSS-Gen, 6.7	Occupied bandwidth (99 %)	passed
15.209(a) 15.250(c)			passed
15.250(d)	RSS-210, Annex K, K3(b)	Radiated Emissions at 1164-1240 MHz and 1559-1610 MHz	passed
15.250(d)	RSS-210, Annex K, K3(c)	Peak Power radiated	passed
15.203 15.204		Antenna requirement	passed *2

^{*1:} The EUT is battery powered and cannot be connected to the public utility (AC) power line.

3.1 Revision history of test report

Test report No	Rev.	Issue Date	Changes				
80115860-03	0	09 September 2022	Initial test report				
80115860-03 1 19 September 2022			Applicant changed on page 1 of 27				
80115860-03	2	22 September 2022	Correction of IC Certification Number in heading line				

The test report with the highest revision number replaces the previous test reports.

^{*2:} The EUT uses an internal PCB antenna. No other antenna can be connected to the EUT. Therefor, the requirements are regarded as fulfilled.

FCC ID: 2ALC5-KNX-HCTAG1	IC: 25557KNX-HCTAG1

3.2 Final assessment

The equipment under test fulfills the EMI requirements cited in clause 1 test standards.							
Date of receipt of test sample	: _acc. to storage records						
Testing commenced on	: <u>08 August 2022</u>						
Testing concluded on	: _12 August 2022						
Checked by:	Tested by:						
Klaus Gegenfurtner Teamleader Radio	Franz-Xaver Schrettenbrunner Radio Team						

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

CSA Group Bayern GmbH Ohmstrasse 1-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15 - 35 °C

Humidity: 30 - 60 %

Atmospheric pressure: 86 - 106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. It is noted that the expanded measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k=2. The true value is located in the corresponding interval with a probability of 95 %. The measurement uncertainty was calculated for all measurements listed in this test report on basis of the ETSI Technical Report TR 100 028 Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1 and Part 2. The results are documented in the quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
AC Conducted Spurious Emissions	0.15 MHz to 30 MHz	95%	± 3.29 dB
20 dB Bandwidth	Center frequency of EUT	95%	± 2.5 x 10 ⁻⁷
99% Occupied Bandwidth	Center frequency of EUT	95%	± 2.5 x 10 ⁻⁷
Radiated Spurious Emissions	9 kHz to 30 MHz	95%	± 3.53 dB
Radiated Spurious Emissions	30 MHz to 1000 MHz	95%	± 3.71 dB
Radiated Spurious Emissions	1000 MHz to 10000 MHz	95%	± 2.34 dB
Peak conducted output power	902 MHz to 928 MHz	95%	± 0.35 dB
Conducted Spurious Emissions	9 kHz to 10000 MHz	95%	± 2.15 dB

File No. 80115860-03 Rev2, page 8 of 27

4.4 Conformity Decision Rule

The applied conformity decision rule is based on ILAC G8:09/2019 clause 4.2.1 Binary Statement for Simple Acceptance Rule (w = 0).

Details can be found in the procedure CSA_B_V50_29.

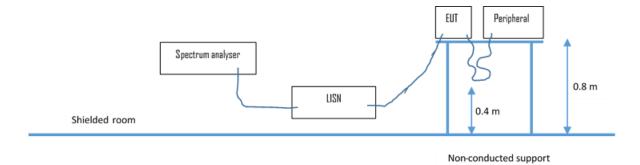
4.5 Measurement protocol for FCC and ISED

4.5.1 General information

CSA Group Bayern GmbH is recognized as wireless testing laboratory under the CAB identifier:

FCC: DE 0011 ISED: DE0009

4.5.2 General Standard information


The test methods used comply with ANSI C63.10 - "Testing Unlicensed Wireless Devices".

4.5.2.1 Justification

The equipment under test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions.

4.5.3 Details of test procedures

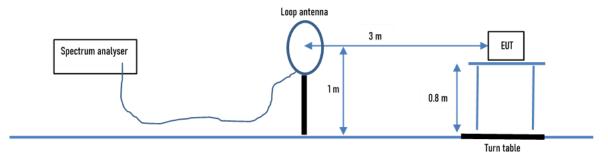
4.5.3.1 Conducted emission Test setup according ANSI C63.10

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the Spectrum analyser. This level is compared to the limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

 $dB\mu V = 20(log \mu V)$ $\mu V = log(dB\mu V/20)$

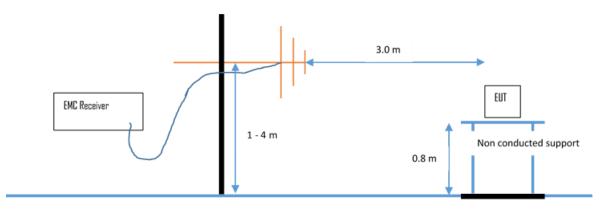
Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a Line Impedance Stabilization Network (LISN) with 50 Ω / 50 μ H (CISPR 16) characteristics. The receiver is protected by means of an impedance matched pulse limiter connected directly to the RF input. Table top equipment is placed on a non-conducting table 80 centimetres above the floor and is positioned 40 centimetres from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emission is re-measured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.



IC: 25557KNX-HCTAG1

4.5.3.2 Radiated emission

4.5.3.2.1 OATS1 test site (9 kHz - 30 MHz):


Test setup according ANSI C63.10

Emissions from the EUT are measured in the frequency range of 9 MHz to 30 MHz using a tuned receiver and a calibrated loop antenna. Table top equipment is placed on a 1.0 X 1.5 m non-conducting table 80 centimetres above the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screened room located outside the test area. The antenna is positioned 3, 10 or 30 metres horizontally from the EUT and is repeated vertically. To locate maximum emissions from the test sample the antenna is varied along the site axis and the EUT is rotated 360 degrees.

4.5.3.2.2 OATS1 test site (30 MHz - 1 GHz):

Test setup according ANSI C63.10.

Spurious emissions from the EUT are measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarised antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 m non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screened room located outside the test area. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 metres and the EUT is rotated 360 degrees. The final level in dBµV/m is calculated by taking the reading from the EMI receiver (Level dBµV) and adding the correction factors and cable loss factor (dB). The FCC limit is subtracted from this result in order to provide the limit margin listed in the measurement protocol.

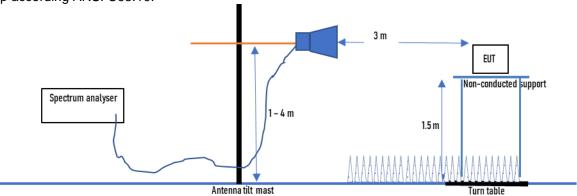
The resolution bandwidth setting:

30 MHz - 1000 MHz: RBW: 120 kHz

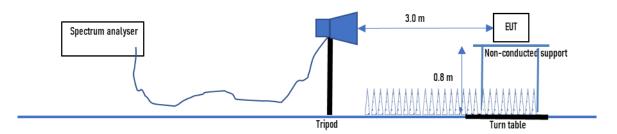
Example:

Frequency	Level	+	Factor	=	Level	-	Limit	=	Delta
(MHz)	(dBµV)		(dB)		(dBµV/m)		(dBµV/m)		(dB)
719.0	75.0	+	32.6	=	107.6	-	110.0	=	-2.4

CSA Group Bayern GmbH


Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

IC: 25557KNX-HCTAG1


4.5.3.2.3 Anechoic chamber 1 (1000 MHz - 18000 MHz)

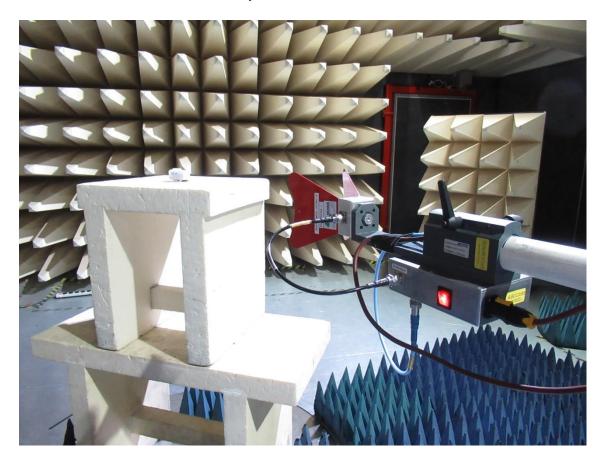
Test setup according ANSI C63.10.

Radiated emissions from the EUT are measured in the frequency range 1 GHz up to 18 GHz as specified in 47 CFR Part 15, Subpart A, Section 15.33, using a spectrum analyser and appropriate linearly polarized antennas. Table top equipment is placed on a non-conducting table, 1.5 metre above the ground plane. The turntable is fully covered with the appropriate absorber (Type VHP-12). Any controlling device is positioned such that it does not significantly influence the measurement results. Interconnecting cables that hang closer than 40 cm to the ground plane are folded back and forth in the center, forming a bundle 30 cm to 40 cm long. Measurements are made in in three orientations of the EUT and the horizontal and vertical polarization planes of measurement antenna in a fully anechoic room. The measurement antenna is adjusted and the EUT orientated to permit the measurement of the maximum emission from the EUT. The conditions determined as worst-case will then be used for the final measurements.

4.5.3.2.4 Anechoic chamber 1 (18 GHz - 40 GHz)

Emissions from the EUT are measured in the frequency range 18 GHz up to 40 GHz as specified in 47 CFR Part 15, Subpart A, Section 15.33, using a spectrum analyser and appropriate linearly polarized antennas. Table top equipment is placed on a non-conducting table, 0.8 metre above the ground plane. The turntable is fully covered with the appropriate absorber (Type VHP-12). Any controlling device is positioned such that it does not significantly influence the measurement results. Interconnecting cables that hang closer than 40 cm to the ground plane are folded back and forth in the center, forming a bundle 30 cm to 40 cm long. Measurements are made in in three orientations of the EUT and the horizontal and vertical polarization planes of measurement antenna in a fully anechoic room. The measurement antenna is adjusted and the EUT orientated to permit the measurement of the maximum emission from the EUT. The conditions determined as worst-case will then be used for the final measurements. Where appropriate, the test distance may be reduced in order to detect emissions under better uncertainty. The limit are adopted.

5 TEST CONDITIONS AND RESULTS


5.1 UWB Bandwidth

For test instruments and accessories used see section 6 Part CPR 3.

5.1.1 Description of the test location

Test location: Anechoic chamber 1

5.1.2 Photo documentation of the test set-up

5.1.3 Applicable standard

According to FCC Part 15, Section 15.250(a):

The -10 dB bandwidth of a device operating under the provisions of this section must be contained within the 5925-7250 MHz band under all conditions of operation including the effects from stepped frequency, frequency hopping or other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

According to FCC Part 15, Section 15.250(b):

The −10 dB bandwidth of the fundamental emission shall be at least 50 MHz. For transmitters that employ frequency hopping, stepped frequency or similar modulation types, measurement of the −10 dB minimum bandwidth specified in this paragraph shall be made with the frequency hop or step function disabled and with the transmitter operating continuously at a fundamental frequency following the provisions of §15.31(m)

5.1.4 Description of Measurement

The measurement was performed radiated at a distance of 1 m. The bandwidth was measured at an amplitude level reduced from the reference level of a modulated channel by a ratio of -10 dB.

Spectrum analyser settings:

RBW: 1 MHz, VBW: 3 MHz, Detector: Peak

5.1.5 Test result

I	channel	lowest	highest	permitted	UWB	required	result		
		frequency	frequency	requency frequency		cy frequency bandwidt UWB		UWB	
		f_L	f_H	range	h	bandwidth			
		(MHz)	(MHz)	(MHz)	(MHz)	(MHz)			
	5	6261.7	6712.7	5925 - 7250	451.0	> 50	passed		

Limit according to FCC Part 15, Section 15.250(b):

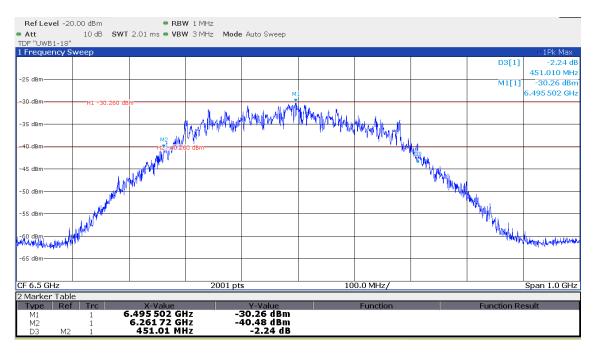
The -10 dB bandwidth of the fundamental emission shall be at least 50 MHz.

Limit according to RSS-210 Annex K, K.2(b):

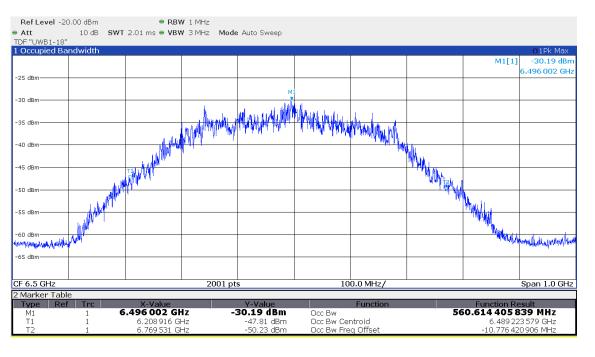
The 10 dB bandwidth of the device shall be at least 50 MHz and less than 500 MHz.

The requirements are **FULFILLED**.

Remarks: For detailed test results please refer to following test protocols.


Tests are performed with sample 260919.

IC: 25557KNX-HCTAG1


5.1.6 Test protocols EBW

Channel 5

5.1.7 Test protocols OBW 99%

Channel 5

5.2 Radiated Emissions 9 kHz to 40 GHz

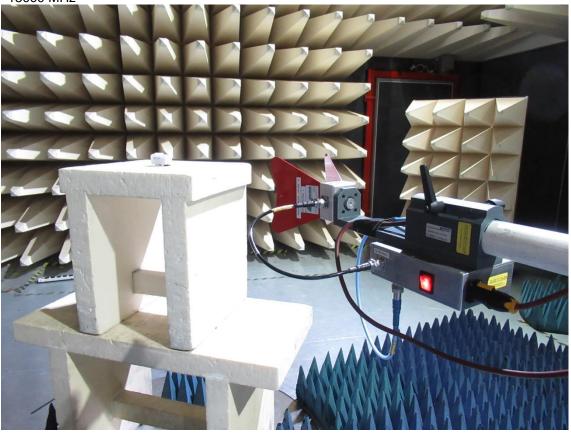
For test instruments and accessories used see section 6 Part SER 2 and SER 3.

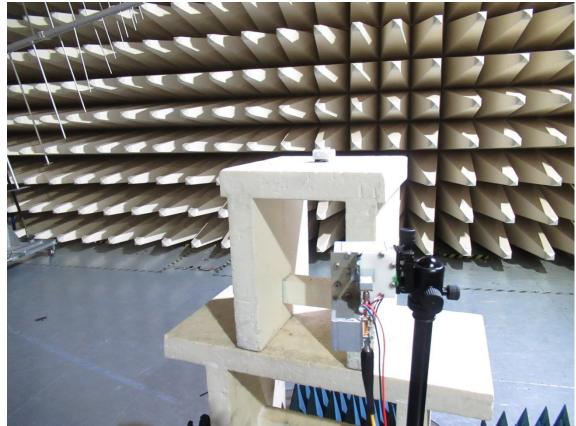
5.2.1 Description of the test location

Test location: OATS 1

Test location: Anechoic chamber 1

5.2.2 Photo documentation of the test set-up


30 MHz - 960 MHz



IC: 25557KNX-HCTAG1

960 MHz - 18000 MHz

18000 MHz - 40000 MHz

5.2.3 Applicable standard

According to FCC Part 15, Section 15.250(d):

Radiated emissions at or below 960 MHz shall not exceed the emission levels in §15.209. The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following RMS average limits based on measurements using a 1 MHz resolution bandwidth.

5.2.4 Analyser settings

9 kHz – 150 kHz RBW: 200 Hz 150 kHz - 30 MHz RBW: 9 kHz

30 MHz – 960 MHz RBW: 120 kHz Detector: QP

960 MHz – 40 GHz RBW: 1 MHz VBW: 3 MHz Detector: RMS Sweeptime: 1ms per MHz

5.2.5 Test result

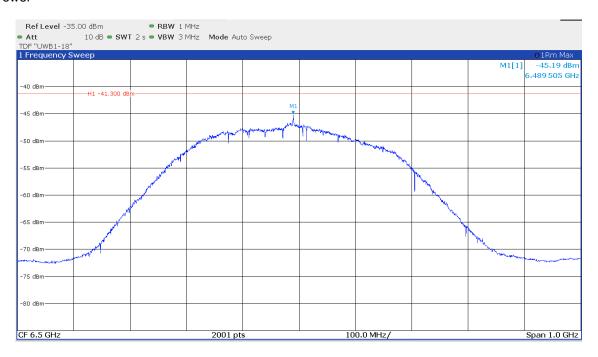
5.2.5.1 Measurement 9 kHz to 30 MHz

Note: Pre-measurements have shown, there are no detectable emissions in this frequency range.

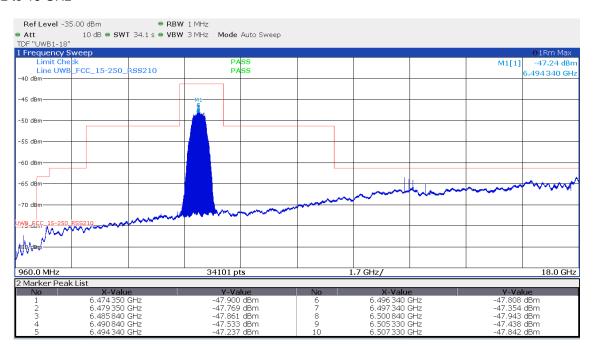
5.2.5.2 Measurement 30 MHz to 960 MHz

Frequency (MHz)	Reading Vert. (dBµV)	Reading Hor. (dBµV)	Correct. Vert. (dB)	Correct. Hor. (dB)	Level Vert. (dBµV/m)	Level Hor. (dBµV/m)	Limit (dBµV/m)	Dlimit (dB)
150.00	-2.4	-3.1	13.9	14.8	11.5	11.7	43.5	-31.8
300.00	-1.6	0.1	16.9	16.5	15.3	16.6	46.0	-29.4
450.00	-2.0	0.2	21.2	20.9	19.2	21.1	46.0	-24.9
600.00	-3.1	-2.9	25.5	25.3	22.4	22.4	46.0	-23.6
750.00	-2.4	-2.4	28.3	27.7	25.9	25.3	46.0	-20.1
900.00	-1.8	-1.9	31.1	30.7	29.3	28.8	46.0	-16.7

Note: Pre-measurements show that there is no significant emission of the EUT above the noise level in the frequency range from 30 MHz to 1000 MHz. All recorded values are ambient noise levels.

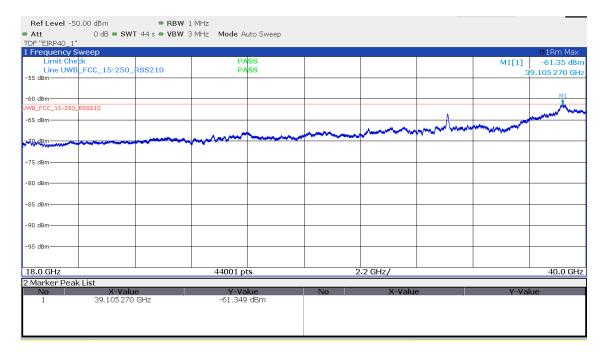


IC: 25557KNX-HCTAG1


5.2.5.3 Measurement 960 MHz to 40 GHz

Channel 5

Mean Power


960 MHz to 18 GHz

IC: 25557KNX-HCTAG1

18 GHz to 40 GHz

IC: 25557KNX-HCTAG1

Limit according §15.209(a) in the frequency range 9 kHz 960 MHz:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Limit according §15.250(d)(1) in the frequency range 960 MHz to 40 GHz:

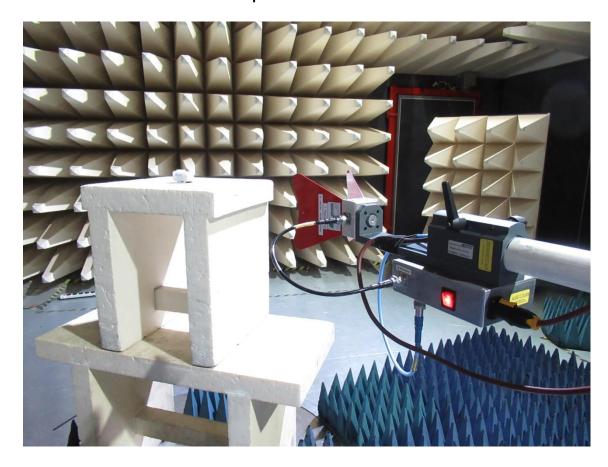
Frequency in MHz	EIRP in dBm
960-1610	-75.3
1610-1990	-63.3
1990-3100	-61.3
3100-5925	-51.3
5925-7250	-41.3
7250-10600	-51.3
Above 10600	-61.3

Limit according RSS-210 K.3(a) in the frequency range 960 MHz to 40 GHz:

Frequency in MHz	EIRP in dBm
960-1610	-75.3
1610-1990	-63.3
1990-3100	-61.3
3100-5925	-51.3
5925-7250	-41.3
7250-10600	-51.3
Above 10600	-61.3

The requirements are **FULFILLED**.

Remarks:	None.			


5.3 Radiated Emissions at 1164-1240 MHz and 1559-1610 MHz

For test instruments and accessories used see section 6 Part SER 3.

5.3.1 Description of the test location

Test location: Anechoic chamber 1

5.3.2 Photo documentation of the test set-up

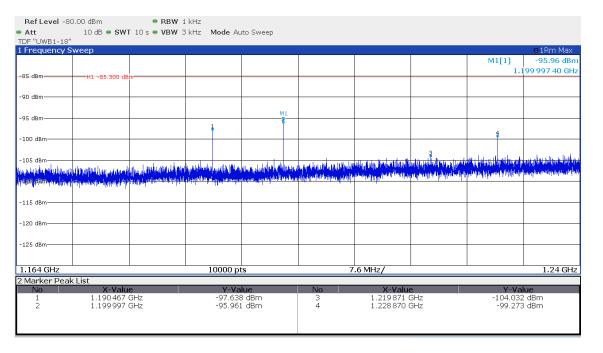
5.3.3 Applicable standard

According to FCC Part 15, Section 15.250(d):

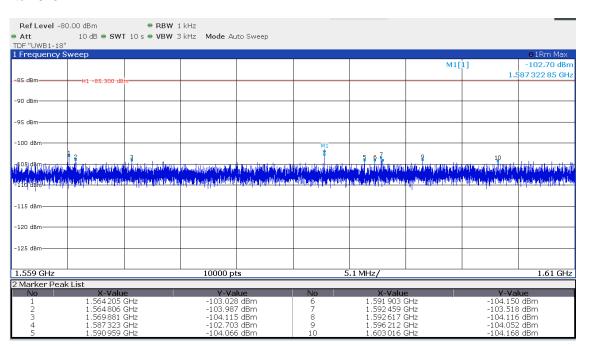
In addition to the radiated emission limits specified in the table in paragraph (d)(1) of this section, transmitters operating under the provisions of this section shall not exceed the following RMS average limits when measured using a resolution bandwidth of no less than 1 kHz

5.3.4 Analyser settings

RBW: 1 kHz, VBW: 3 kHz, Detector: RMS, Sweep time: 1 ms/1kHz,



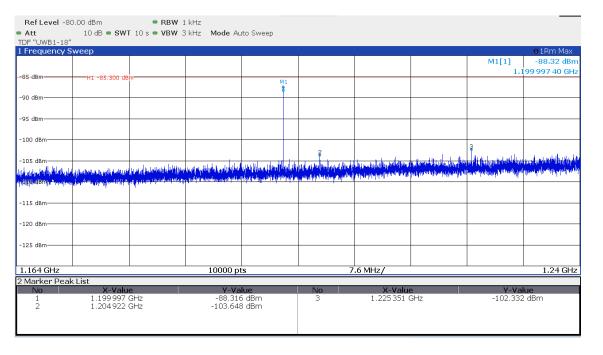
IC: 25557KNX-HCTAG1


5.3.5 Test result

Channel 5 horizontal

1164 MHz to 1240 MHz

1559 MHz to 1610 MHz



IC: 25557KNX-HCTAG1

Channel 5 vertical

1164 MHz to 1240 MHz

1559 MHz to 1610 MHz

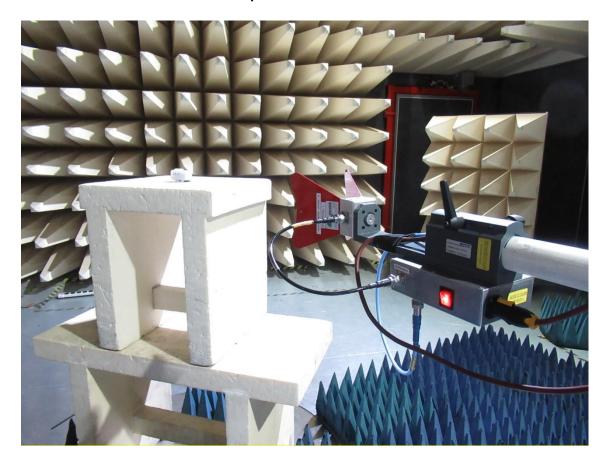
IC: 25557KNX-HCTAG1

Limit according §15.250(d) in the frequency

Frequency in MHz	EIRP in dBm
1164-1240	-85.3
1559-1610	-85.3

The requirements are FULFILLED	The	require	ments	are	FU	ILF	ILL	.ED
---------------------------------------	-----	---------	-------	-----	----	-----	-----	-----

Remarks:	Tests are performed with sample 256443.		


5.4 Peak Power radiated

For test instruments and accessories used see section 6 Part CPR 3.

5.4.1 Description of the test location

Test location: Anechoic chamber 1

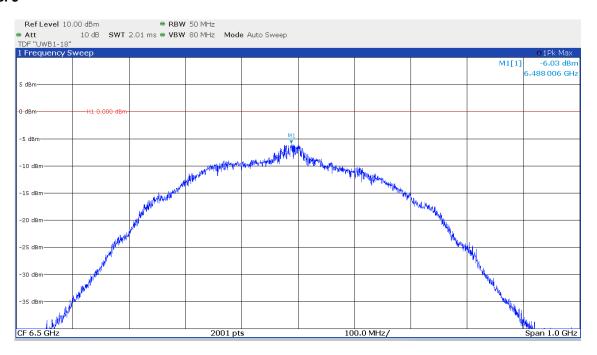
5.4.2 Photo documentation of the test set-up

5.4.3 Applicable standard

According to FCC Part 15, Section 15.250(d)(3):

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M. That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in §15.521.

5.4.4 Analyser settings


RBW: 50 MHz, VBW: 80 MHz, Detector: Peak, Trace Mode: Max hold

IC: 25557KNX-HCTAG1

5.4.5 Test result

Channel 5

Min. limit margin: -6.0 dB at 6.488 GHz

The requirements are **FULFILLED**.

Remarks: Tests are performed with sample 260919.

IC: 25557KNX-HCTAG1

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID	Model Type	Equipment No.	Next Calib.	Last Calib.	Next Verif.	Last Verif.
CPR 3	FSW43	02-02/11-21-001	16/05/2023	16/05/2022		
	AMF-6D-01002000-22-10P	02-02/17-15-004				
	3117	02-02/24-05-009	23/06/2023	23/06/2022		
	BAM 4.5-P	02-02/50-17-024				
	NCD	02-02/50-17-025				
	KK-SF106-2X11N-6,5M	02-02/50-18-016				
	BAT-EMC 3.21.0.24	02-02/68-13-001				
SER 2	ESVS 30	02-02/03-05-006	27/07/2023	27/07/2022		
SER 2	VULB 9168	02-02/24-05-005	20/12/2022	20/12/2021	03/07/2023	03/07/2022
	NW-2000-NB	02-02/50-05-113				
	KK-EF393/U-16N-21N20 m	02-02/50-12-018				
	KK-SD_7/8-2X21N-33,0M	02-02/50-15-028				
	50F-003 N 3 dB	02-02/50-21-010				
SER 3	FSW43	02-02/11-21-001	16/05/2023	16/05/2022		
	AMF-6D-01002000-22-10P	02-02/17-15-004				
	LNA-40-18004000-33-5P	02-02/17-20-002				
	3117	02-02/24-05-009	23/06/2023	23/06/2022		
	BBHA 9170	02-02/24-05-013	19/05/2023	19/05/2020	10/03/2023	10/03/2022
	BAM 4.5-P	02-02/50-17-024				
	NCD	02-02/50-17-025				
	KK-SF106-2X11N-6,5M	02-02/50-18-016				
	KMS116-GL140SE-KMS116-	02-02/50-20-026				
	BAT-EMC 3.21.0.24	02-02/68-13-001				