

TEST REPORT

Reference No.	:	WTF21F09100452W001
FCC ID	se ^{sé}	2ALA3-CBM003A
Applicant	:2	Casambi Technologies Oy
Address	:	Bertel Jungin Aukio 1 E, 02600 Espoo, Finland
Manufacturer	d-	Sanmina Corporation
Address	:	312, Qing Yang South Road, Economic and Technical Development
Product Name	<i></i> 1	Zone, Kunshan Jiangsu Sheng, 215300, China Lighting control systerm
Model No	:3	CBM-003A
Standards	:	FCC CFR47 Part 15 Subpart C (Section 15.247): 2020
Date of Receipt sample	÷	2021-10-22
Date of Test	÷	2021-10-22 to 2021-11-02
Date of Issue	:3	2021-11-30
Test Result	:	Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By: Waltek Testing Group (Foshan) Co., Ltd. Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by:

on Hong

Roy Hong / Project Engineer

Approved by:

Zhou / Marjager Danny Zhou / Ma

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Page 1 of 47

~

1 Revision History

Test Report No.	Date of Issue	Description	Status
WTF21F09100452W001	2021-11-30	Original	Valid

1.0.1

シン

2 Contents

			Page
1	REVIS	SION HISTORY	2
2	CONT	TENTS	3
3	GENE	ERAL INFORMATION	
	3.1 3.2 3.3 3.4 3.5 3.6	GENERAL DESCRIPTION OF E.U.T TECHNICAL CHARACTERISTICS OF EUT STANDARDS APPLICABLE FOR TESTING TEST FACILITY SUBCONTRACTED ABNORMALITIES FROM STANDARD CONDITIONS	
4	EUT S	SETUP AND TEST MODE	6
5	EQUI	PMENT USED DURING TEST	7
	5.1 5.2 5.3	EQUIPMENT LIST SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT MEASUREMENT UNCERTAINTY	
6	SUM	MARY OF TEST RESULT	9
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	ANTENNA REQUIREMENT RF EXPOSURE REQUIREMENT RADIATED SPURIOUS EMISSIONS POWER SPECTRAL DENSITY DTS BANDWIDTH RF OUTPUT POWER OUT OF BAND EMISSIONS CONDUCTED EMISSIONS	
7	РНОТ	OGRAPHS TEST SETUP	44
	7.1 7.2	PHOTOGRAPHS - RADIATED EMISSION TEST SETUP PHOTOGRAPHS – CONDUCTED EMISSION TEST SETUP	
8		OGRAPHS - CONSTRUCTIONAL DETAILS	
	8.1	EUT - External Photos	46

3 General Information

3.1 General Description of E.U.T

Product Name	5	Lighting control systerm
Model No.	÷	CBM-003A
Model Description	:	and all all all all
Rated Voltage		DC 2.5-3.6V
Battery Capacity	-1	
Power Adapter	÷	Set increase and and

3.2 Technical Characteristics of EUT

-	V4.0(BLE mode)
2	2402-2480MHz
: 5	-4.611dBm (Conducted)
÷	GFSK
:,	1Mbps, 2Mbps
2	40
÷	2MHz
÷	Chip Antenna
à,	+4.71dBi
2	32MHz
	the second secon

3.3 Standards Applicable for Testing

The tests were performed according to following standards:

FCC Rules Part 15.247	Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
558074 D01 15.247 Meas	Guidance For Compliance Measurements On Digital Transmission System,
Guidance v05r02	Frequency Hopping Spread Spectrum System, And Hybrid System Devices
	Operating Under Section 15.247 Of The FCC Rules
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.4 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 21895-1

Waltek Testing Group (Foshan) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration IC number:21895-1, Nov. 14, 2016.

• FCC – Registration No.: 820106

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 820106, August 16, 2018

• FCC – Designation No.: CN5034

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation No. CN5034.

• NVLAP – Lab Code: 600191-0

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 600191-0. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

3.5 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:

🗌 Yes 🛛 🖾 No

If Yes, list the related test items and lab information:

Test items: ---

Lab information: ---

3.6 Abnormalities from Standard Conditions

None.

4 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

with the star with the	Test Mode List	et 15 50 50 50
Test Mode	Description	Remark
TM1	Low Channel	2402MHz
TM2	Middle Channel	2440MHz
TM3	High Channel	2480MHz

Temperature:	22~25°C
Relative Humidity:	50~55%
Atmospheric pressure:	101.9kPa

Tost Conditions

5 Equipment Used during Test

5.1 Equipment List

Conat	cted Emissions		Nr. Nr.	20. 20		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal Date	Cal Due Date
1	EMI Test Receiver	RS	ESCI	101178	2021-01-09	2022-01-08
2.	LISN	RS	ENV216	101215	2021-01-09	2022-01-08
<i>3</i> .	Cable	HUBER+SUHNER	CBL2-NN-3M	223NN322	2021-01-09	2022-01-08
4.	Test Software	FARATRONIC	EZ-EMC CON-03A1	White white	m m	1
3m Se	mi-anechoic Chambe	er for Radiation Em	issions			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	RS	ESR7	101566	2021-01-09	2022-01-08
2.	EMC Analyzer	Agilent	N9020A	MY48011796	2021-01-09	2022-01-08
3.	Active Loop Antenna	SCHWARZBECK	FMZB1519B	00004	2021-01-09	2022-01-08
4.	Trilog Broadband Antenna	SCHWARZBECK	VULB 9162	9162-117	2021-01-09	2022-01-08
5.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	01561	2021-01-09	2022-01-08
6.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2021-01-09	2022-01-08
7.	Amplifier	Lunar E M	LNA1G18-40	20160501002	2021-01-09	2022-01-08
8.	Coaxial Cable (below 1GHz)	H+S	CBL3-NN- 12+3 m	214NN320	2021-01-09	2022-01-08
9.	Coaxial Cable (above 1GHz)	Times-Micorwave	CBL5-NN	and an	2021-01-09	2022-01-08
10.	Test Software	FARATRONIC	EZ-EMC RA-03A1-1	WALLE WALLE	and an	
RF Co	nducted Testing	the a	s. A.	de de	50 50	A. Marine
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	Spectrum Analyzer	Agilent	N9020A	MY48011796	2021-01-09	2022-01-08
2.	Spectrum Analyzer	R&S	FSP40	100501	2021-01-09	2022-01-08
3.	Vector Signal Generator	Agilent	N5182A	MY50141533	2021-01-09	2022-01-08
4.	Analog Signal Generator	Agilent	N5181A	MY48180720	2021-01-09	2022-01-08
5.	Environmental Chamber	KSON	THS-D4C-100	5244K	2021-01-09	2022-01-08
6.	RF Control Unit	CHANGCHUANG	JS0806-2	-	2021-01-09	2022-01-08

5.2 Special Accessories and Auxiliary Equipment

ltem	Equipment	Manufacturer	Model No.	Serial No.
1. –	1 10 10	when when which	and a second	1

5.3 Measurement Uncertainty

Parameter	Uncertainty		
RF Output Power	±0.95dB		
Occupied Bandwidth	±1.5%		
Conducted Spurious Emission	±2.7dB		
Conducted Emission	±2.7dB		
Transmitter Original Engineer	±3.8dB (for 25MHz-1GHz)		
Transmitter Spurious Emission	±5.0dB (for 1GHz-18GHz)		

6 Summary of Test Result

Test Items	FCC Rules	Result
Antenna Requirement	§15.203; §15.247(b)(4)(i)	Compliant
Restricted Band of Operation	§15.205	Compliant
Conducted Emissions	§15.207(a)	Compliant
Radiated Spurious Emissions	§15.209(a)	Compliant
Power Spectral Density	§15.247(e)	Compliant
DTS Bandwidth	§ 15.247(a)(2)	Compliant
RF Output Power	§15.247(b)(3)	Compliant
Band edge (Out of Band Emissions)	§15.247(d)	Compliant
RF Exposure	§2.1093	Compliant

Remark:

Pass	Test item meets the requirement
Fail	Test item does not meet the requirement
N/A	Test case does not apply to the test object

6.1 Antenna Requirement

6.1.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

6.1.2 Evaluation Information

The EUT has a Chip Antenna, the gain is +4.71Bi, fulfil the requirement of this section.

R

6.2 RF Exposure Requirement

6.2.1 Standard Applicable

According to §1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

6.2.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report WTF21F09100452W002.

\bigotimes

2

6.3 Radiated Spurious Emissions

6.3.1 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

6.3.2 Test Procedure

1) The EUT is placed on a turntable, which is 0.8m(Below 1G) 1.5m(above 1G)above ground plane.

2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

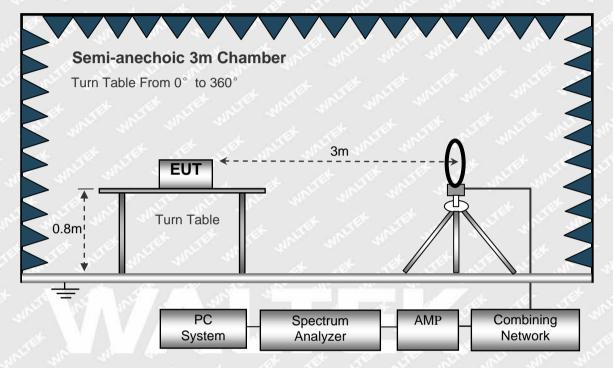
3) EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4) Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5) And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

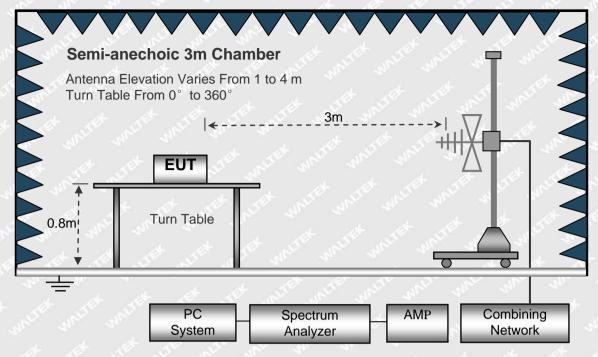
6) Repeat above procedures until the measurements for all frequencies are complete.

7) The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.

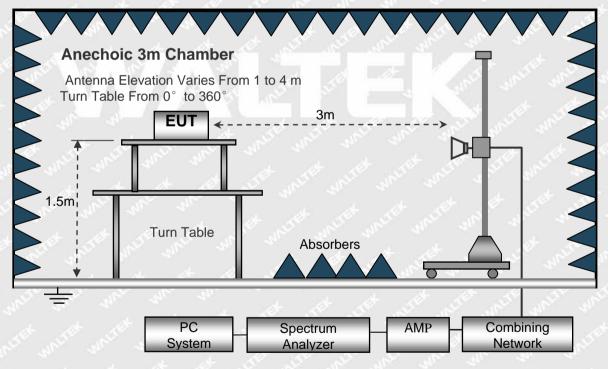


6.3.3 Test Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.


The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

The test setup for emission measurement below 30MHz.



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

Page 15 of 47

6.3.4 Spectrum Analyzer Setup

9KHz-30MHz	30MHz-1GHz	Above 1GHz
RBW=10kHz	RBW=120kHz	RBW=1MHz
VBW=30kHz	VBW=300kHz	VBW=3MHz(Peak), 10MHz(AV)
Sweep time=Auto	Sweep time=Auto	Sweep time=Auto
Trace=Max hold	Trace=Max hold	Trace=Max hold
Detector function=peak	Detector function=peak, QP	Detector function=peak, AV

6.3.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Corr. Factor

Corr.Factor=Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

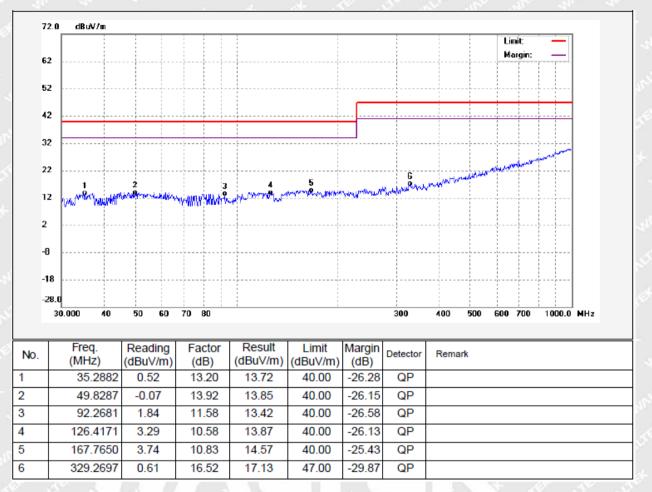
\bigotimes

6.3.6 Test Results

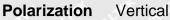
Test Frequency: 9 kHz~30 MHz

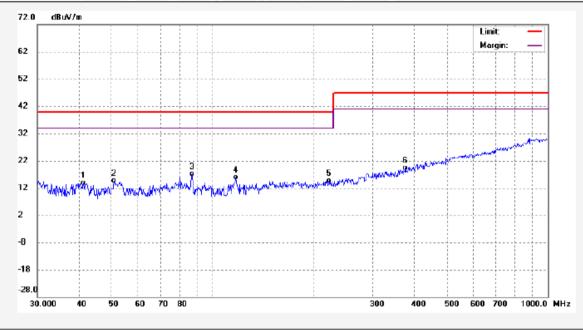
The measurements were more than 20 dB below the limit and not reported.


Test Frequency: 30MHz ~ 1GHz


2Mbps (worst case)

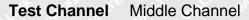
Test Channel Low





NALIAN V

Test Channel Middle Channel



	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Remark
1		41.2620	0.67	13.09	13.76	40.00	-26.24	QP	
2	2	50.7635	1.26	13.39	14.65	40.00	-25.35	QP	
3	3	87.0506	6.20	10.83	17.03	40.00	-22.97	QP	
4	t I	117.5249	3.44	12.35	15.79	40.00	-24.21	QP	
5	5	222.5595	-0.16	14.84	14.68	40.00	-25.32	QP	
6	6	376.2022	1.31	18.06	19.37	47.00	-27.63	QP	

+

4

5

6

159.6160

278.1643

594.0901

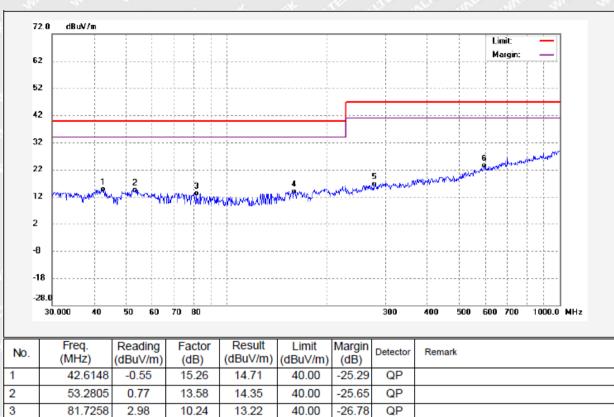
3.42

0.90

1.25

10.46

15.63


22.06

13.88

16.53

23.31

40.00

47.00

47.00

-26.12

-30.47

-23.69

QP

QP

QP

Test Channel High Channel

5

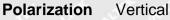
6

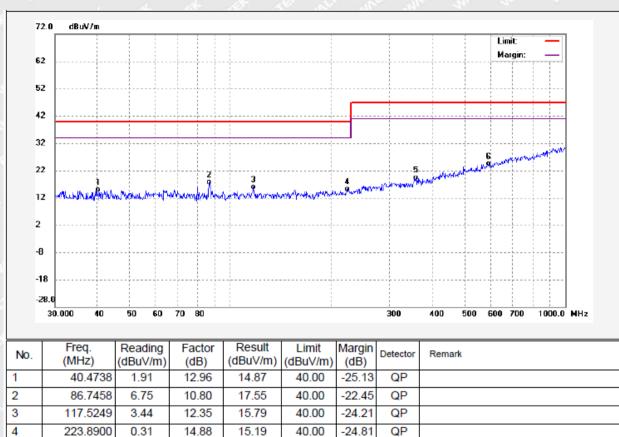
358.5568

592.2182

1.61

0.98


17.77


23.35

19.38

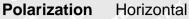
24.33

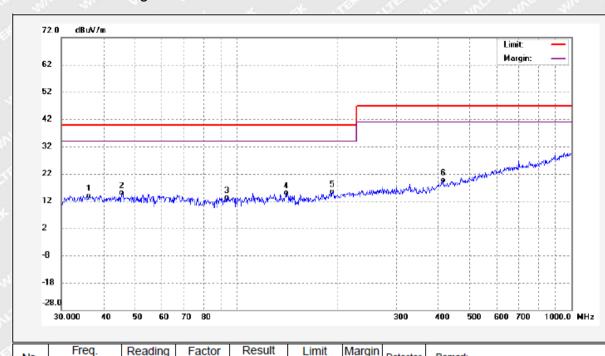
Polari

47.00

47.00

-27.62


-22.67


QP

QP

Test Channel High Channel

2	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
ľ	1	36.3430	0.61	13.35	13.96	40.00	-26.04	QP	
	2	45.3912	-0.19	15.01	14.82	40.00	-25.18	QP	
	3	93.7026	1.40	11.71	13.11	40.00	-26.89	QP	
	4	140.9336	4.86	9.95	14.81	40.00	-25.19	QP	
	5	193.2975	2.56	12.72	15.28	40.00	-24.72	QP	
	6	414.2862	1.25	18.47	19.72	47.00	-27.28	QP	
5									

V IS

Test Frequency: 1GHz~18GHz

2Mbps (worst case)

Frequency (MHz)	Reading (dBµV/m)	Detector	Polar (H/V)	Corrected Factor (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
en and	100 - 10 	Low	Channel-2	402MHz	White share	Mr. 1	W. 1
4419.25	41.11	Peak	Н	-4.57	36.54	74	-37.46
4419.25	30.00	AVG	SH	-4.57	25.43	54	-28.57
10729.00	39.54	Peak	Н	9.40	48.94	74	-25.06
10729.00	28.07	AVG	5 ⁰⁷ H.S ²²	9.40	37.47	54	-16.53
4489.75	41.17	Peak	V	-4.35	36.82	74	-37.18
4489.75	29.53	AVG	V	-4.35	25.18	54	-28.82
11163.75	39.30	Peak	V	9.76	49.06	74	-24.94
11163.75	29.17	AVG	18 V 18	9.76	38.93	54	-15.07
and an	1. 1. de	Midd	le Channel-	2440MHz	Ster Mille	mer and	- 340
4219.50	42.59	Peak	Н	-5.15	37.44	74	-36.56
4219.50	31.24	AVG	<i>d</i> ≈ H_3 [®]	-5.15	26.09	54	-27.91
10811.25	39.22	Peak	н	9.67	48.89	o 74	-25.11
10811.25	27.77	AVG	н	9.67	37.44	54	-16.56
3808.25	42.21	Peak	V	-6.23	35.98	74	-38.02
3808.25	32.52	AVG	v	-6.23	26.29	54	-27.71
11304.75	38.39	Peak	V	9.91	48.30	5 74	-25.70
11304.75	27.76	AVG	v.s ^o	9.91	37.67	54	-16.33
until whit	mer mer	High	h Channel-2	480MHz	5 - 5 ⁰⁵ - 5	ister where	all
4724.75	40.95	Peak	H	-3.79	37.16	74	-36.84
4724.75	30.78	AVG	. н	-3.79	26.99	54	-27.01
11140.25	38.86	Peak	-4 ⁶ H - 4	10.38	49.24	74	-24.76
11140.25	28.39	AVG		10.38	38.77	54	-15.23
4971.50	39.58	Peak	V	-3.00	36.58	74	-37.42
4971.50	28.62	AVG	1 V 5	-3.00	25.62	54	-28.38
11163.75	38.38	Peak	V	9.76	48.14	Ø 74	-25.86
11163.75	28	AVG	V	9.76	37.76	54	-16.24

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

6.4 Power Spectral Density

6.4.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.4.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.10.2, the test method of power spectral density as below:

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.

- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.4.3	Test	Result
-------	------	--------

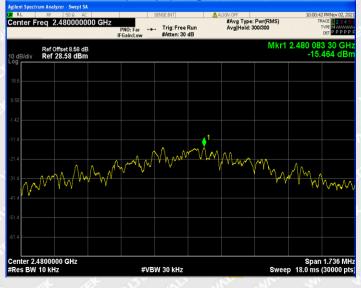
Test Mode	Test Channel	Power Spectral Density dBm/10kHz	Limit dBm/3kHz
A A 50 .	Low	-14.58	8
BLE (1Mbps)	Middle	-13.9	8
Lifet and the and the and	High	-12.79	8
a sa sa sa	Low	-16.82	8
BLE (2Mbps)	Middle	-16.31	8
and the species species a	High	-15.46	8

BLE (1Mbps)_Low Channel

BLE (1Mbps)_Middle Channel

BLE (1Mbps)_High Channel

\bigotimes



BLE (2Mbps)_Middle Channel

BLE (2Mbps)_High Channel

Page 26 of 47

G

1

P

6.5 DTS Bandwidth

6.5.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.5.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.2 and ANSI C63.10-2013 Subclause 11.8.1, the test method of DTS Bandwidth as below:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.3 Test Result

Test Mode	Test Channel	6dB Bandwidth MHz	Limit kHz
	Low	0.668	≥ 500
BLE (1Mbps)	Middle	0.672	≥ 500
	High	0.704	≥ 500
WALTER WALTER WALTER OF	Low	0.804	≥ 500
BLE (2Mbps)	Middle	0.636	≥ 500
	High	0.868	≥ 500

\bigotimes

BLE (1Mbps)_Low Channel

BLE (1Mbps)_Middle Channel

BLE (1Mbps)_High Channel

\bigotimes

BLE (2Mbps)_Low Channel

BLE (2Mbps)_Middle Channel

BLE (2Mbps)_High Channel

Page 29 of 47

6.6 RF Output Power

6.6.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

6.6.2 Test Procedure

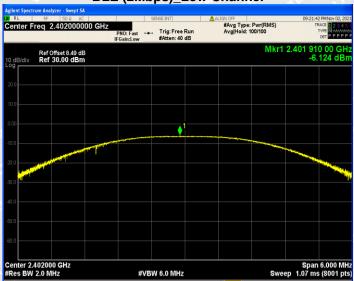
According to the KDB-558074 D01 v05r02 Subclause 8.3.1.1 and ANSI C63.10-2013 Subclause 11.9.1.1, this procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq 3 × RBW.
- c) Set span \ge 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

6.6.3 Test Result

Modulation	Test Channel	Reading (dBm)	Output Power (mW)	Limit (mW)
	Low	-6.112	0.245	1000
BLE (1Mbps)	Middle	-5.496	0.282	1000
	High	-4.611	0.346	1000
	Low	-6.124	0.244	1000
BLE (2Mbps)	Middle	-5.300	0.295	1000
	High	-4.625	0.344	1000

BLE (1Mbps)_Low Channel



BLE (1Mbps)_High Channel

BLE (2Mbps)_Low Channel

BLE (2Mbps)_Middle Channel

BLE (2Mbps)_High Channel

\bigotimes

6.7 Out of Band Emissions

6.7.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

6.7.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.11, the Emissions in nonrestricted frequency bands test method as follows:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

According to the KDB 558074 D01 v05r02 Subclause 8.5 and ANSI C63.10-2013 Subclause 11.12, the Emissions in restricted frequency bands test method as follows:

A. Radiated emission measurements:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge,

as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz

for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emissions must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205.

Note that the method of measurement KDB publication number: 913591 may be used for the radiated band edge measurements.

B. Antenna-port conducted measurements

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 9/
- b) VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.

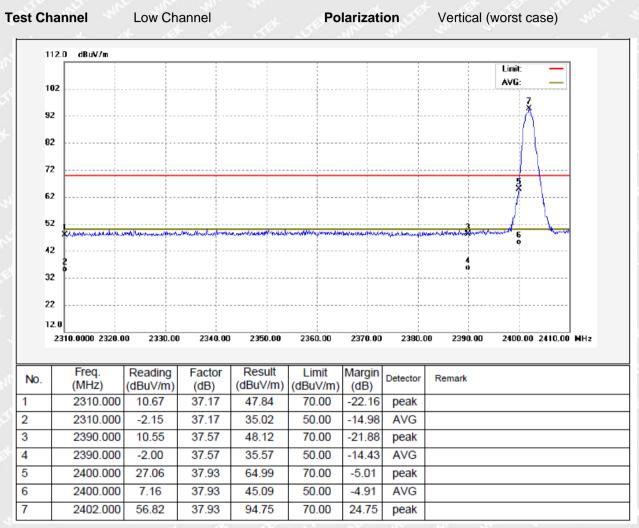
f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be lengthened for low-duty-cycle applications.)

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1000 MHz	100 kHz to 120 kHz
>1000 MHz	1 MHz

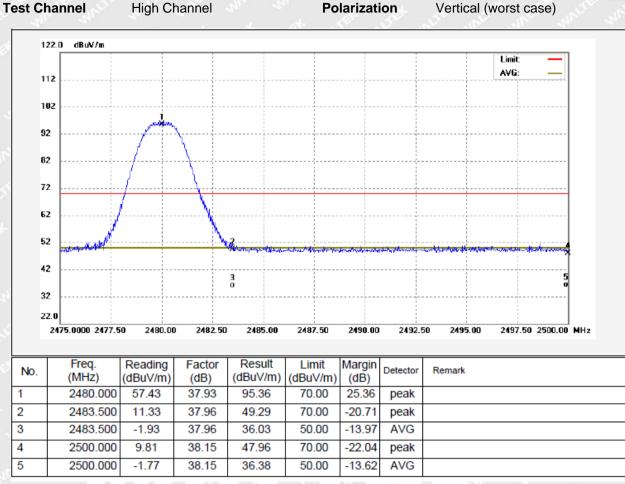
Table 9-RBW as a function of frequency

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1.

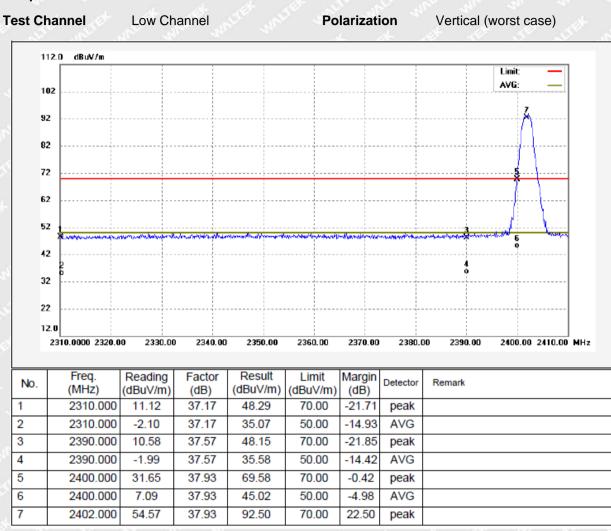


NULTR'


6.7.3 Test Result

Radiated Test

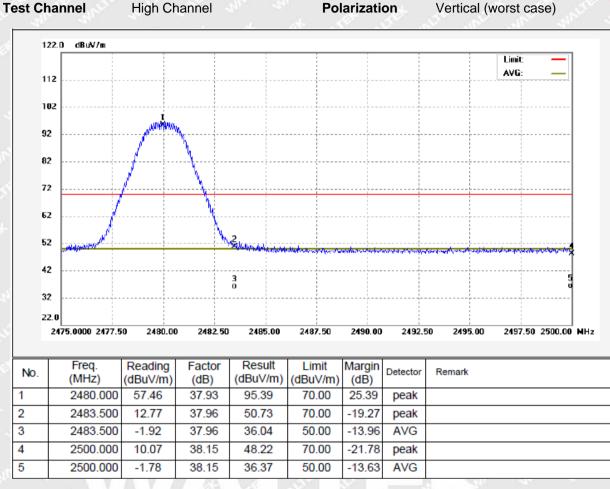
1Mbps



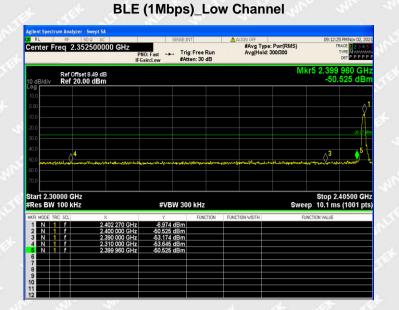
14.

V

2



2Mbps



10.1

2101

Conducted Test

BLE (1Mbps)_High Channel

K RL	RF 50 Q		SE	INSE:INT	ALIGN OFF			58 PM Nov 02,
Center Fr	req 2.51000	PN	D: Fast 🔸	Trig: Free Rur #Atten: 30 dB	#Avg Avg t	Type: Pwr(RMS) Hold: 300/300		TYPE MUMA DET P P P
10 dB/div	Ref Offset 8.58 Ref 20.00 d						Mkr4 2.54 -49	2 00 G 159 di
Log 10.0								
0.00	1							
-10.0	X							
-20.0								
-30.0								-25.61
-40.0	ji h							4
	<u> </u>	2					and all administration	• ·
-50.0	wand with	wanterhimme	and the second states and	and the second	ilen este more to deper	and of the state o	destal de la compañía de la compañía Na compañía de la comp	all and a start of the start of
-70.0								
Start 2.47 #Res BW			#VBV	V 300 kHz		Sv	Stop 2 eep 7.67 m	.55000 G s (1001 p
MKR MODE TR	C SCL	X	Y	FUNCTIO	FUNCTION WIDT	н	FUNCTION VALUE	
1 N 1	f	2.480 00 GHz	-5.610 d	Bm				
	T T	2.483 50 GHz 2.500 00 GHz	-53.759 d -52.221 d		_			
2 N 1 3 N 1		2.542 00 GHz	-49.159 d	Bm				
3 N 1 4 N 1	f	2.542 00 GH2						
3 N 1 4 N 1 5 6	f	2.542 00 GHZ						
3 N 1 4 N 1 5	f	2.542 00 GHz						
3 N 1 4 N 1 5 6 7	Î	2.542 00 GH2						

\bigotimes

BLE (2Mbps)_Low Channel

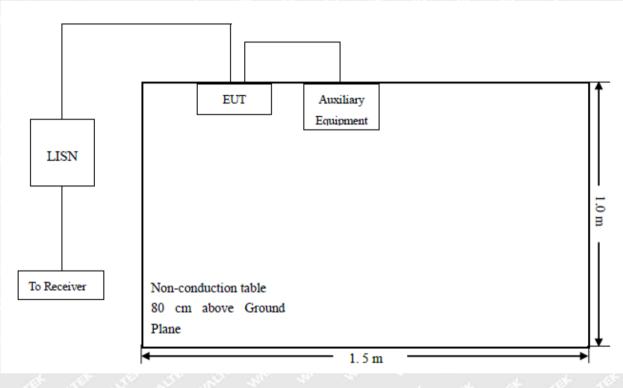
RL	F	F 50 Ω	AC	SB	NSE:INT	ALIGN OFF		09:22:31	PMNov 02, 20
nter	Freq	2.352500	PN	10: Fast 🔸	Trig: Free Run #Atten: 30 dB		ype: Pwr(RMS) Id: 300/300	T	ACE 12345 YPE MUUUUUU DET PPPPF
dB/div		ef Offset 8.49 ef 20.00 dE					M	kr5 2.399 -45.4	960 GH 127 dBr
9 .0									
10									
.0									— Ă
0									-26,68 @
									▲5
- I		۸ <mark>4</mark>							
		0						()	
Sec. and	yeshay/n	er and and a second	An and a start of the second	and the stand of the	and the second second	and the states of the states o	angesty to be an a straight and the straight of	- march to the last	لمونادوس
.0	yaalaayoo	in and a start of the second	Ar-kandul purtul marke	and the state of the second	un an	n daga na sang ng n	angud y tal Anaviana Battay ng	ntree and a series	radion
.0	911 1		lenkerels och fan en er	wateret water	ing a deag an an dean a	and a second	angu du an	nghanga saliya har biy	.0500 GH
art 2.3) GHz	len kanske forstelen som		/ 300 kHz	n Beldran Stade and an an an Aria		Stop 2.4	
art 2.3 les BV	V 100) GHz) kHz	×	#VBW	300 kHz		Swee	Stop 2.4	
art 2.3	V 100) GHz) kHz	× 2.402 060 GHz	#VBW	1 300 kHz FUNCTION		Swee	Stop 2.4	
art 2.3	V 100) GHz) kHz	× 2,402 060 GHz 2,400 000 GHz	#VBW Y -6.877 dl -45.427 dl	1 300 kHz Function Bm Bm		Swee	Stop 2.4	
art 2.3	V 100) GHz) KHz	× 2.402.050 GHz 2.390 000 GHz	#VBW	1 300 kHz FUNCTION Bm Bm Bm		Swee	Stop 2.4	
art 2.3 Res BV R MODE N N	V 100) GHz) kHz	X 2.402 060 GHz 2.300 000 GHz 2.390 000 GHz 2.310 000 GHz	#VBW -6.817 di -5.427 di -53.079 di -52.865 di	/ 300 kHz FUNCTION Bm Bm Bm Bm		Swee	Stop 2.4	
art 2.3 des BV	V 100) GHz) kHz	× 2.402.050 GHz 2.390 000 GHz	#VBW	/ 300 kHz FUNCTION Bm Bm Bm Bm		Swee	Stop 2.4	
art 2.3 art 2.3 les BV	V 100) GHz) kHz	X 2.402 060 GHz 2.300 000 GHz 2.390 000 GHz 2.310 000 GHz	#VBW -6.817 di -5.427 di -53.079 di -52.865 di	/ 300 kHz FUNCTION Bm Bm Bm Bm		Swee	Stop 2.4	
art 2.3 art 2.3 Res BV	V 100) GHz) kHz	X 2.402 060 GHz 2.300 000 GHz 2.390 000 GHz 2.310 000 GHz	#VBW -6.817 di -5.427 di -53.079 di -52.865 di	/ 300 kHz FUNCTION Bm Bm Bm Bm		Swee	Stop 2.4	
art 2.3 (es BV R MODE N N N	V 100) GHz) kHz	X 2.402 060 GHz 2.300 000 GHz 2.390 000 GHz 2.310 000 GHz	#VBW -6.817 di -5.427 di -53.079 di -52.865 di	/ 300 kHz FUNCTION Bm Bm Bm Bm		Swee	Stop 2.4	

BLE (2Mbps)_High Channel

RL	R		AC 20			SENSE:1	NT		ALIGN OFF				27 PMNov 02, 2
enter	Freq	2.51	00000		PNO: Fast FGain:Low		g:Free R ten:30 di			Type: Pwr(old: 300/30			TYPE M
0 dB/div			t 8.58 de 10 dBm								N	1kr4 2.54 -49	0 48 G .942 dE
.og 10.0													
0.00													
10.0		$-\Lambda$											
20.0		-/\											
10.0													4
	tonude	<u>N</u>	1 A2		4	<u>}</u> 3	يعامد لأدب		and the second	e da da da da	ميرالزومدر	A starting of the start of the	the costor
50.0			~ 1000										
70.0													
itart 2. Res Bi					#	VBW 30	0 kHz				Swee	Stop 2 p 7.67 m	.55000 G s (1001 p
KR MODE	TRC SC	L		×	۱ ۱		FUNCT	ION	FUNCTION WIDTH		FU	NCTION VALUE	
1 N	1 f			2.480 00 GHz 2.483 50 GHz		19 dBm 63 dBm							
2 1	1 f		-	2.500 00 GHz 2.540 48 GHz	-52.3	47 dBm 42 dBm							
2 N 3 N	1 f		_		45.5	HZ GDIII							
3 N 4 N 5	1 f												
3 N 4 N 5 6 7	1 f												
3 N 4 N 5 6	1 f												

G

S


6.8 Conducted Emissions

6.8.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013measurement procedure. The specification used was with the FCC Part 15.207Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in themiddle. The spacing between the peripherals was 10 cm.

6.8.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	
Quasi-Peak Adapter Mode	Normal

6.8.4 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.8.5 Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF(Voltage Division Facotr), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

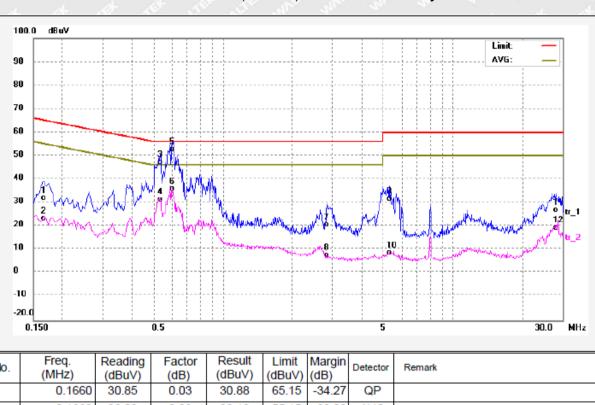
Measurement=Reading Level+Correct Factor

Correct Facotor=LISN VDF+Cable Loss

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

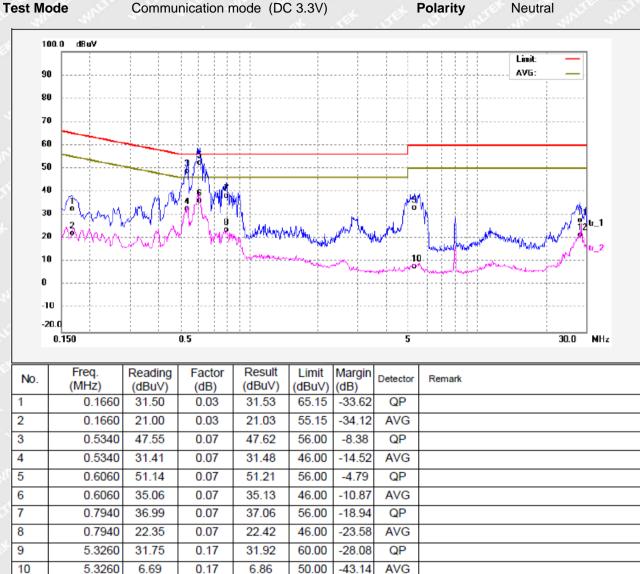
Margin=Limit-Measurement

)



6.8.6 Test Result

Communication mode (DC 3.3V)



No.	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Detector	Remark
1	0.1660	30.85	0.03	30.88	65.15	-34.27	QP	
2	0.1660	22.09	0.03	22.12	55.15	-33.03	AVG	
3	0.5340	46.19	0.07	46.26	56.00	-9.74	QP	
4	0.5340	30.05	0.07	30.12	46.00	-15.88	AVG	
5	0.6020	51.60	0.07	51.67	56.00	-4.33	QP	
6	0.6020	34.60	0.07	34.67	46.00	-11.33	AVG	
7	2.8300	19.26	0.13	19.39	56.00	-36.61	QP	
8	2.8300	6.54	0.13	6.67	46.00	-39.33	AVG	
9	5.2780	30.35	0.17	30.52	60.00	-29.48	QP	
10	5.2780	7.30	0.17	7.47	50.00	-42.53	AVG	
11	28.1100	25.31	0.42	25.73	60.00	-34.27	QP	
12	28,1100	17.95	0.42	18.37	50.00	-31.63	AVG	

K

QP

AVG

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

11

12

28.0460

28.0460

26.13

20.00

0.42

0.42

26.55

20.42

60.00

50.00

-33.45

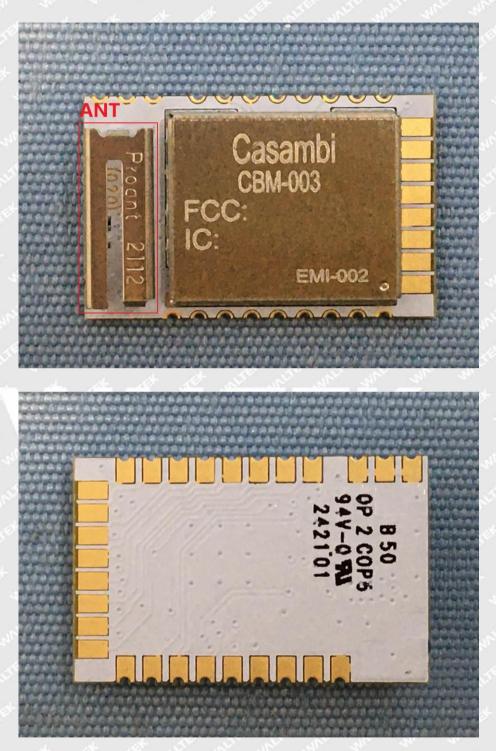
-29.58

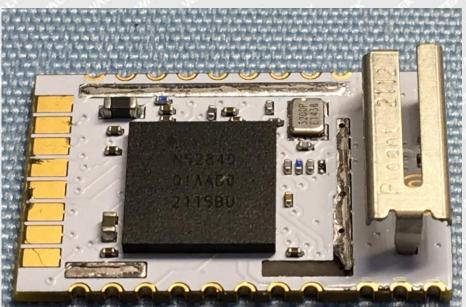
7 Photographs Test Setup

7.1 Photographs - Radiated Emission Test Setup

30MHz-1GHz

Above 1GHz


7.2 Photographs – Conducted Emission Test Setup


\bigotimes

8 Photographs - Constructional Details

8.1 EUT - External Photos

=====End of Report======